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Background. +e therapeutic effects of Qiliqiangxin capsule (QLQX), a Chinese patent medicine, in patients with chronic heart
failure are well established. However, whether QLQX modulates cardiac calcium (Ca2+) signals, which are crucial for the heart
function, remains unclear. Aim of the Study. +is study aimed to evaluate the role of QLQX in modulating Ca2+ signals in human
induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Materials and Methods. Fluorescence imaging was used to
monitor Ca2+ signals in the cytosol and nuclei of hiPSC-CMs. For Ca2+ spark measurements, the line-scan mode of a confocal
microscope was used. Results.+eQLQX treatment substantially decreased the frequency of spontaneous Ca2+ transients, whereas
the amplitude of Ca2+ transients elicited by electrical stimulation did not change. QLQX increased the Ca2+ spark frequency in
both the cytosol and nuclei without changing the sarcoplasmic reticulum Ca2+ content. Interestingly, QLQX ameliorated ab-
normal Ca2+ transients in CMs differentiated from hiPSCs derived from patients with long-QT syndrome. Conclusions. Our
findings provide the first line of evidence that QLQX directly modulates cardiac Ca2+ signals in a human cardiomyocyte model.

1. Introduction

Calcium is an important second messenger that par-
ticipates in several physiological processes [1, 2]. In
cardiomyocytes, extracellular calcium ion influx during
action potentials promotes calcium release from the
sarcoplasmic reticulum (SR) to the cytosol. +is phe-
nomenon is called calcium-induced calcium release and
is essential for cardiac contraction [3]. Calcium in the
cytoplasm flows into the nucleus through the nuclear
pore complex (NPC), which regulates gene transcription.
Many drugs modulate myocardial function through
calcium signaling. For example, stachydrine hydro-
chloride targets calcium-handling proteins such as
ryanodine receptors (RyRs) and phospholamban (PLN)
[4]. Shengmai powder, a traditional Chinese medicine,
regulates calcium signals to treat heart failure and angina
pectoris [5].

+e Qiliqiangxin capsule (QLQX) is a Chinese patent
medicine composed of 11 herbs, including Astragalus
membranaceus, ginseng, and Aconitum carmichaelii [6, 7].
Several clinical trials have shown that QLQX improves
cardiac function and reduces mortality in patients with
chronic heart failure (CHF) [6, 8, 9]. In rats, QLQX ame-
liorates cardiac remodeling caused by myocardial infarction
[7, 10]. However, the effect of QLQX on cardiac calcium
signals, which is crucial for heart function, remains unclear.
Moreover, the recent mechanistic studies of QLQX are
mainly based on animal models or animal cells. Because of
species differences, experimental results in animal models
cannot fully reflect the action of drugs in humans [11].
Human induced pluripotent stem cell-derived car-
diomyocytes (hiPSC-CMs) have been used as a source of
human cardiomyocytes for drug testing, and normal
(without disease modeling) hiPSC-CMs can be used to in-
vestigate the mechanism of action of drugs [12]. +erefore,
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we used hiPSC-CMs to study the effect of QLQX on cardiac
cytosolic and nuclear calcium signals.

2. Methods

2.1. Cells and Reagents. Normal and long-QT (KCNQ1,
exon4, c.656 G>A) hiPSC-CMs were obtained from HELP
+erapeutics (Nanjing, China) and cultured as described
previously [13]. QLQX was obtained from Shijiazhuang
Yiling Pharmaceutical Co., Ltd. (Hebei, China). According
to the “Chinese Pharmacopoeia” and the relevant standards
of the National Medical Products Administration, the
quality standard of the QLQX capsules is stated as follows:
HPLC determination of Astragalus by astragaloside IV
(C41H68O14) shall be no less than 0.12mg.+e prescription
is Astragalus 450 g, ginseng 225 g, Heishun tablets 112.5 g,
Salvia 225 g, Tinglizi 150 g, Alisma 225 g, Polygonatum
odoratum 75 g, cinnamon 90 g, safflower 90 g, fragrant Jiapi
180 g, and tangerine peel 75 g. +e Tyrode solution con-
tained 140mMNaCl, 5mMKCl, 1mMMgCl2, 1mMCaCl2,
and 10mM D-glucose, buffered with 10mM HEPES at pH
7.4.

2.2. Cell Counting Kit-8 Assay (CCK-8). +e viability of
hiPSC-CMs treated with various QLQX concentrations were
examined using a CCK-8kit (Melone, China) by following
the manufacturer’s protocol. A plate reader (SpectraMax
i3X, Molecular Devices, CA, USA) was used to measure
absorbance at 450 nm.

2.3. Flow Cytometry. +e hiPSC-CMs were fixed in 4%
paraformaldehyde (PFA) at room temperature for 15min,
and the cell membranes were permeabilized with 90%
precooled methanol for 30min on ice. +e permeabilized
cells were incubated with the cTnT primary antibody
(Abcam, UK) and an appropriate secondary antibody. A
CytoFLEX flow cytometer was used to analyze the per-
centage of cTnT-positive cells.

2.4. Immunostaining. +e hiPSC-CMs were fixed in 4% PFA
for 20min and then permeabilized with 0.2% Triton X-100
for 10min. After blocking with 1% bovine serum albumin
(BSA)-phosphate buffered saline (PBS) for 15min, the
samples were incubated with the cTnT antibody (Abcam)
overnight at 4°C. +e Alexa Fluor-555 anti-mouse IgG
(Invitrogen, Carlsbad, CA, USA) was used as the secondary
antibody, and the nuclei were labeled with DAPI (Solarbio,
China). A confocal microscope (FV3000; Olympus, Japan)
was used for imaging. We used an ER-tracker to examine the
structure of the nucleoplasmic reticulum (NR) as previously
described [14]. +e nuclei of living cells were labeled with
Hoechst 33342 and images were captured using a confocal
microscope.

2.5. Calcium Imaging. Fluorescence imaging of Fluo-4
(Invitrogen) was used to monitor calcium signals in the
cytoplasm and nucleus. +e cells were incubated in a Tyrode

solution containing 5 μMFluo-4-AM at 37°C for 30min.+e
samples were then transferred to an inverted microscope.
For local calcium signals, the confocal line-scan mode was
employed, and the scanning lines were placed crossing the
long axis of the cell so that the nucleus was approximately in
the middle of the scanning line. Sparkmaster [15] and
Peakcaller [16] were used to analyze the calcium signals.

2.6.High-Performance LiquidChromatographyTandemMass
Spectrometry (HPLC-MS/MS). To identify the compounds
in QLQX using HPLC-MS/MS, QLQX was centrifuged at
12000 rpm for 10min at 4°C, and the supernatant was di-
luted 2–100 times. +e internal standard was passed through
a 0.22 μm PTPE filter, and metabolite quantitative analysis
was performed. +e analysis platform (Ultimate 3000LC, Q
Exactive HF, +ermo Fisher Scientific, USA) was employed,
and separation was achieved using a Zorbax Eclipse C18
column (1.8 μm, 2.1× 100mm). +e chromatographic sep-
aration conditions were column temperature, 30°C; flow
rate, 0.3mL/min; injection volume, 2 μL; and autosampler
temperature, 4°C. Gradient elution with mobile phase
compositions A (water + 0.1% formic acid) and B (aceto-
nitrile) was performed. Data analysis was performed using
the Compound Discoverer 3.2 software.

2.7. Statistical Analysis. Statistical tests were performed
using the SPSS software, and statistical significance was set at
P< 0.05. All data are expressed as the mean± standard error
(SE).

3. Results

Cardiomyocytes derived from hiPSCs stained positive for
cardiac troponin T (cTnT), a cardiac-specific protein
(Figure 1(a)). +e flow cytometry analysis also indicated that
94.29% of hiPSC-CMs expressed cTnT (Figure 1(b)). hiPSC-
CM viability was not substantially altered by treatment with
QLQX at a range of concentrations (9, 27, 83, and 250 μg/
ml), indicating that QLQX was not toxic to cardiomyocytes
at the examined concentrations (Figure 1(c)).

As shown in Figure 2(a), the frequency of spontaneous
Ca2+ transients was remarkably decreased by the QLQX
treatment in hiPSC-CMs, together with elevated calcium
transient amplitude, rise time, and full duration at half
maximum (Figure 2(b)). In CMs differentiated from hiPSCs
derived from patients with long-QT syndrome, abnormal
Ca2+ transients could be observed, which were presumably
caused by long trains of early afterdepolarizations [17].
QLQX effectively attenuated Ca2+signal abnormalities
(Figure 2(c)). Next, we investigated the potential role of
QLQX in modulating electrical stimulation-elicited Ca2+
transients in normal hiPSC-CMs. +e results indicated that
the amplitude of these Ca2+ transients was not significantly
changed by the QLQX application (Figure 3). We then
studied the effect of QLQX on SR Ca2+ content in hiPSC-
CMs, and the results suggested a similar amplitude but
substantially decreased rise time of caffeine-induced Ca2+
rise, indicating an unchanged SR Ca2+ content but increased
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RyR activity (Figure 4). Consistently, Ca2+ spark measure-
ments using confocal microscopy in line scanning mode
indicated that QLQX increased the Ca2+ spark frequency in
both the cytosol and nuclei (Figure 5). As the structural basis
of nuclear Ca2+ sparks, the NR of hiPSC-CMs revealed by the
ER-tracker loading, was not substantially changed by QLQX
(Figure 6(a)). Moreover, nuclear Ca2+ waves in hiPSC-CMs
displayed delayed kinetics compared to those in the cytosol,
which were also not altered by the QLQX treatment
(Figure 6(b)).

To better understand the mechanisms of action of
QLQX, its chemical composition was analyzed using HPLC-
MS/MS, and 62 components, such as cinnamic acid, fla-
vonoids, astragalus, coumarin, and its derivatives were
identified (Supplementary Table 1).

4. Discussion

+e therapeutic effects of QLQX have been observed in
several clinical studies [18–20]. In CHF patients, the com-
bined use of the QLQX capsules with standard treatment
further reduces the level of N-terminal pro-B-type natri-
uretic peptide (NT-proBNP) [9], a marker of heart failure
status [21]. A meta-analysis of 129 clinical trials indicated

that QLQX combined with conventional treatment reduced
the occurrence of major cardiovascular events and reho-
spitalization rates. Moreover, improvement in myocardial
function without serious adverse events has been observed
[20]. Mechanistic studies of QLQX have mainly been based
on animal models. For example, QLQX ameliorates ven-
tricular remodeling and improves cardiac function in a
zebrafish heart failure model [22]. Furthermore, QLQX
protected mice against damage caused by myocardial in-
farction induced by left coronary artery ligation. In vitro
experiments have also shown that QLQX attenuates hyp-
oxia-induced apoptosis in cardiomyocytes [23]. In normal
and hypertrophic rat cardiomyocytes, QLQX inhibited ICa,L,
which may serve as one of the underlying mechanisms of its
therapeutic effects [24]. A recent study investigated the
protective effect of QLQX on doxorubicin-induced car-
diotoxicity in a rat model [25]. Left ventricular remodeling is
also alleviated by QLQX in rats with pressure overload-
induced heart failure [26].

hiPSC-CMs have been widely used as a source of human
cardiomyocytes for evaluating the effects of drugs on cardiac
function. For example, field stimulation-induced contrac-
tion and Ca2+ transients of hiPSC-CMs have been employed
as key indicators of drug-induced changes in myocardial
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Figure 1: +e expression of cTnTwas examined by immunostaining (a) and flow cytometry analysis (b). Various concentrations of QLQX
did not alter cell survival rate as examined by CCK-8 (c).
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function [12]. hiPSC-CMs have also been used to investigate
the role of ginsenoside Rb1 in ameliorating aconitine-in-
duced cardiotoxicity by regulating calcium homeostasis [27].
Moreover, three-dimensional engineered heart tissues
constructed with 10 normal hiPSC cell-line-differentiated
CMs have been used to detect the positive inotropic effects of
seven drugs under electrical stimulation [28]. Another study
employed human ventricular-like cardiac tissue strips
(hvCTS) and organoid chambers (hvCOCs) constructed
with disease-free hiPSC-CMs to screen 25 cardioactive
chemicals covering different drug categories [29]. +erefore,
hiPSC-CMs without disease modeling are suitable for drug
evaluation, and we used this model to comprehensively
examine the role of QLQX in modulating cardiac Ca2+
signals.

We first observed that spontaneous Ca2+ transient fre-
quency, an indicator of the beating rate, was remarkably
decreased by QLQX in hiPSC-CMs (Figure 2). +e hiPSC-
CMs used were a mixture of ventricular, atrial, and pace-
maker-like cells. hiPSC-CMs also express pacemaker cur-
rents (If ), which are absent in human adult CMs, leading to
the innate automaticity of hiPSC-CMs [30]. +erefore, the

spontaneous beating rate of hiPSC-CMs has been widely
used to examine the chronotropic effects of drugs. Epide-
miological studies have shown that elevated heart rate is a
risk factor for cardiovascular disease in healthy people [31];
an increase in heart rate by 10 beats per minute is correlated
with a 20% elevated risk of cardiac death [32].+e heart rate-
lowering medications can reduce mortality [33]. For ex-
ample, ivabradine attenuates heart failure by reducing the
heart rate of patients [33]. In addition, β-blockers, as
commonly prescribed drugs for the treatment of cardio-
vascular diseases, decrease heart rate to limit myocardial
oxygen consumption, thereby improving heart function
[34]. Some traditional Chinese medicines, such as ginse-
noside, one of the active ingredients of ginseng, reduce heart
rate, thereby alleviating cardiac dysfunction and remodeling
in heart failure [35].

Ca2+ signals reflect the underlyingmechanisms of altered
cardiac contractile properties during drug treatment. +us,
we comprehensively measured the effect of QLQX on cal-
cium homeostasis in hiPSC-CMs and found that QLQX
increased the amplitude of spontaneous Ca2+ transients
(Figure 2(a) and 2(b)), which was presumably due to its
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Figure 2:+e effects of QLQX on spontaneous Ca2+ transients in hiPSC-CMs. (a) Representative Ca2+ transients before and after the QLQX
application (83 μg/ml, 3 minutes). (b)+e QLQX treatment significantly decreased the frequency but increased the amplitude, rise time, and
full duration at half maximum (FDHM) of spontaneous Ca2+ transients. n� 48–50 cells, ∗∗P< 0.01. (c) In long-QT hiPSC-CMs, QLQX
attenuated abnormal Ca2+ transients. n� 11 cells, ∗∗P< 0.01.
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negative chronotropic effect because hiPSC-CMs harbored a
negative force-frequency response (i.e., lowering beating
frequency would lead to higher Ca2+ transient amplitude).
+is hypothesis was supported by our observation that
QLQX did not change the amplitudes of Ca2+ transients
elicited by the 0.2–3Hz electrical stimulation (Figure 3). As

localized calcium signals, calcium sparks reflect the open
probability of the RyRs. Indeed, low concentrations of
caffeine, an activator of the RyRs, can increase calcium spark
frequency [36]. Our results suggest that the QLQX appli-
cation substantially increased Ca2+ spark frequency in both
the cytosol and nuclei (Figure 5). Furthermore, the elevated
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amplitude and duration of Ca2+ sparks after the QLQX
treatment indicated stronger Ca2+ release. One potential
drawback of the increased calcium spark frequency is the
elevated level of Ca2+ leakage from the SR. However, QLQX
did not change the SR Ca2+ content of hiPSC-CMs, as
determined by the application of a high concentration of
caffeine (Figure 4). +ese results suggest that QLQX may
target multiple Ca2+-handling proteins to regulate Ca2+
homeostasis in hiPSC-CMs.

In cardiomyocytes, Ca2+ exhibits different functions in
different subcellular locations. In the cytoplasm, the major
function of Ca2+ is to regulate cardiac contraction through
EC coupling. In the nucleus, Ca2+ regulates gene tran-
scription, and the activation of nuclear Ca2+-dependent
transcription factors is a part of the process called excitation-
transcription coupling (ETC), which is the link between
extracellular signals and cardiomyocyte reprogramming
[37]. For example, endothelin 1 induces inositol-1,4,5-tri-
sphosphate receptor (IP3R)-mediated local nuclear Ca2+
release, which in turn activates nuclear CaMKII and affects
downstream gene transcription during cardiac hypertrophy
[38]. +erefore, nuclear Ca2+ plays an important role in
regulating physiological functions of cardiomyocytes [39].
As mentioned above, our results indicated that QLQX in-
creased the nuclear Ca2+ spark frequency; however, the effect
of nuclear calcium activation on gene transcription warrants
further investigation (Figure 7).

Our HPLC-MS/MS results showed that QLQX contains
numerous cardioprotective chemical components. For ex-
ample, choline can regulate the expression of key calcium-
handling proteins, such as STIM1 and Orai1 and attenuate
the angiotensin II-induced elevation of intracellular calcium,
thereby alleviating the cardiac remodeling induced by ab-
dominal aorta coarctation in rats [40]. As another constit-
uent of QLQX, stachydrine inhibits SR calcium leakage and
improves the calcium transient amplitude and cardiac
function in mice with transverse aorta constriction [4].
Moreover, caffeic acid regulates calcium and potassium

channels and decreases the heart rate, showing a protective
effect on cardiovascular diseases [41]. +erefore, many
chemical components of QLQX are closely related to the
regulation of cardiac calcium signaling, and the observations
in our study may reflect the multitarget pharmacological
mechanisms of QLQX.

5. Conclusion

+e current study systematically investigated the effect of
QLQX on cardiac Ca2+ signals using a human car-
diomyocyte model, and the results suggest that QLQX could
reduce the spontaneous beating frequency of hiPSC-CMs, as
reflected by Ca2+ transient measurements. Moreover, QLQX
substantially promoted the generation of Ca2+ sparks in both
the cytosol and nucleus. Taken together, these findings
provide the first line of evidence that QLQX directly
modulates cardiac Ca2+ signals in human cardiomyocytes,
which may lead to a better understanding of the mechanism
of action of QLQX and contribute to the development of
novel modern Chinese drugs.
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