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Abstract: Although colorectal cancer (CRC) is the second leading cause of death in developed
countries, current diagnostic tests for early disease stages are suboptimal. We have performed
a combination of UHPLC-MS metabolomics and 16S microbiome analyses on 224 feces samples
in order to identify early biomarkers for both advanced adenomas (AD) and CRC. We report
differences in fecal levels of cholesteryl esters and sphingolipids in CRC. We identified Fusobacterium,
Parvimonas and Staphylococcus to be increased in CRC patients and Lachnospiraceae family to be
reduced. We finally described Adlercreutzia to be more abundant in AD patients’ feces. Integration
of metabolomics and microbiome data revealed tight interactions between bacteria and host and
performed better than FOB test for CRC diagnosis. This study identifies potential early biomarkers
that outperform current diagnostic tools and frame them into the stablished gut microbiota role in
CRC pathogenesis.

Keywords: metabolomics; microbiome; omics; multiomics; omics integration; integration

1. Introduction

Colorectal cancer (CRC) represents almost 10% of global cancer incidence [1], being the second
leading cause of death in developed countries [2]. CRC can develop sporadically or in the context
of inflammatory processes [3] and has been shown to be highly influenced by lifestyle factors,
like diet [4] and physical activity [5]. Nowadays, non-invasive massive screening for CRC is done
through fecal occult blood (FOB) test, which is the gold standard for the diagnosis, even though
it has been shown to have high sensitivity but low specificity [6]. One of the current challenges
of CRC treatment is its high degree of heterogeneity. It is unknown why CRCs of a similar stage,

Cancers 2020, 12, 1142; doi:10.3390/cancers12051142 www.mdpi.com/journal/cancers


http://www.mdpi.com/journal/cancers
http://www.mdpi.com
https://orcid.org/0000-0002-0208-1372
https://orcid.org/0000-0002-6107-9416
https://orcid.org/0000-0002-2019-678X
https://orcid.org/0000-0002-9994-4831
https://orcid.org/0000-0003-3133-0670
http://dx.doi.org/10.3390/cancers12051142
http://www.mdpi.com/journal/cancers
https://www.mdpi.com/2072-6694/12/5/1142?type=check_update&version=2

Cancers 2020, 12, 1142 2 of 22

being histologically indistinguishable behave differentially, both in recurrence and chemotherapy
response [1]. Therefore, there is a need for new molecular parameters that are able to distinguish
between CRC types for a better treatment outcome [1]. In this context, metabolomics of feces samples
have provided new non-invasive, accurate and predictive biomarkers for CRC, as our group and
other authors have suggested [7-9]. Metabolomics is the omics technology dedicated to the study
of the metabolome, the complete set of low molecular weight (<2000 Da, a.k.a metabolites) that are
context-dependent [10]. Relevant technological advances and new analytical and bioinformatics tools
development allow the measurement of large metabolite numbers simultaneously. Metabolomics,
thus, has become a relevant technology for biomarker identification in a range of diseases, including
cancer [11-14]. Importantly, the reported CRC-metabolomics studies have identified a list of metabolites
systematically altered in CRC, that are involved in carbohydrate, amino acids and lipid-related metabolic
pathways, including tricarboxylic acid (TCA) cycle and short-chain fatty acids (SCFA) that could
be responsible for promoting tumoral growth and progression. Among the factors that influence
these metabolisms, and may be related to CRC development and progression, the microbiota has
been recurrently pointed to be one of them and suggested the bacterial driver-passenger hypothesis
for CRC initiation and progression [15,16]. This hypothesis is highly supported by the fact that
germ-free mice models susceptible to CRC have fewer tumors that non-germ-free mice [17-19].
This hypothesis arises from the adenoma-carcinoma sequence model developed before that states
that the accumulation of mutations and epigenetic alterations promote epithelial hyperplasia in the
colon (adenoma) that later results in CRC [20,21]. Mutations have been reported to occur in tumor
suppressor genes (APC, CTNNB1, DCC, P53) and oncogenes (KRAS, MYC), proposing to start in APC
gene, leading to adenoma and finishing with P53 causing the transition to CRC. Driver-passenger
bacteria hypothesis suggests that the first epithelial transformations may be caused by certain intestinal
bacteria. This epithelial damage leads to a change in the pre-tumoral microenvironment that favors the
colonization of the region by opportunistic bacteria, the passenger ones, that outgrowth and replaces
the driver bacteria [16]. Among proposed driver bacteria there are Bacteroides, Shigella, Citrobacter,
Salmonella and E. coli, while for passenger bacteria the following have been reported Fusobacterium
spp., Streptococcus gallolyticus, Clostridium septicum, Coriobacteriaceae, Roseburia and Faecalibacterium
genera. Full understanding on how the bacteria composition impact in host metabolism is still lacking.
Therefore, further investigation connecting microbiome and metabolome are needed.

In the current work, we have combined data from targeted UPLC-MS metabolomics and V1-V2
165 rDNA sequencing from the same stool samples for 77 healthy controls, 69 advanced adenomas and
99 CRC patients in order to identify potential non-invasive, early biomarkers for disease progression.

2. Results

2.1. Clinical Samples

Three clinical sample batches were used in this study, coming from COLONPREDICT study [7,22]
and the Biobank of the Instituto de Investigacion Sanitaria Galicia Sur. This study was a multi-center,
cross-sectional blinded study designed to generate new CRC diagnostic tests in symptomatic patients
based on available biomarkers, clinical and demographical data, approved by the Clinical Research
Ethics Committee of Galicia (Code 2011/038). The distribution of samples in each data collection batch
and clinical status is summarized in Figure 1.

Male individuals presented with major prevalence of both AD and CRC when compared to healthy
group (62.23%, 59.60% vs. 44.74%) and they were older that control group (67.99, 70.16 vs. 64.62 years
old respectively). Both group of patients also presented with higher presence of FOB (median 133
ng/mL in AD, 681 cng/mL in CRC) compared to controls (median 15 ng/mL), as well as CEA (median
1.45 ng/mL (C), 1.6 ng/mL (AD), 4.25 ng/mL (CRC) and COLONPREDICT risk score (median 0.01 (C),
0.05 (AD) and 0.5 (CRC)).
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From this cohort, we obtained a total of 245 samples for the metabolomics and 224 samples for the
microbiome analysis (Table S1). We first performed UPLC-MS analysis of the fecal samples, applying
both multivariate and univariate analyses. Afterwards, we analyzed the microbiome of the same
samples and later we combined both datasets to characterize the alterations identified by every single
omics and to provide with a potential diagnostics model that combined both data types.

Batch 1 Batch 2 Batch 3

10 |+39 (49) | +28 (77)

Cases

10 |+30 (40) | +29 (69)

168
10 |+30(40)| +59 (99)

30 | +99(129) | +116 (245)

Figure 1. Distribution of samples between the different sample batches. Green human silhouette
indicates the CONTROL group (C), yellow one ADENOMA one (AD) and red COLORECTAL CANCER
group (CRC). The three batch samples are indicated at the top of each column and the total number of
samples per batch in the final row. The n per group per batch is represented in cells, while between
parentheses the cumulative number of samples per group is shown.

2.2. Metabolomics Analysis

Considering all samples together, we performed several comparisons: Control vs. Case samples
(both AD and CRC combined), C vs. AD, C vs. CRC and AD vs. CRC sample groups. Principal
Component Analysis (PCA) (Figure 2A) did not identify any specific clustering of samples. Partial
Least Squares discriminant analysis (PLS-DA), though, was able to discriminate the CRC samples from
the other two groups, which did not present significant differences between themselves (Figure 2B).
This discrimination capability was confirmed by the analysis of the models accuracy, which revealed
that only the C vs. CRC PLS-DA model was able to significantly discriminate between those groups
(ANOVA p-value 0.013), while the other models did not demonstrate that capacity (ANOVA p-value
for Cvs. AD 1and AD vs. CRC 0.2). The three groups PLS-DA model did not show any discrimination
capability neither (p-value = 1). PLS-DA loadings plot showed that the most contributing metabolites
to this separation were mainly cholesteryl esters (ChoE) and sphingomyelins, with a certain influence
of glycerophosphatidylcholine (PC) species. PLS-DA analysis in a pairwise fashion showed that CRC
was clearly differentiated when compared both to C and AD groups (Figure 2C). The comparison
between C and AD showed a less-clear separation between C and AD (Figure 2C).

In respect to the univariate analysis, we found that CRC samples presented mostly the same
differential metabolites when compared to either C or AD sample groups (Figure 2D). C and AD
group comparison, instead, revealed that these two groups did not present significant metabolic
differences, although a certain trend on AD presenting higher levels of triacylglycerol metabolite
species was identified.

Full identifications of the differential metabolites per group can be found in Table S2.
Thus, CRC samples presented generalized higher levels for both ChoE and sphingomyelins classes
metabolites than C and AD samples. Between AD and CRC we also identified generalized higher
levels of PCs metabolites in the latter samples and also differences in diacylglycerol metabolic species.
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Relevantly, these results were in agreement with our CRC fecal metabolomics study [7], which showed
similar alterations.
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Figure 2. Multivariate and univariate analyses of the metabolomics data. Points are colored depending
on their clinical classification. PCA scores plot (A), PLS-DA scores and loadings plot, with point shape
and color depending on the metabolite class (B) and pairwise PLS-DA scores plots, from left to right:
Cvs. CRC, AD vs. CRC and C vs. AD comparisons (C). Volcano plots for the distinct comparisons of
sample groups, with points shape and color depending on the metabolite class (D).

We then analyzed how the metabolomics results could be associated with clinical metadata,
identifying triacylglycerol species to negatively correlate with age and ChoE and sphingomyelins to
correlate with FOB and calprotein measurements. Mapping of metabolites to different databases with
IMPaL A revealed a significant amount of altered metabolic pathways between CRC and the other
sample groups (Table S3). Among them, several pathways related with lipid metabolism, and also,
pathways related to immune system activation and to pathogenic Escherichia coli infection, which may
be associated with microbiota alterations in CRC patients. Mapping of identified metabolites to E. coli
KEGG database identified them to be related mostly to 3 pathways, two of them related to lipid
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(sphingolipids and glycerophospholipids) metabolisms and the cationic antimicrobial peptide (CAMP)
resistance pathway, thus suggesting a potential association with bacterial membrane components.

2.3. Microbiome Analysis

For this analysis, DNA was obtained from 231 stool samples (77 controls (C), 65 AD and 89 CRC).
Although a different average of lyophilized stool sample was used per sample group Xc = 67.9 mg,
Xap = 70.27 mg, Xcre = 78.58 mg), no difference was observed for this factor (ANOVA p-value 0.087).
Seemingly, no differences were observed neither for the DNA concentration obtained and the sample
group (ANOVA p-value 0.657, ¥C = Xc = 264.35 ng/uL, Xap = 253.09 ng/uL, Xcrc = 277.66 ng/uL).
No correlation was observed between the initial amount of sample used and the DNA concentration
obtained (rh0-0.038, p-value 0.566) (Figure S1A). 224 samples were correctly sequenced, generating
a total of 7,762,116 reads distributed in 34,652.30 sequences/sample in average (minimum = 11,371,
maximum = 73,019, median = 33,574). After demultiplexing and quality control steps, 6,221,946
sequences remained in the study (80.37%). These sequences were distributed in 17,641 features
(operational taxonomic units, OTUs) (Figure S1B). Sequencing data was uploaded to ENA repository
(PRJEB33634) and OTUs table can be found in Table S4.

We analyzed both o and 3 diversities by using distinct indexes. While PCoA performed upon
Bray-Curtis distance index measured in unannotated OTUs composition did not show any specific
clustering of samples by diagnostics (Figure 3A), PERMANOVA analysis upon Bray-Curtis distance
matrix showed that the stool microbiome composition between sample groups was indeed different
(p-value 0.001, pseudo-F = 1.303). Pairwise PERMANOVA showed that, specifically, stool microbiome
was able to differentiate CRC sample group from the other two (p-value, g-value and pseudo-F:
C vs. CRC 0.001, 0.001, 1.502; AD vs. CRC 0.001, 0.001, 1.413), while no difference was observed
between C and AD stool microbiome compositions (p-value 0.705, g-value 0.705, pseudo-F 0.951).
Bray-Curtis analysis performed upon genera-annotated microbiome composition showed the same
results. Notably, supervised PLS-DA analysis was able to completely discriminate between each sample
group included, consistent with the PCoA PERMANOVA results (Figure 3B). The loadings of the
PLS-DA revealed a broad distribution of both Firmicutes and Bacteroidetes OTUs, spanning towards
the three sample groups, as expected (Figure S2A). Removing these OTUs (2571/2953 total OTUs)
from the loadings plot revealed Fusobacteria to be mainly contributing to CRC samples differential
clustering observed in the Figure 3B (Figure S2B).

In agreement, alpha diversity measurements revealed the same pattern as described above.
While CRC presented differences when compared to the other two group samples, C and AD did not
present differences in microbiome composition richness. Interestingly, CRC microbiome composition
was found to be richer, with higher different OTUs identified than the other C and AD sample groups.
Either way, a more equilibrated diversity index as Shannon one was found to be non-significant for any
of the sample groups (Figure 3C), thus suggesting that although more different genera were identified
for the CRC samples group, no bacteria prevailed above others.

Afterwards, we performed taxonomical analysis of the 17,641 OTUs, and only 645 were unclassified,
atleastat the phylum level (3.66%). No Archaea bacteria were identified in our analysis. Thus, among the
classified OTUs, we identified 15 phyla, 27 classes, 45 orders, 77 families, 172 genera and 166 species.
We decided to study the differential abundances of different phyla and genera between the three
sample groups. First, we studied which phyla were differentially abundant between the three
sample groups included in the study by ANOVA test, identifying three phyla that met these criteria:
Bacteroidetes, Firmicutes and Fusobacteria. To better clarify the origin of these abundance differences,
we used Tukey’s HSD test that identified that most of the differences were due to CRC sample group
(Table 1). Thus, all three phyla were differentially abundant in CRC when compared to C, while only
two (Bacteroidetes and Firmicutes) presented statistically significant differences between C and AD
groups. Fusobacteria did not present differences between C and AD groups. No phyla were identified
to be different between AD and CRC microbiome compositions.
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Figure 3. Diversity and taxonomical measurements of the microbiome data. Scores plot for the PCoA
analysis performed upon Bray-Curtis distances of the microbiome. Points are colored depending on
the sample clinical status (A). PLS-DA analysis of the Bray-Curtis distances. Point shapes and colors
depend on the clinical status of samples (B). Alpha-diversity measurements of the distinct sample
groups, Faith’s Phylogenetic Distance for both Case-Control and C-AD-CRC comparisons, Observed
OTUs and Shannon diversity index for C-AD-CRC comparison (C). Mean relative abundances for
all identified phyla per sample group stacked barplot, with different phyla colored differentially (D).
Distribution of phyla relative abundances on the most differential ones, Bacteroidetes, Firmicutes
and Fusobacteria per sample group. Differences in the ratio of Firmicutes to Bacteroidetes relative
abundances per sample groups. p-Value scores are indicated in the following manner: < 0.05, * < 0.01,
#* <0.001 (E).
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Table 1. Differences between the identified phyla mean relative abundances per sample group
comparison. ANOVA values are indicated in the first column, while Tukey’s HSD test p-values are
indicated per each pairwise comparison in the other columns. In black, non-significant differences,
in red are indicated the p-values between 0.05 and 0.01, in yellow the p-values between 0.01 and 0.001
and in green the p-values < 0.001.

BACTERIAL PHYLUM PR(>F) C-AD CRC-AD CRC-C
K__BACTERIA.__ 0.450 0.974 0.630 0.461
K__BACTERIA.P__ACTINOBACTERIA 0.577 0.827 0.916 0.548
K__BACTERIA.P__BACTEROIDETES 0.002 0.009 0.998 0.006
K__BACTERIA.P__CYANOBACTERIA 0.247 0.695 0.722 0.216
K__BACTERIA.P__ELUSIMICROBIA 0.396 0.528 0.994 0.418

K__BACTERIA.P__FIRMICUTES <0.001 0.002 0.449 <0.001
K__BACTERIA.P__FUSOBACTERIA 0.036 0.634 0.285 0.030
K__BACTERIA.P__LENTISPHAERAE 0.086 0.865 0.283 0.085
K__BACTERIA.P__OD1 0.096 1.000 0.168 0.145
K__BACTERIA.P__ PROTEOBACTERIA 0.165 0.769 0.519 0.146
K__BACTERIA.P__SR1 0.450 1.000 0.544 0.517
K__BACTERIA.P__SPIROCHAETES 0.951 0.957 0.958 1.000
K__BACTERIA.P__SYNERGISTETES 0.567 0.564 0.691 0.967
K__BACTERIA.P__TM7 0.746 0.726 0.879 0.946
K__BACTERIA.P__TENERICUTES 0.920 0.990 0.967 0.915
K__BACTERIA.P__VERRUCOMICROBIA 0.549 0.965 0.559 0.705

All three sample groups exhibited a similar pattern of phyla abundance. Thus, the majority of the
microbiome population was identified to be from Firmicutes phylum, although this was reduced in both
AD and CRC patients. Bacteroidetes was the second most abundant phylum, being increased in AD
and CRC patients when compared to controls. After that, Proteobacteria and the other phyla followed
(Figure 3D and Figure S3). Interestingly, Fusobacteria phylum was mainly found in CRC population,
with a nearly null abundance in both C and AD sample groups (Figure 3E). Finally, we studied the
changes in the Firmicutes:Bacteroidetes ratio, which was found to diminish in AD and CRC patients
(Figure 3E) and reported to be altered in metabolic diseases [23].

To identify differences at genus level, we employed SIAMCAT tool to test if we could identify any
association between bacteria genera and the following confounding factors: gender, sample batch and
FOB. Using an adjusted 0.05 significance threshold, we could not identify any genus associated with
the sample gender. When analyzing the potential associations to FOB measurements, we found that
two genera could be associated with FOB concentration, Parvimonas and Peptostreptococcus (Figure S4A).
For the differences between sample batches, we found that for the sample batch 3 several genera were
significantly differentially abundant: Staphylococcus, Bifidobacterium, Clostridiaceae 02406, Megasphaera,
Peptostreptoccaceae Clostridium, Odoribacter and Synergistes, although the most evident one was found
for the Staphylococcus (Figure S4A). We then tried to identify potential differences in the abundance of
genera between clinical sample groups. To this aim, we performed three comparisons: C vs. CRC,
Cvs. AD and AD vs. CRC (Figure S4B). No significant differences in the genera abundance of stool
microbiome were found between healthy controls and adenoma groups.

Finally, we also studied the differences between the three sample groups at genus level by
means of compositional data analysis, using ALDEx2 R package [24]. C vs. AD patients did not
present any difference at the significance level used (adj. p-value 0.05) (Figure 4A). In agreement
with the previous approach using SIAMCAT tool, C vs. CRC comparisons showed that three genera
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were overrepresented in CRC patients, at adjusted p-value 0.05 significance level, Fusobacterium,
Staphylococcus and Parvimonas, while 4 genera were found to be reduced in those same patients,
three Lachnospiraceae genera (Coprococcus, Blautia and Clostridium) and Streptococcus (Figure 4B).

A B

Diferencs between

Diffocsncawitin . Diferencewitin

C Dnmemuaceae Parvimonas

Tiierdlacene Farvimons, .
Staplplocaccacede Sinpipiococcus
Streptococcaceae Streptococcus

Lachnospiraceae Dorea

Lachnospiraceae Coprococcus
P o — AD

Lachnospiraceae Clostridium-| CRC

Difference betwean

Lachnospiraceae Blautia

Fusobacteriaceae Fusobacterium- -
L

Coriobacteriaceae Adlercreutziay =

(1] 4 8
CLR normalized OTUs

Difference wihin

Figure 4. ALDEX2 results for the three comparisons: C vs. AD (A), C vs. CRC (B) and AD vs. CRC (C).
Difference between sample groups abundances is depicted in the vertical axis, while horizontal one
depicts the differences within each sample group. Grey points represent abundant non-differential
features, black points the non-differential rarely abundant features, blue dots the features identified as
significantly different by one test (t-test or Wilcoxon) and red ones the significantly different features
identified by both tests. Distribution of CLR-normalized abundances of the significantly differently
abundant bacteria identified by ALDEx2 methodology in the three sample groups (D). The central square
indicates the mean of the distribution, while bars indicate the standard deviation of the distribution.

For the AD vs. CRC comparison, an increased abundance of both Staphylococcus and Parvimonas
genera was identified, while Fusobacterium was not significantly different, although there was still
a trend to be higher in CRC (¢-test adjusted p-value 0.064, Wilcoxon adjusted p-value 0.059). Reduced
in CRC, we found again three Lachnospiraceae genera, the same Coprococcus and Blautia genera as before
and Dorea which was not found to be significantly between C and CRC comparison. We also found
Coriobacteriaceae Adlercreutzia genus to be underrepresented in CRC patients when compared to AD
individuals, which had not been identified as different in the comparison between C and CRC patients
(Figure 4C). A summary of the identified different abundances by ALDEX2 technique is presented
in Figure 4D.

In summary, combining the data of both ALDEX2 and SIAMCAT approaches, 16 genera were
found to be differential for some of the three sample groups. We studied how the abundances of these
16 bacterial genera changed depending on the disease progression, from healthy controls to the last CRC
stage. We divided the CRC samples into five groups, depending on the CRC stage at sample collection
moment. Based on the clinical data available (Table S1), the number of samples per group to perform
the comparative analysis was: 74 C, 62 AD, 3 CRC-0, 22 CRC-I, 22 CRC-II, 30 CRC-III and 6 CRC-IV.
This analysis confirmed that AD sample group had a higher relative abundance of Adlercreutzia genus
when compared to both C and CRC sample groups (Figure 5). For the majority of genera elevated
in CRC patients (Bulleidia, Fusobacterium, Butyrivibrio, Peptostreptococcus, Staphylococcus, Parvimonas
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and Selenomonas) we identified a trend in which all these genera increased with the worsening of the
disease, thus in final stages they were more abundant than in earlier CRC stages. An inverse trend was
found for the genera decreased in CRC patients, mostly from the Lachnospiraceae family, for which the
relative abundance decreased from healthy controls to each step of the disease, including AD group.
Finally, Streptococcus was reduced in CRC when compared to both C and AD samples (Figure 5).

Adlercreutzia - Bulleidia ' Ep-75-a5 | Fusobacterium

$ . Gemella y Blautia ' Butyrivibrio L. Clostridium
% : i * Progression
=l | | g ==l¢
S = ] | E3 AD
e s T \:E-: - 5= ‘ =
0 e e T e e e T = w% E CRC-0
8 " Coproccocus Dorea Peptococcus Peptostreptococcus E CRC-l
S E E3 CRC-I
=it E3 CRC-lI
=) o, o ! E3 CRC-IV
o’ = B ' i
- Staphylococcus = Streptococcus Parvimonas . Selenomonas
Jff[f&FD j ' '
o332 e - 552 o, ==z °
FoEEE2EE FPFoBEEEE Pofggeeg Fobd
U uUu vuuuv U uvuu uvuuu U < v

Progression (E;Ab;EﬁC)

Figure 5. Relative abundance per sample group and CRC stage group of the 16 differentially abundant
genera (n¢ = 74, nap = 62, ncrco = 3, Ncre- = 22, Nere-nn = 22, nere-n = 30 and nereav = 6)-

Finally, we used PICRUSt2 tool to identify potential differences in the metabolic capability
of each sample group’s microbiome. PCA analysis on the pathway abundances did not show any
difference between sample groups, although a tendency for the CRC samples group to cluster differently
was observed (Figure S5). Multivariate and univariate identified several pathways contributing to
this separate clustering, including amino acids biosynthesis; fermentation (to isobutanol, acetate
and lactate); glucose-related pathways (gluconeogenesis, gycolysis and glycogen biosynthesis and
degradation); saturated fatty acids elongation; reductive incomplete TCA; nitrate-degradation and
methanogenesis-related pathways (Figure S5).

2.4. Combination of Microbiome and Metabolomics Data

2.4.1. MixOmics

We used the CLR normalized genus data and the log-normalized metabolomics data as input for
mixOmics pipeline. Using this tool, we generated a sparse block PLS-DA analysis combining both
omics datasets in order to analyze the discriminative capability of combined data (Figure 6A) and both
of them separately (Figure 6B).
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Figure 6. Multi-omics results summary (A-C) and metabolomics-microbiome fingerprint LASSO
models ROC curves (D). mixOmics analysis for the combination of both metabolomics and microbiome
data. Block sPLS-DA analysis scores plot for the 3 sample group. Point color and shape depend on
the sample clinical status. Ellipses represent the 95% confidence per sample group (A); Contribution
of each omics dataset to the distribution of the samples depicted in the block sPLS-DA scores plot.
Point shape and color depend on the sample clinical status. Lines represent the distance from each
sample to the centroid of the corresponding sample group. Ellipses represent the 95% confidence region
(B); 50 strongest associations resulting from HAIIA results, depicting the correlations between bacterial
genera, displayed in the vertical axis, and individual metabolites, represented in the horizontal axis.
The red color indicated positive correlation values, while blue color negative ones. Only significant
correlations have been painted. Correlations have been also clustered depending on the correlation
trend so that the genera that correlate with the same metabolites are depicted together (C); Median
ROC curves for the 10,000 population iterations of the microbiome and microbiome-metabolomics
combined models. Line color indicates the data used (blue microbiome, orange combination) and
line type the inclusion of FOB measurements on the model (solid without FOB, dashed with FOB)
(D); FOB measurements distribution per sample group. FOB measurements are indicated in log-scale
and ANOVA p-value of the differences between sample groups is indicated. Pairwise comparisons
significance levels are indicated as follows: <0.1, * < 0.05, ** < 0.001 and *** < 0.001 (E).
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In both cases, we saw that all sample groups presented a highly diverse population, although
CRC samples tended to separate from the other two sample groups and cluster together. The sPLS-DA
performed combining both omics datasets shows that C and AD samples occupied the same space,
thus reflecting fewer differences between those samples, while CRC samples occupied a more
diverse range of space on the positive region of the first component (Figure 6A). Individual PLS-DA
showed that sample groups distribution was relatively different depending upon the dataset analyzed.
Thus, while microbiome data was unable to discriminate between C and AD samples at all, overlapping
both groups, metabolomics showed a reduced ability to differentiate between C and AD sample groups.
Both technologies were able to discriminate quite well the CRC samples from both C and AD sample
groups (Figure 6B).

Then, we decided to study the interconnections between the metabolomics and metagenomics data
by using HAIIA, a tool dedicated to identify both linear and non-linear associations between two distinct
datasets [25]. In agreement with the mixOmics analysis, HAIIA identified several genera that correlated
with different metabolites (Figure 6C). Notably, those bacteria that were found to be differential by
several methods between C, AD and CRC groups correlated with the same metabolite classes that
were found to be mostly differential and discriminant between sample groups. Thus, Fusobacterium
was found to present the most correlations of any bacteria, specifically with cholesteryl esters and
sphingomyelins metabolite classes. This same genus clustered with other reported altered genera
(Gemella, Parvimonas Peptrostreptococcus and Erysipelotrichaceae genera) that were also found to be
positively correlated with the same metabolite classes. Regarding these metabolites, they were found
also to correlate negatively with genera found to be decreased in CRC patients (Coprococcus, Dorea,
Blautia). Apart from the mentioned metabolite classes, genera decreased in the CRC group was
also negatively associated with diacylphosphatidylcholines (DAPC). Interestingly, we also observed
a trend with triacylglycerol species and Desulfovibrio and Synergistes genera, which were also negatively
correlated, suggesting a regulation of triacylglycerol metabolislm by these bacteria. Finally, an opposite
trend was also identified for Pyramidobacter and Roseburia, in a way that for those metabolites that
positively correlated with Roseburia did also correlate negatively with Pyramidobacter, mostly being
triacylglycerols and DAPCs. Complete correlations plot can be found as Figure S6.

We have also applied Procrustes analysis [26] to identify the global similarities between both
datasets, both considering all the samples and analyzing them by clinical category. In order to facilitate
the comprehension of the results, the comparison was performed using each dataset corresponding
eigenvalues. When comparing all samples, microbiome and metabolomics showed to be quite similar
(p-value 0.001), although the correlation score (RV) was low (RV 0.30) (Figure S7A). Separately, C, AD
and CRC showed higher similarities between the microbiome and metabolomics data than when
analyzed together (Figure S7B-D), with RV scores ranging from 0.4 to 0.5 and all p-values being
significant. Notably, microbiome PCoA for both AD and CRC sample groups (Figure S7C,D) showed
less diversity between individuals than the C group.

2.4.2. Microbiome: Metabolomics Predictive Model

Finally, we decided to combine both microbiome and metabolomics data to generate a LASSO
logistic model to test the potential predictive capability of this combined molecular fingerprint. In order
to keep the model as simple as possible and seeing that the metabolomics analysis revealed similar
results as the one our group published previously [7], we used the 16 differential genera identified and
the 6 metabolites used in the model we previously published.

While the microbiome fingerprint model alone worked, as well as, the combination of both datasets
for both C vs. CRC and AD vs. CRC discrimination models, the predictive ability was lost when
comparing C vs. AD sample groups. As described before, when FOB measurements were incorporated
at the model the performance was slightly reduced (Figure 6D). C vs. CRC model microbiome model
median AUC was found to be 0.887, slightly improving to 0.928 when combined with the metabolites
fingerprint. AD vs. CRC model median AUC was 0.870, which improved to 0.923 when metabolites
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were added. Finally, C vs. AD model performance was negligible, with an AUC of 0.278, slightly
improved to 0.297 when metabolites were added.

Seeing that the inclusion of FOB measurements in the models did not improve their performance,
we decided to analyze the distribution of FOB among the distinct group samples. We observed that
CRC was highly different from both C and AD, but the distribution of FOB measurements among
AD samples was more widely so that it did not present significant differences with the C group
(adj. p-value 0.068) (Figure 6E). This FOB levels distribution among AD patients may explain the
reduction of the predictive capability of the models when FOB was included as a covariate.

3. Discussion

While FOB tests have been demonstrated to be efficient in randomized CRC screening trials,
a requirement for better non-invasive biomarkers for CRC still exists, especially for the early stages
of the disease, both the adenoma step and the initial CRC stages, where FOB measurements are not
efficient. Thus, the aim of this study was to identify potential biomarkers, able to discriminate both AD
and CRC from feces samples by combining metabolomics and microbiome data. Feces are proximal to
the colorectal mucosa, thus we considered they could represent adequately the structural and metabolic
alterations related to the disease progression. Because of the role of gut microbiota in shaping the final
fecal metabolome, we considered the combined study of both microbiome and metabolomics data could
be relevant for explaining the potential biomarkers identified. Also importantly, CRC development and
progression has been recurrently associated with microbiota alterations [15,16,27-42]. This association
was reaffirmed with the common altered bacteria identified between high FOB and low FOB
measurements and C and AD vs. CRC groups.

CRC-related microbiome alterations have been suggested to be potentially useful as diagnostic
biomarkers source. In fact, several studies have already focused on this aspect. Zeller et al. [43] provided
evidence of this biomarker potentiality by generating highly-predictive and accurate models using up
to 22 microbial taxa for CRC, validating their findings with different cohorts. Shah et al. validated
these findings in a meta-analysis combining nine published 16S rRNA sequencing datasets, identifying
the same microbial taxa despite technical differences between the studies [37]. All studies published,
though, reported alterations related to CRC, but not for its previous stage, adenoma. More recently,
some authors have studied the role of microbiota in the adenoma stage. While not significant differences
respect to healthy controls were observed when analyzing stool samples [33], the analysis of tissue
samples revealed distinct microbiota populations for control, adenoma and CRC samples [38].

It seems plausible to assume that microbiota plays a central role in the development of adenoma-like
lesions and progression to CRC. To identify which bacterial functionalities may be leading this
progression metabolomics—microbiota combination studies are useful. To our knowledge, three studies
have been published that used metabolomics—microbiome data to infer potential metabolic alterations
in CRC [30-32]. Two of them were performed with the USA population, while the third one with
Japan individuals. Notably, for the three cases, the sample groups included both healthy and CRC
individuals, but no adenoma sample group was included. These studies reported associations between
specific bacteria and amino acids, and in the case of Yachida et al. [32] that also analyzed bacterial
metabolites, alterations in methane metabolism were reported.

In our study, we have observed that the CRC microbiome population was richer than the other
sample groups. As other authors suggest, this may reflect an overgrowth of harmful bacteria instead
of a healthy gut microbiota [33], such as seen in our diversity analyses. This would explain also why
when applying a more equilibrated diversity index, like Shannon’s one, the differences between CRC
and other groups were not detected. Thus, the increased amount of different OTUs found in CRC
patients (Figure 3C) seem to reflect only the apparition of pathogenic and CRC-related bacteria in CRC
disease (Figure 3D), but not a general decrease on the other bacteria found in C and AD sample groups.
This hypothesis is also supported by shotgun-sequencing in feces samples [33] and the Procrustes
results, that showed less diversity in AD and CRC patient groups, that could be associated with the
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appearance of disease-associated bacteria in all patients. The fact that we could not find nearly any
difference between C and AD microbiome populations in any of the analyses performed could be related
to the samples used, although other authors have described this situation before [32,43]. Interestingly,
the literature reported driver bacteria seem to be mucosa-adherent, while this requirement is not found
for passenger bacteria. These mucosal-adherent bacteria could be offering the necessary interactions
with stem cells promoting focal lesions, being thus a link with the environment [15]. Since driver
bacteria should appear in AD disease stage, the lack of differences in stool samples between C and AD
patients may be explained because of that, as other authors suggested [15]. Notably, alterations on the
microbiome composition have been described for tissue biopsies in AD patients [36,38].

As has been recurrently described before, the most significant alteration we found for
CRC microbiome was the relevant increase of Fusobacterium, an invasive and proinflammatory
bacteria [34,44-46]. We also confirmed the positive association between disease stage and its previously
described relative abundance [47-49]. While other authors have identified Fusobacterium to be elevated
also in AD patients, we could not replicate these findings, as no statistical significance was reached,
although a certain trend was observed (Figure 4A). This could indicate that AD patients present
a high interindividual diversity in microbiome composition terms. Fusobacterium infiltrates the cell,
which could also explain the lack of differentiation between C and AD sample groups, as we studied
microbiome composition in stool samples and not in tissue, as other authors have done [29,38]. The role
of Fusobacterium in tumoral development and progression has been demonstrated experimentally [50]
to be mediated by its Fad A adhesin (FadAc). FadAc adheres to E-cadherin, triggering this way both the
invasion of the host’s cells by Fusobacterium and the activation of the 3-catenin/Wnt signaling pathway,
leading the first one to the cell proliferation and the second resulting on tumoral growth [51].

An inflammatory role for the enrichment of Erysipelotrichaceae in CRC patients has been observed
previously, linking these bacteria to increased levels of TNF levels [52], being highly immunogenic.
It is logical then to suggest a link between the increased abundance of Erysipelotrichaceae and the
inflammation occurring in the tumor microenvironment. Moreover, its abundance has also been
associated with known CRC-risk factors, such as high-fat, Western-like diets [53]. This would also
explain the positive correlations found for two Erysipelotrichaceae genera bacteria with metabolite species
from ChoE and sphingolipids families, supporting the hypothesis of a notable effect of microbiota in
the fecal metabolome.

Interestingly, in our study we found that the bacteria Adlercreutzia has different abundance between
AD and CRC patients what could be relevant as early CRC biomarkers. Although alterations on
Coriobacteriaceae bacterial family have been reported for metabolic disorders related to cholesterol
alterations [54], no alterations have been reported in early stages of the disease for Adlercreutzia genus.
Instead, other members of this bacterial family have been reported increased in CRC patients, such as
Collinsella, Eggerthella, Olsenella and Slackia [55,56]. Adlercreutzia is a bacterium known to produce equol
from isoflavonoids consumed in the diet [57], and considered to be the most contributing bacterium to
equol levels in host. Equol presence in the host is also associated with lower dyslipidemia levels and
higher levels of high-density lipoprotein-cholesterol [58], thus suggesting a role for these bacteria in
the host’s health. Equol has also been inversely associated with CRC risk in prospective studies [59],
so that the increased abundance of Adlercreutzia in AD samples and its reduction in CRC patients
could also be associated to this fact. Because of equol is produced from consumed isoflavonoids, these
alterations on Adlercreutzia could be associated with different dietary habits of AD individuals, a factor
for which we could not control in our study because of the absence of these data.

The elevated influence of the microbiome upon fecal metabolome was also stated by the number
of integration tests we performed, finding a significant amount of individual correlations between
bacterial genera and metabolites (Figure 6C and Figure S6) and multivariate similarities of both
datasets with Procrustes analysis (Figure S7). Also, the inferred functionality of the 165 sequencing
data suggests a potential bacterial origin for our identified metabolites, especially for those being
differentially abundant in CRC patients. This microbiota role on the fecal metabolome has been studied
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before [30-32,60]. Among the associations found between bacteria and metabolites, those relating CRC
increased genera and cholesterol metabolites and sphingolipids were of special relevance, as they
were the most strong and significant ones. Fat-rich diets, with relevant amounts of cholesterol species,
are associated with CRC development. Cholesterol can be processed to bile acids and steroid hormones,
among others [61,62]. The CRC-specific microbiome can increase the synthesis of secondary bile acids,
which are known to be carcinogenic, thus promoting CRC development and progression [63,64].
In this context, the relevant number of associations between cholesterol species and sphingolipids with
genera increased in CRC patients supports this role of microbiome upon disease progression.
Notably, the inferred functional capabilities of the different microbiome populations showed
alterations in pathways related to carbohydrates degradation (glycolysis, TCA cycle) and
fermentation, leading to a reduction of available SCFA, as described previously [60]. Importantly,
SCFAs have an immunomodulatory role [65,66] that, due to their reduction by CRC specifics
microbiome composition, is lost, contributing in this way to perpetuate an inflammatory tumor
environment. Relevantly also, inferred metabolic functionalities identified methane related pathways
to be increased in CRC microbiota, suggesting thus a more anaerobic bacterial population.
This is supported also by the increase of anaerobic bacteria, such as Peptostreptococcus, Peptococcus
and Parvimonas [67], in CRC patients. In fact, these increase in bacteria also could be supportive
of the oral microbiome hypothesis, as these bacteria are commonly found in the skin and mucosal
surfaces of the mouth and upper respiratory tract, apart from the gastrointestinal one [67]. This shift
towards an increased abundance of methanogenic bacteria and archaea populations is also in discussion
nowadays [68-70] and has been reported by other authors [32], although our methodological approach
could not identify any archaeal species. It's known that detection of archaea species requires of
adapted DNA extraction protocols, specific primer sequences and it suffers from a lack of annotated
archaeal genomes in most used databases for 16S bacterial centered sequencing studies, as reviewed
in [71]. This could explain the lack of Archaea sequences in our study, as we focused on the bacterial
population of the human microbiome communities, as presented in the Methods section. Relevantly,
methanogen density is negatively correlated to butyrate concentration in feces [72], thus supporting
also the microbiota-related inflammatory events that occur in CRC pathogenesis, due to the fact that
methane-producing bacteria consume SCFA. Therefore, the microbiome alterations in CRC seem to
suggest an increase in methanogenic organisms which, in turn, reduces the butyrate available levels,
losing in this way the immunomodulation host’s capabilities, perpetuating inflammation in the tumoral
microenvironment. In fact, butyrate levels are associated with CRC by a set of pathways, including
the regulation of genes widely associated with cancers, such as VEGF, p53 or WNT [73]. Mechanisms
by which bacteria may promote mutations on the oncogenic genes include bacteria-induced DNA
alterations, metabolic and hormone alterations, chronic inflammation and reduction on bacterial
products with anticancer effects, as reviewed in [15]. For Fusobacterium, for example, it has been
proposed that promotes carcinogenesis by invading the host cells [50,74]. Relevantly, all the alterations
we have identified in this study may fit in these pro-inflammatory and pro-carcinogenic pathways.

4. Materials and Methods

4.1. Clinical Samples and Study Population

The patients were recruited from the COLONPREDICT study (batch 1 and 2 samples) [22] and from
the Biobank of the Instituto de Investigacion Sanitaria Galicia Sur (samples’ batch 3). In both cases, the
cohort consisted of patients with gastrointestinal symptomatology referred for colonoscopy. Exclusion
criteria for the patients’ cohort were: age under 18, pregnancy, patients with previous history of
colonic disease, patients requiring hospital admission, patients whose symptoms had ceased within 3
months of evaluation, and patients who declined to participate after reading the informed consent
form. Fecal samples were self-collected a week before from the colonoscopy by the patients from one
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bowl movement without dietary or drug restriction and delivered to the hospital. From the hospital,
samples were delivered to the laboratory, aliquoted and stored at —80 °C in less than 4 hours.

4.2. UHPLC-MS Metabolomics Analysis

Metabolomics analysis was performed in collaboration with OWL metabolomics, as
described elsewhere [7]. A UHPLC-time-of-flight (TOF)-MS-based platform was used to analyze
chloroform/methanol extracts, including glycerolipids, cholesteryl esters, sphingolipids, primary
fatty amides and glycerophospholipids among the identified ion features. The metabolite extraction
procedure was as follows. Stools were lyophilized for 3 days by using a LyoQuest —85 instrument
(Telstar, Woerden, Netherlands). Afterward, 15 milligrams of lyophilized stool samples were mixed
with 45 pL sodium chloride (50 mM) and 450 puL chloroform/methanol (30:1) in 1.5 mL microtubes
at room temperature. The extraction solvent was spiked with compounds not detected in unspiked
human stool samples [SM(d18:1/16:0), PE(17:0/17:0), PC(19:0/19:0), TAG(13:0/13:0/13:0), Cer(d18:1/17:0)
and ChoE(12:0)]. After brief vortex mixing, the samples were incubated for 1 hour at —20 °C.
After centrifugation at 16,000x g for 15 min, 35 uL of the lower organic phase were collected and
dried under vacuum, discarding the solvent. The dried extracts were then reconstituted in 1000 puL
acetonitrile/isopropanol (1:1), centrifuged (18,000 g for 5 min), and transferred to vials for UHPLC-MS
analysis on an Acquity-Xevo G2 QTof system (Waters Corp., Milford, MA, USA). Samples were randomly
divided into three batches, which contained a maximum of 78 samples. Chromatographic method
and mass spectrometric detection conditions were described by Mayo et al. [75]. Data pre-processing
was processed using the TargetLynx application manager for MassLynx 4.1 (Waters Corp., Milford,
MA, USA). The percentage of missing values was computed for each metabolite among all the samples,
divided by class. Metabolites presenting more than 30% of missing values were removed from
downstream analysis. Remaining missing values were imputed by taking the minimum value of the
corresponding metabolites divided by ten. Data was finally log-transformed.

4.3. Metabolomics Data Analysis

Log-transformed data was used to compute several basic statistics measurements (mean, windsored
mean, median, standard error of the mean, standard deviation, coefficient of variation, interquartile
range, kurtosis and skewness indexes and Shapiro-test for normality assessment). For each pairwise
comparison, the following difference tests were computed: F-test, Student’s t-test (including power
calculation), Wilcoxon and fold-change (including robust fold-change). These measurements were
later used to generate volcano-plots for each comparison and to perform the corresponding functional
analysis, pathway mapping and functional enrichment tests. Multivariate analysis, including both
PCA and PLS-DA analyses, was performed with SIMCA-P+ 12.0.1 (Umetrics AB, Umed, Sweden).

Direct metabolites were mapped to pathways with IMPaLA webtool [76]. Genes related to each
differential metabolite were obtained from KEGG [77] and HMDB [78] databases using ad-hoc R and
Python scripts. Enrichment for bacterial pathways was performed with FELLA [79] R package,
using E. coli as a reference database. All stats computations were using stats, psych [80] and
OptimalCutpoints [81] R packages. Correlation analysis was performed with corrplot [82], R package.

4.4. Fecal DNA Extraction

Half of the lyophilized feces aliquots were used for DNA extraction. The initial amount of
lyophilized feces was weighted in each case. Fecal DNA was extracted using the commercial kit
PSP® Spin Stool DNA Kit (STRATEC Molecular, Birkenfeld, Germany), following the manufacturer’s
recommendations. Briefly, lysis buffer was added to lyophilized feces samples and mechanical
lysis step was done with zirconium beads, using Precellys® equipment (Bertin Instruments,
Montigny-le-Bretonneux, France), 1 cycle of 50 s. The supernatant was recovered and centrifuged
with InviAbsorb resin to remove impurities. Then, the supernatant was recovered again and passed
through a column filter with binding buffer and washed twice with ethanol buffer. Finally, DNA was
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eluted in 100 pL of elution buffer and stored at —20 °C until further processing. The DNA concentration
and quality were assessed with Nanodrop® equipment (Thermofisher, Waltham, MA, USA) reporting
DNA concentration (ng/uL), A260, A280 absorbance and A260/280 and A260/230 ratios.

4.5. 165 rDNA Amplification and Sequencing

Variable regions V1 and V2 of the 165 rRNA gene were amplified using the primer pair 27F-338R
in a dual-barcoding approach [83]. DNA was diluted 1:10 prior PCR and 3 pL of this dilution were
finally used for amplification. PCR-products were verified using the electrophoresis in agarose gel.
PCR products were normalized using the SequalPrep Normalization Plate Kit (Thermo Fischer
Scientific, Waltham, MA, USA), pooled equimolarily and sequenced on the Illumina MiSeq v3
2x 300 bp (Illumina Inc., San Diego, CA, USA). Demultiplexing after sequencing was based on
0 mismatches in the barcode sequences. Forward and reverse reads were merged using the FLASH
software, allowing an overlap of the reads between 250 and 300 bp [84]. To eliminate low-quality
sequences, the data were filtered by removing sequences with a sequence quality of less than 30 in less
than 95% of the nucleotides. Chimeras were removed with UCHIME [85].

QIIME2? [86,87] was used to perform the diversity indexes measurements and the taxonomical
annotation. In the QC steps of QIIME2 DADA?2 [88] was used; for taxonomical annotation GreenGenes
v(13_8) database was used as reference, at 99% OTUs similarity threshold.

Diversity and taxonomical measurements and OTU table obtained from QIIME2 pipeline
were uploaded to R (https://cran.r-project.org) and analyzed with vegan [89], phyloseq [90] and
ggplot2 packages.

SIAMCAT [91] and ALDEX2 [24] tools were used to study the differences at genus level between
the three sample groups, in a complementary fashion in order to identify potential biomarkers for each
disease stage. We also used SIAMCAT to test the potential influence of potential confounding factors
such as the sample batch, gender and/or FOB measurement. The list of differential bacteria was later
used to generate a LASSO model in order to evaluate the predictive capability of these bacterial genera
with ROCR [92] package. PICRUSt2 [93] was used to infer the potential metabolic functionalities of the
distinct microbiome populations.

4.6. Metabolomics—Microbiome Data Integration

4.6.1. HAIIA

“Hierarchical All-against-All significance testing” [25] was used to identify potential correlations
between individual metabolites and specific bacteria genera. Relative abundance genera dataset and
log-normalized identified metabolites peak-intensities were used as input for the HAIIA pipeline,
specifying Spearman’s correlation index for the measurements.

4.6.2. Procrustes

Procrustes analysis was applied upon CLR-normalized microbiome data and metabolomics
normalized data. In order to compare different data types, the Procrustes analysis was performed
upon the Euclidean distances of eigenvalues of each dataset using vegan R package [89], as described
elsewhere [94].

4.6.3. MixOmics

DIABLO [95] pipeline was used for the integration of both microbiome and metabolomics
datasets. CLR-normalized microbiome data and log-normalized metabolomics dataset were used for
the integration of datasets.
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5. Conclusions

To summarize, the current study integrates metabolomics and microbiome data, which allowed
the generation of high-performance combined predictive models and provided with a biological
framework for the metabolite changes observed. Several data also confirm the microbial role on the
fecal metabolome composition, thus supporting the hypotheses for which CRC is associated with
microbiome composition alterations in humans.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/5/1142/s1,
Figure S1: Relation between the amount of initial sample used for the DNA extraction (indicated in weight) and

the final concentration obtained from the feces sample, as measured by Nanodrop® (A). Distribution of raw
reads per sample obtained from the V1-V2 165 rDNA regions sequencing (B), Figure S2: OTUs loadings for
the microbiome PLS-DA analysis, including all the identified phyla (A) and excluding the two most abundant
phyla (B), Figure S3: Phylum relative abundance per sample barplot, Figure S4: SIAMCAT analyses results for the
comparisons between potential confounding factors sample batches and gender (A), SIAMCAT results for the
pairwise comparisons C vs. CRC and AD vs. CRC sample groups. No plots were generated for the comparison C
vs. AD, as no difference was observed for this comparison (B), Figure S5: PICRUSt2 pathway abundances analysis,
Figure S6: Full HAIIA results; Figure S7: Procrustes analysis performed in microbiome and metabolomics datasets,
Table S1: Clinical metadata of all the samples included in the study, Table S2: Heatmaps of each comparison,
including the fold-change and p-value for each metabolite identified in the study, grouped by metabolite class,
Table S3: Full results obtained from the IMPaLA analysis, Table S4: OTUs table, including the OTU ID and the
annotated taxonomy.
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