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a b s t r a c t 

In the context of the coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2), metabolic research has become crucial for in-depth exploration of viral infection 
mechanisms and in searching for therapeutic strategies. This paper summarizes the interrelationships between 
carbohydrate, lipid, and amino acid metabolism and COVID-19 infection, discussing their roles in infection pro- 
gression. SARS-CoV-2 infection leads to insulin resistance and increased glycolysis, reducing glucose utilization 
and shifting metabolism to use fat as an energy source. Fat is crucial for viral replication, and imbalances in 
amino acid metabolism may interfere with immune regulation. Consequently, metabolic changes such as hyper- 
glycemia, hypolipidemia, and deficiency of certain amino acids following SARS-CoV-2 infection can contribute 
to progression toward severe conditions. These metabolic pathways not only have potential value in prediction 
and diagnosis but also provide new perspectives for the development of therapeutic strategies. By monitoring 
metabolic changes, infection severity can be predicted early, and modulating these metabolic pathways may help 
reduce inflammatory responses, improve immune responses, and reduce the risk of thrombosis. Research on the 
relationship between metabolism and SARS-CoV-2 infection provides an important scientific basis for address- 
ing the global challenge posed by COVID-19, however, further studies are needed to validate these findings and 
provide more effective strategies for disease control. 
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. Introduction 

The coronavirus family includes viruses that infect a
ange of animal species and that can cause mild to severe
espiratory and intestinal infections in humans. 1 Severe
cute respiratory syndrome coronavirus (SARS-CoV) was
dentified in 2002, and the highly pathogenic coronavirus
iddle East respiratory syndrome coronavirus (MERS-
oV) was identified in 2013, which causes severe respira-
ory infection. 2 However, a novel coronavirus, SARS-CoV-
, emerged in 2019. Its high transmissibility resulted in a
lobal pandemic, with an infection scale and geographic
cope far exceeding those of SARS-CoV and MERS-CoV.
his unprecedented challenge to global health systems
Abbreviations: SARS-CoV, severe acute respiratory syndrome coronavirus; COVID
ndoplasmic reticulum; MPC, mitochondrial pyruvate carrier; LDH, lactate dehydrog
ensity lipoprotein; LDL, low-density lipoprotein; DGAT-1, diacylglycerol o-acyltrans
esicles; CRP, C-reactive protein; 2-DG, 2-deoxy-D-glucose; ICU, intensive care unit. 
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1 
as led to the loss of millions of lives. As SARS-CoV-2 con-
inues to spread globally, vaccination remains a key mea-
ure in controlling the pandemic, 3 significantly reducing
nfection rates and mortality. However, ongoing viral mu-
ations, particularly the emergence of the Omicron vari-
nt, have increased the risk of breakthrough infections. 4 

hile Omicron SARS-CoV-2 has lower virulence, its high
ransmissibility continues to challenge pandemic control
fforts. 

When a virus infects the human body, it interferes
ith metabolic processes to obtain necessary energy and
aterials, disrupting metabolic balance. Carbohydrate
etabolism is the primary energy source for the hu-
an body, and viral infection can cause hyperglycemia.
-19, coronavirus disease 2019; ACE2, angiotensin-converting enzyme 2; ER, 
enase; T2D, type 2 diabetes; TC, total cholesterol; TG, triglyceride; HDL, high- 
ferase 1; FASN, fatty acid synthase; Trp, tryptophan; DMVs, double-membrane 
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atients with type 2 diabetes (T2D) are more prone
o severe symptoms from viral infection. 5 Additionally,
ARS-CoV-2 infection interacts with the tricarboxylic acid
TCA) cycle, increasing pyruvate production, reducing ox-
dative phosphorylation, and promoting glycolysis, fur-
her altering metabolic pathways. 6-8 Viral infection also
mpedes glucose utilization and reduces the efficiency of
arbohydrate metabolism. 

Carbohydrate and lipid metabolism are closely related,
ith glucose metabolism directly affecting lipid synthe-

is. 9 A decrease in glucose utilization may result in fat
ecoming the primary functional energy source within
he body. Lipids, as crucial components of cell struc-
ure, energy supply, and signal transduction, also play
ignificant roles in viral infections, especially during vi-
al entry and egress where the virus must cross the cell
ipid membrane. Abnormal amino acid metabolism is also
losely related to inflammation and immune regulation
isorders. 10 This review comprehensively explored the
elationships among carbohydrate, lipid, and amino acid
etabolism with coronavirus infection, aiming to reveal

heir impacts on disease progression and their potential
oles in disease severity. Characterizing how metabolic
rocesses interact with infection will provide deeper in-
ights into the prevention, diagnosis, and treatment of
ovel coronavirus infections. 

. Carbohydrate metabolism and SARS-CoV-2 

nfection 

The relationship between carbohydrate metabolism
nd SARS-CoV-2 infection involves multiple aspects, in-
luding the viral impact on glucose regulation and the in-
uence of glucose metabolism on viral replication. Stud-

es have revealed that patients infected with COVID-19
xhibit glucose metabolism disorders, 11 with most expe-
iencing elevated blood glucose levels upon hospital ad-
ission. 12 Healthy individuals infected with SARS-CoV-2

an also develop new-onset hyperglycemia and insulin re-
istance. 11 Because of this, many consider diabetes to be
 significant risk factor for COVID-19 infection and severe
nfection. 13 , 14 

.1. The impact of COVID-19 infection on carbohydrate 

etabolism 

.1.1. Impact of SARS-CoV-2 on blood glucose levels and 

ancreatic function 

In patients with mild to severe COVID-19, circulating
lood sugar levels increase, including arabinose, ribose,
ugar alcohols, maltose, and raffinose. 15 Compared with
ARS-CoV-2-infected individuals without hyperglycemia,
hose with hyperglycemia tend to have longer hospi-
al stays and higher mortality rates. New-onset hyper-
lycemia, insulin resistance, and excessive stimulation of
2

ancreatic beta cells have also been observed in patients
ith COVID-19 without a prior history of diabetes. 16 

SARS-CoV-2 enters cells using angiotensin-converting
nzyme 2 (ACE2) and transmembrane protease serine 2
TMPRSS2) present on the surface of host cells, affect-
ng multiple key tissues, including the lungs, liver, adi-
ose tissue, and pancreatic cells. Pancreatic beta cells ex-
ress ACE2 and TMPRSS2, making them primary targets
or the virus. SARS-CoV-2 viral antigens, including SARS-
oV-2-E and SARS-CoV-2-N, as well as viral RNA, have
een detected in pancreatic beta cells. Additionally, ex-
ansion and vacuolization of the endoplasmic reticulum
ER)-Golgi complex have been observed, indicating that
R stress and Golgi swelling lead to decreased cell func-
ionality and reduced overall glucose responsiveness in
ancreatic cells post-infection. 17-19 

In animal experiments, the interaction between fibrob-
ast growth factor 7 and fibroblast growth factor receptor
 upregulates the expression and activity of ACE2 in pan-
reatic beta cells, exacerbating SARS-CoV-2 infection. 20 

he widespread impairment of the insulin and insulin-
ike growth factor signaling pathways in patients with
OVID-19 may be influenced by interferon regulatory fac-
or 1. 21 After viral infection of pancreatic cells, increased
ell permeability leads to the infiltration of inflamma-
ory cells and cytokines into the pancreas; this triggers
tress responses in pancreatic cells and damages beta
ells, 22 making it easier for the virus to enter the pancreas.
u et al. 23 reported that neuropilin-1 (NRP1) expres-

ion in beta cells was significantly upregulated in patients
ith COVID-19 compared with uninfected patients. Treat-
ent with NRP1 inhibitors could reduce SARS-CoV-2 in-

ection and partially restore glucose-stimulated insulin
ecretion in the pancreas ( Fig. 1 ). In summary, SARS-
oV-2 infection leads to impaired beta-cell function,
educed insulin secretion, hyperglycemia, and insulin
esistance. 

.1.2. Mitochondrial dysfunction induced by SARS-CoV-2 

nfection and associated inflammation 

Elevated blood glucose levels favor the replication of
ARS-CoV-2. An in vitro study that altered glucose concen-
rations in monocytes revealed that elevated glucose lev-
ls could promote the replication of SARS-CoV-2 and the
roduction of inflammatory factors in monocytes. 24 This
uggested that SARS-CoV-2 infection induces the produc-
ion of mitochondrial reactive oxygen species (mtROS),
eading to the stable expression of hypoxia-inducible
actor-1 𝛼, promoting glycolysis and cytokine storms. This
nding aligns with those of another study that reported
 widespread increase in the expression of genes encod-
ng glycolytic enzymes and a decrease in lactate dehy-
rogenase B expression, along with an increase in lactate
ehydrogenase A expression in the peripheral blood of
atients with COVID-19. 25 These findings indicate that
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Fig. 1. SARS-CoV-2 enters cells through the host cell surface ACE2 and TMPRSS2, subsequently using ribosomes within 𝛽-cells to produce non-structural proteins 
and synthesize structural proteins in the ER. This process leads to ER stress and Golgi complex swelling, while also impairing OXPHOS and reducing ATP production, 
causing the TCA cycle to shift toward glycolysis; this results in mitochondrial dysfunction and increased reactive oxygen species (ROS). Ultimately, these changes 
trigger a cytokine storm, increased cytotoxicity, and enhanced cell permeability, damaging 𝛽-cells, reducing insulin secretion, and leading to elevated blood glucose 
levels. 
Abbreviations : TMPRSS2, transmembrane protease serine 2; ACE2, angiotensin-converting enzyme 2; ATP, adenosine triphosphate; OXPHOS, oxidative phosphoryla- 
tion; TCA, tricarboxylic acid cycle; ROS, reactive oxygen species; NRP-1, neuropilin-1; ER stress, endoplasmic reticulum stress. 
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ARS-CoV-2 infection impairs oxidative phosphorylation,
hifts energy metabolism toward glycolysis, and further
nduces cytokine storms. Zhu et al. 26 reported that in-
ibiting the mitochondrial pyruvate carrier (MPC) allevi-
ted severe infection following SARS-CoV-2 pneumonia.
he MPC inhibitor MSDC-0602 K suppressed pulmonary

nflammation, and experiments on infected mice revealed
hat it lowered blood glucose levels and hyperlipidemia.
echanistically, MPC enhances mitochondrial adaptabil-

ty and disrupts hypoxia-inducible factor-1 𝛼, mitigating
irus-induced inflammatory responses in mice and human
ung macrophages. 

.1.3. Implications of carbohydrate metabolism in 

ARS-CoV-2 infection 

In summary, SARS-CoV-2 infection has profound ef-
ects on carbohydrate metabolism, significantly impact-
ng patient health. The infection impairs pancreatic beta-
ell function, leading to reduced insulin secretion, hy-
erglycemia, and insulin resistance. These metabolic dis-
urbances are exacerbated by mitochondrial dysfunction
nd increased glycolysis, driven by elevated mtROS. This
nterplay highlights the complex relationship between
ARS-CoV-2 infection and carbohydrate metabolism, em-
hasizing the need to address these issues to improve pa-
ient outcomes. Understanding these mechanisms can in-
orm management strategies, including lifestyle changes,
lood glucose monitoring, and targeted therapies aimed
t restoring carbohydrate metabolic balance. 
3

.2. The role of carbohydrate metabolism in COVID-19 

rognosis and severity 

Blood glucose levels after SARS-CoV-2 infection are
losely related to patient prognosis; high levels (glucose
 170 mg/dL) may be associated with inflammatory re-
ponses, insulin resistance, and abnormal insulin secre-
ion. 27 Maintaining blood glucose variability within 3.9–
0.0 mmol/L can significantly reduce the risk of compos-
te adverse outcomes and death associated with COVID-
9. 28 Studies have revealed correlations between elevated
lood glucose levels and prolonged hospital stays, dis-
ase progression, and increased mortality in patients with
OVID-19. Monitoring blood glucose levels can help pre-
ict disease progression and prognosis, allowing for ap-
ropriate interventions. The inflammatory state in pa-
ients with COVID-19 leads to insulin resistance and ab-
ormal insulin secretion, which further contribute to hy-
erglycemia in these patients. 27 Monitoring indicators of
nsulin resistance also provides some reference for pre-
enting disease severity. Glycated hemoglobin (HbA1c) is
n indicator of long-term blood glucose control, reflecting
he average blood glucose level over the past 2–3 months.
ome studies have shown a linear relationship between
bA1c levels in patients with COVID-19 and the risk of
eath or deterioration. 29 Higher HbA1c levels may in-
icate poorer long-term blood glucose control, which is
ssociated with insulin resistance and inflammatory re-
ponses. 28 Because of this, monitoring HbA1c levels can
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Table 1 

Key warning indicators of nutrient metabolism following SARS-CoV-2 infection. 

Nutrient metabolism Warning indicators References 

Carbohydrate metabolism Blood sugar level ↑ , HbA1c ↑ , LDH ↑ , LDHA ↑ , FGF21 ↑ , MPC ↑ , LDHB ↓ 23-26 , 28-32 

Lipid metabolism HDL-C ↓, TC ↓, LDL-C ↓, apoA-I ↓, CRP/HDL-C ↑ , TG ↑ , RvD5 ↑ 48 , 50 , 51 , 65-70 

Amino acid metabolism Trp ↓, Arg ↓, Val ↓, Ala ↓, Gly ↓, Ser ↓, His ↓, Glu ↓, Met ↓, Kyn ↑ , Nam ↑ , Arg/Kyn, Cr/Arg 87-93 

Abbreviations : HbA1c, glycosylated hemoglobin, type A1C; LDH, lactate dehydrogenase; LDHA, lactate dehydrogenase A; FGF21, fibroblast growth factor 21; MPC, 
mitochondrial pyruvate carrier; LDHB, lactate dehydrogenase B; HDL-C, high-density lipoprotein cholesterol; TC, total cholesterol; LDL-C, low-density lipoprotein 
cholesterol; apoA-I, apolipoprotein A-I; CRP/HDL-C, C-reactive protein/high-density lipoprotein cholesterol; TG, triglycerides; RvD5, resolvin D5; Trp, tryptophan; 
Arg, arginine; Val, valine; Ala, alanine; Gly, glycine; Ser, serine; His, histidine; Glu, glutamate; Met, methionine; Kyn, kynurenine; Nam, nicotinamide; Arg/Kyn, 
arginine/kynurenine ratio; Cr/Arg, creatinine/arginine ratio. 
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rovide useful reference points for assessing the prognosis
nd severity of COVID-19. 

In patients with COVID-19, mitochondrial dysfunction
as been observed in peripheral blood mononuclear cells
PBMCs), leading to energy deficiency. The upregula-
ion of fibroblast growth factor 21 (FGF21) can act as
 compensatory mechanism to promote glycolysis and
ther metabolic pathways to meet cellular energy de-
ands. FGF21 levels increase with the severity of COVID-
9 and are highest in deceased patients 30 compared to the
ealthy group; FGF-21 levels in patients with COVID-19
an reach 2000–3000 pg/mL. Consistent with the find-
ngs of this study, lactate dehydrogenase (LDH) levels are
levated in patients with COVID-19, with those in se-
ere cases (316.4 ± 86.4 U/L) being significantly higher
han those in mild cases (222.4 ± 73.8 U/L). LDH is a
trong predictor for the early detection of lung injury
nd progression to severe COVID-19 

31-33 . Increased LDH
evels are associated with approximately a six-fold in-
rease in the likelihood of severe infection and a sixteen-
old increase in mortality in patients with COVID-19 

34 

 Table 1 ). 
Regardless of whether COVID-19 patients have di-

betes, studies have shown that blood glucose levels
re closely related to COVID-19 susceptibility, infection
everity, and outcomes (severity of illness, intensive care
nit [ICU] admission rate, and mortality rate) 28 , 35-37 ,
aking monitoring blood glucose levels crucial. Indica-

ors of glucose metabolism play a role in predicting the
rognosis and severity of COVID-19. Blood glucose lev-
ls, insulin resistance indices, and HbA1c can provide
ome predictive value for condition progression and the
isk of severe illness. However, it is necessary to con-
ider multiple factors, including baseline metabolic sta-
us, nutritional condition, and treatment interventions,
o accurately assess the relationships between glucose
etabolism indicators and patient prognosis. 

.3. Carbohydrate metabolism as a potential therapeutic 

arget for COVID-19 

For hyperglycemic COVID-19 patients, glucose-
owering drugs, including 2-deoxy-D-glucose (2-DG),
etformin, thiazolidinediones, insulin, and glucagon-
4

ike peptide-1 receptor agonists, can be used. 38-40 2-DG
argets glycolysis, preventing viral synthesis and inhibit-
ng viral replication. The Indian Drug Administration
as approved 2-DG for emergency use as an adjunctive
herapy. 41 A retrospective medication analysis by Crouse
t al. 42 revealed that the use of metformin before a
OVID-19 diagnosis could reduce the mortality rate in
iabetic patients by approximately threefold. Another
ohort study of patients with COVID-19 with T2D who
ere taking metformin reported a significant association
etween metformin use and the incidence of metabolic
cidosis. 43 Metformin also reduces heart failure and
nflammation, though careful dose selection is crucial
o avoid acidosis. Individuals with impaired renal func-
ion should use metformin with caution. Additionally,
nsulin injections in hospitalized hyperglycemic patients
ombined with sitagliptin reduced the relative risk of
equiring mechanical ventilation by 74% 

44 ( Table 2 ). 
In addition to pharmacotherapy for glucose-related dis-

ases, a healthy lifestyle and a nutritious diet should
lso be emphasized. The number of COVID-19 cases and
eaths in the United States and Japan differ by 12–17
imes; a study revealed that this significant difference is
artly due to the dietary habits of the two countries. 45 

he U.S. diet, which is rich in high-sugar and high-fat
unk food, has a high dietary inflammation index; this
ay increase the risk of COVID-19 infection, especially

mong minority groups. In contrast, the Japanese diet
s more nutrient-dense, containing many beneficial sub-
tances that can prevent COVID-19. Japan, a coastal coun-
ry, consumes more fish than noncoastal regions do, re-
ulting in higher levels of eicosapentaenoic acid (EPA)
nd docosahexaenoic acid (DHA) in the body. DHA and
PA are converted into protectins, which inhibit exces-
ive immune cell activity, support phagocytosis, and pro-
ote the differentiation of neutrophils, further preventing
OVID-19 infection 

46 ( Table 2 ). 

. Lipid metabolism and SARS-CoV-2 infection 

Lipids play a crucial role in the viral life cycle, in-
uencing viral entry by affecting cell fusion or receptor
onformation. After infection, viruses can reprogram cell
etabolism to alter lipid membranes and promote the
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Table 2 

Potential therapeutic targets for major nutrient metabolism following SARS-CoV-2 infection. 

Nutrient metabolism Potential therapeutic targets References 

Carbohydrate metabolism Metformin, thiazolidinediones, glucagon-like peptide-1, insulin, 2-deoxy-D-glucose, sitagliptin, and a nutrient-dense diet 36-39 , 42 , 44 

Lipid metabolism Lipid-lowering drugs, methyl- 𝛽-cyclodextrin, orlistat, increasing dietary omega-3 long-chain polyunsaturated fatty acids, and 
arachidonic acid 

62 , 71 , 75-79 

Amino acid metabolism Supplementing arginine and L-arginine, indolmod 84 , 94 , 95 
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roduction of new viral particles. Lipids are essential for
nergy and signal transduction in the SARS-CoV-2 life
ycle, 47 including key steps such as endocytosis, signal
ransduction, viral protein transport, and viral assembly.
xploring the role of lipid metabolism in viral infection
nd targeting lipid metabolism as a potential therapeutic
arget for COVID-19 is necessary. 

.1. The impact of COVID-19 infection on lipid metabolism 

.1.1. Changes in lipidomics and metabolomics in 

OVID-19 

Lipidomic and metabolomic analyses of patients
ith COVID-19 have revealed changes in immune and
etabolic components related to infection severity. Com-
ared with those in healthy individuals, more than 100
ipids are downregulated in COVID-19, including sph-
ngolipids, glycerophospholipids, and fatty acids such
s phosphatidic acids, phosphatidylinositols, and phos-
hatidylcholines. 48 , 49 Additionally, more than 50 lipids
pregulated by infection have been found, including
riacylglycerols, diacylglycerols, and lysophosphatidyl-
holines. 50 The levels of total cholesterol (TC), high-
ensity lipoprotein (HDL) cholesterol, and low-density
ipoprotein (LDL) cholesterol in the serum of infected pa-
ients sharply decrease, 51 , 52 and HDL cholesterol concen-
ration is negatively correlated with C-reactive protein
CRP) concentration 

53-55 ( Fig. 2 ). 

.1.2. The impact of lipid droplets and rafts on 

ARS-CoV-2 replication 

Lipid droplets (LDs) are organelles that play crucial
oles in lipid metabolism, energy homeostasis, and in-
racellular transport, in addition to performing various
unctions in infection and inflammation. Compared with
ealthy volunteers, the accumulation of LDs in the mono-
ytes of patients with COVID-19 is increased; this is ac-
ompanied by the upregulation of pathways involved in
ipid uptake (such as CD36), transcription factors primar-
ly involved in lipogenesis (PPAR 𝛾 and SREBP-1), and en-
ymes involved in triacylglycerol synthesis (DGAT-1). Us-
ng drugs to inhibit DGAT-1, a key enzyme in LD forma-
ion, can reduce viral replication and prevent cell death in
ARS-CoV-2-infected monocytes. 56-58 Lipid rafts are mi-
rodomains within cell membranes rich in cholesterol and
phingolipids that are crucial for viral invasion and sig-
al transduction. Studies have shown that sphingolipid
evels are reduced in both non-severe and severe cases
5

f COVID-19. 48 SARS-CoV-2 utilizes lipid rafts to facili-
ate entry into host cells as well as for viral assembly 

59 

 Fig. 2 ). 

.1.3. SARS-CoV-2 induced changes in endoplasmic 

eticulum structure and fatty acid metabolism 

During SARS-CoV-2 infection, the structure of the
R membrane changes, resulting in the formation of
rganelles such as double-membrane vesicles (DMVs),
hich are used for viral replication. 60 These changes may
e driven by altering the reticulon proteins RTN3 and
TN4 to promote DMV formation, facilitating viral repli-
ation. 61 Alternatively, they may depend on the produc-
ion and distribution of phosphatidic acid (PA); the use of
A inhibitors such as chloroquine can impede the forma-
ion of autophagosome-like DMVs, inhibiting viral repli-
ation. 62 , 63 Fatty acid metabolism is a crucial metabolic
athway during SARS-CoV-2 infection. Fatty acid syn-
hase (FASN) plays a key role in fatty acid synthesis. 64 

tudies have shown that in cells lacking FASN, the viral
iter of SARS-CoV-2 is significantly reduced 

65 , 66 ( Fig. 2 ). 
SARS-CoV-2 affects host cell lipid metabolism through

arious mechanisms, including the generation and utiliza-
ion of lipid droplets, the remodeling of lipid rafts, and the
ynthesis and transport of fatty acids. These mechanisms
ork together to support viral replication and dissemina-

ion, causing extensive impacts on host cells. Understand-
ng these mechanisms can help in the development of
herapeutic strategies that target lipid metabolism path-
ays to control the spread of COVID-19 and mitigate its
amage to the host. 

.2. The role of lipid metabolism in COVID-19 prognosis 

nd severity 

Abnormal lipid metabolism in patients with COVID-19
ffects prognosis and severity. In patients who gradually
ecover, lower levels of TC and LDL cholesterol slowly re-
urn to normal. 53 In contrast, non-survivors exhibit per-
istent hypolipidemia, including TC, HDL and LDL choles-
erol, and apoA-I. A gradually decreasing HDL concentra-
ion from days 1 to 7 after admission may serve as an in-
icator of poor prognosis 67 ; as the severity of COVID-19
nfection increases, HDL levels decrease by approximately
6%. 68 Additionally, the CRP/HDL and CRP/apoA-I ra-
ios are significantly greater in patients who survive
OVID-19 than in non-survivors; in the study by Li
t al. 52 , the best cut-off point for the CRP/HDL-C ratio



Y. Jiang, L. Xu, X. Zheng et al. Infectious Medicine 4 (2025) 100162

Fig. 2. The impact of SARS-CoV-2 infection on lipid-related metabolism in cells. SARS-CoV-2 infection reduces cholesterol levels in HDL and LDL receptors, increases 
lipid rafts, and causes LDL accumulation. The virus upregulates lipid uptake pathways (CD36) and diacylglycerol o-acyltransferase 1 (DGAT-1). It also modifies the 
ER membrane to form double-membrane vesicles (DMVs) and elevates PPAR 𝛾 and SREBP-1 levels. 
Abbreviations : HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; DGAT-1, diacylglycerol o-acyltransferase 1; DMVS, 
diacylglycerol-mediated vesicle secretion; SREBP-1, sterol regulatory element-binding protein 1; PPAR- 𝛾, peroxisome proliferator-activated receptor gamma. 
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a  
as 77.39, and that for the CRP/apoA-I ratio was 72.37.
igh CRP/HDL ( > 77.39) and high CRP/apoA-I ratios ( >
2.37) were defined as risk indicators. A high CRP/HDL
atio has also been shown to be an independent predictor
f in-hospital mortality in patients with severe COVID-19.
everal studies have reported increased triglyceride (TG)
evels in patients with COVID-19. 50 , 69 Elevated TG levels
re often associated with insulin resistance, as SARS-CoV-
 infection leads to impaired 𝛽-cell function, resulting in
yperglycemia and insulin resistance. 14 , 20 An increase in
G is positively correlated with disease severity and ad-
erse clinical outcomes. 49 , 70 , 71 Additionally, some stud-
es have reported increased concentrations of the bioac-
ive lipid 17 ‑hydroxy-docosahexaenoic acid downstream
f RvD5 in patients with severe COVID-19 compared with
hose in control or mild groups 72 , 73 ( Table 1 ). 

.3. Lipids and their metabolism as potential therapeutic 

argets for COVID-19 

Certain lipid-lowering drugs can inhibit the repli-
ation of SARS-CoV-2. Methyl- 𝛽-cyclodextrin interacts
ith the lipid microenvironment through its hydropho-
ic core, competing with viral binding sites and pre-
enting viral attachment. 74 Statins, which are com-
only used as cholesterol-lowering medications, can in-
ibit the rate-limiting enzyme (HMGR) in cholesterol
iosynthesis, 75 reducing available cholesterol levels, de-
6

reasing the expression of membrane ACE2 receptors,
nd blocking viral entry. 76 Statins also have other
roperties beyond cholesterol-lowering effects, including
nti-inflammatory, antithrombotic, and immunomodula-
ory effects. 77 Several retrospective observational clinical
tudies have demonstrated the beneficial impact of prior
nd long-term use of statins as well as their introduction
n hospitals after SARS-CoV-2 infection on patient prog-
osis. 78-80 These properties may enhance host defense
gainst pathogens. Another study analyzed the binding
apacity of the main protease Mpro (6UL7) of SARS-CoV-
 with seven statins and three common antiviral drugs,
nding that the binding energies of the seven statins were
imilar to those of the three antiviral drugs, suggesting
hat statins may inhibit the main protease of SARS-CoV-
. 81 A recent in vitro study revealed that drug intervention
argeting cellular lipid synthesis using the FAS inhibitor
rlistat inhibited SARS-CoV-2 replication. 64 In addition
o pharmacological treatments, a healthy diet may play
 preventive role in future pandemics. Increasing dietary
evels of omega-3 long-chain polyunsaturated fatty acids
nd arachidonic acid can also reduce the inflammatory
ffects caused by COVID-19 

82 , 83 ( Table 2 ). 

. Amino acid metabolism and SARS-CoV-2 infection

In addition to the studies mentioned above on glucose
nd lipid metabolism, research on amino acid metabolism
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c  

s  
as gradually highlighted its critical role in SARS-CoV-
 infection. By studying changes in host amino acid
etabolism following SARS-CoV-2 infection, researchers
ave revealed the impact of viruses on amino acid syn-
hesis, degradation, and interactions within cells. These
ndings provide new insights into the progression of this
isease and the development of therapeutic strategies. 

.1. Impact of COVID-19 on amino acid metabolism 

Omics analysis of lipid metabolism in patients with
OVID-19 compared with healthy individuals revealed
ignificant changes in various amino acids and their
etabolic pathways. The levels of key amino acids in-

olved in the urea cycle, such as arginine, ornithine, and
itrulline, were significantly decreased in COVID-19 pa-
ients. 84 , 85 Citrulline is an important intermediate in the
rea cycle, which occurs in the liver; SARS-CoV-2 infec-
ion may disrupt the urea cycle and liver dysfunction. L-
rginine affects T-cell function and expression 

86 ; its re-
uction in COVID-19 patients diminishes L-arginine lev-
ls, impacting T-cell proliferation. Another study revealed
hat reduced arginine levels and increased ornithine lev-
ls inhibit the ability of CD8+ T-cells to produce cytokines
uch as IFN- 𝛾 and TNF- 𝛼, impairing the T-cell immune re-
ponse. 85 In whole blood analyses, critically ill patients
resented a sharp increase in phenylalanine and tryp-
ophan (Trp) metabolism. Trp metabolism is considered
n inflammatory biomarker, with Trp degradation prod-
cts promoting T-cell exhaustion. 87 As the condition of
OVID-19 patients worsens, serum alanine levels signif-

cantly decrease, negatively affecting muscle health and
nergy metabolism and increasing mortality risk. 88 De-
reases in malic acid and aspartic acid, which are essential
or purine and pyrimidine nucleotide biosynthesis, were
lso observed. 89 The authors suggested that the deple-
ion of these substances may partially result from SARS-
oV-2 hijacking nucleic acids during host cell replica-
ion. Additionally, histidine, L-valine, L-proline, and Trp
ere downregulated in COVID-19 patients. L-valine is in-
olved in pantothenic acid and coenzyme A biosynthe-
is, and its dysregulation can impair mitochondrial energy
etabolism via coenzyme A. 49 In summary, COVID-19 in-

ection causes significant changes in various amino acids
nd their metabolic pathways, impacting energy produc-
ion, immune function, and liver metabolism, exacerbat-
ng COVID-19. 

.2. The role of amino acid metabolism in COVID-19 

rognosis and severity 

In COVID-19 patients, Trp metabolism increases with
nfection severity, and a deficiency in L-arginine signif-
cantly reduces resistance to infection. The rate of L-
rginine depletion is positively correlated with disease
7

everity and the length of ICU stay. 90 Another study
evealed that the levels of Trp and its metabolites, 3-
ydroxykynurenine and kynurenine, were negatively cor-
elated with the SARS-CoV-2 viral load. 91 , 92 COVID-19
nduces significant gluconeogenesis, leading to a reduc-
ion in most gluconeogenic amino acids, including va-
ine, alanine, glycine, serine, histidine, glutamate, and
ethionine. A reduction in gluconeogenic amino acids is
egatively correlated with disease severity. 93 Many stud-
es have reported significant decreases in Trp, accompa-
ied by increases in kynurenine and nicotinic acid, 91 , 94 , 95 

hich is positively correlated with disease severity and
atal clinical outcomes. 96 A small cohort study revealed
hat the arginine/kynurenine ratio had excellent predic-
ive ability for distinguishing COVID-19 patients from
ealthy controls (threshold ≤ 15.7), with an area under
he curve of 1.00 in receiver operating characteristic anal-
sis. The creatinine/arginine ratio also accurately pre-
icts mortality, with 100% accuracy for mortality predic-
ion on ICU days 1 (threshold ≥ 3.4) and 3 (threshold ≥

.7). 90 Despite their promise as predictors, these results
eed to be replicated and validated in larger patient co-
orts ( Table 1 ). 

.3. Amino acids and their metabolism as potential 

herapeutic targets for COVID-19 

Changes in arginine, Trp, and indoleamine 2,3-
ioxygenase (IDO) can alter T-cell function, leading to
evere COVID-19. Restoring exhausted T-cell function by
upplementing or reducing specific amino acids to en-
ance the immune system shows promise as a potential
herapeutic approach. Previous reports indicate that di-
ect supplementation with arginine, the use of Indolmod
o target Trp catabolism, or the use of Navomodu to
arget IDO1/TDO2 can promote T-cell metabolic recov-
ry. 87 Additionally, the availability of L-arginine is associ-
ted with endothelial dysfunction and T-cell impairment.
he inclusion of L-arginine in the standard treatment for
atients with severe COVID-19 can significantly shorten
ospital stays. 97 Another study demonstrated that sup-
lementing 𝛼-ketoglutarate in SARS-CoV-2-infected ham-
ters reduced the accumulation of inflammation-induced
ells in the alveolar cavity and the formation of clots in
icrovessels, as well as decreased apoptotic damage in

nfected lung tissue. 98 Dietary supplementation with 𝛼-
etoglutarate may be a good nutritional strategy to pre-
ent thrombosis and inflammation in COVID-19 patients
 Table 2 ). 

. Conclusion 

Carbohydrate, lipid, and amino acid metabolism play
rucial roles in SARS-CoV-2 infection, providing key in-
ights into infection mechanisms and informing the de-



Y. Jiang, L. Xu, X. Zheng et al. Infectious Medicine 4 (2025) 100162

v  

t  

s  

e  

t  

d  

t  

m  

L  

l  

t  

p  

v  

m  

t  

h  

t  

t  

d  

t  

p  

m  

a  

t
 

m  

g  

t  

c  

T  

m  

n  

w  

f  

t  

m
A  

t  

c  

s  

P  

m  

a  

l  

t  

f  

o  

a  

s  

d  

a
 

h  

C  

v  

t  

h  

d  

w  

p  

s  

t

F

 

a  

B  

t  

t  

H

C

 

c  

H  

c

A

D

 

t  

e  

a  

a

D

E

I

R

 

 

 

 

 

 

elopment of therapeutic strategies. SARS-CoV-2 infec-
ion leads to insulin resistance and increased glycoly-
is, reducing the utilization of glucose and shifting en-
rgy production to fat, which is critical for viral replica-
ion. Studies have found that SARS-CoV-2 infection in-
uces insulin resistance and enhances glycolysis, leading
o an imbalance in glucose metabolism, which affects im-
une responses and provides more energy for the virus.

ipid metabolism also shows abnormal changes, particu-
arly in the generation and utilization of lipid droplets,
he remodeling of lipid rafts, and the synthesis and trans-
ort of fatty acids, all of which are closely related to
iral replication. Imbalances in amino acid metabolism
ay interfere with immune regulation, contributing to

he progression of severe conditions in the presence of
yperglycemia, hypolipidemia, and deficiencies in cer-
ain amino acids. Amino acid metabolism, especially tryp-
ophan metabolism, also exhibits significant changes at
ifferent stages of the disease. Studies have shown that
he deficiency of L-arginine is closely associated with im-
aired immune function and disease progression. These
etabolic changes are not only valuable for predicting

nd diagnosing the disease but also offer new perspec-
ives for developing treatment strategies. 

Monitoring changes in glucose, lipid, and amino acid
etabolism can provide early warnings of disease pro-

ression, allowing for timely intervention. A clinical trial
argeting patients with severe acute respiratory syndrome
aused by SARS-CoV-2, who were also diagnosed with
2D and had elevated blood glucose levels, found that
etformin glycinate (MG, 620 mg orally every 12 h) sig-
ificantly and safely reduced the viral load in patients
ith COVID-19 while also lowering aspartate aminotrans-

erase (AST) and lactate dehydrogenase (DHL) levels; at
he end of the study, the glucose levels in the MG treat-
ent group were close to normal values (110.3 mg/dL). 99 

nother study also indicated that combined metabolic ac-
ivators (CMAs), such as L ‑serine and N-acetyl-L-cysteine,
an significantly improve these metabolic disorders and
horten the recovery time of patients with COVID-19.
hase 2 and 3 clinical trials have shown that CMA treat-
ent significantly improves the levels of inflammation

nd antioxidant-related metabolic proteins and metabo-
ites in plasma, suggesting that CMAs may accelerate pa-
ient recovery. 100 Additionally, lipid synthesis is crucial
or SARS-CoV-2 replication. Inhibitors of FASN, such as
rlistat, can significantly suppress viral RNA synthesis
nd the production of infectious viruses. 64 These findings
uggest that modulating metabolic pathways can help re-
uce inflammatory responses, improve immune function,
nd decrease disease severity. 

In-depth research into the relationships among carbo-
ydrate, lipid, and amino acid metabolism with SARS-
oV-2 infection will enhance our understanding of the
irus’s pathogenic mechanisms and provide more effec-
8

ive treatment and intervention methods for this global
ealth crisis. However, further studies are needed to vali-
ate the findings highlighted in this review to ensure that
e accurately comprehend the roles of these metabolic
athways in disease progression and to provide a more
olid scientific foundation for developing preventive and
herapeutic measures. 
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