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Abstract

Fibroblasts within the mammary tumor microenvironment are active participants in carcinogenesis 

mediating both tumor initiation and progression. Our group has previously demonstrated that 

genetic loss of PTEN in mammary fibroblasts induces an oncogenic secretome that remodels the 

extracellular milieu accelerating ErbB2-driven mammary tumor progression. While these prior 

studies highlighted a tumor suppressive role for stromal PTEN, how the adjacent normal 

epithelium transforms in response to PTEN loss was not previously addressed. To identify these 

early events, we have evaluated both phenotypic and genetic changes within the pre-neoplastic 

mammary epithelium of mice with and without stromal PTEN expression. We report that 

fibroblast-specific PTEN deletion greatly restricts mammary ductal elongation and induces 

aberrant alveolar side-branching. These mice concomitantly exhibit an expansion of the mammary 

epithelial stem cell (MaSC) enriched basal/myoepithelial population and an increase in in vitro 
stem cell activity. Further analysis revealed that NOTCH signaling, specifically through NOTCH3, 

is diminished in these cells. Mechanistically, JAGGED-1, a transmembrane ligand for the NOTCH 

receptor, is downregulated in the PTEN-null fibroblasts leading to a loss in the paracrine activation 

of NOTCH signaling from the surrounding stroma. Reintroduction of JAGGED-1 expression 
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within the PTEN-null fibroblasts was sufficient to abrogate the observed increase in colony 

forming activity implying a direct role for stromal JAGGED-1 in regulation of mammary stem cell 

properties. Importantly, breast cancer patients whose tumors express both low stromal JAG1 and 

low stromal PTEN exhibit a shorter time to recurrence than those whose tumors express low levels 

of either alone suggesting similar stromal signaling in advanced disease. Combined, these results 

unveil a novel stromal PTEN-to-JAGGED-1 axis in maintaining the mammary epithelial stem cell 

niche, and subsequently inhibiting breast cancer initiation and disease progression.
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INTRODUCTION

The tumor microenvironment (TME) plays an indispensable role in promoting mammary 

tumor initiation, progression and metastasis.1 Fibroblasts maintain tissue homeostasis 

throughout development by regulating a plethora of processes including extracellular matrix 

(ECM) deposition, growth factors and chemokine secretion, inflammation and wound 

healing.2, 3 In breast cancer, cancer associated fibroblasts (CAFs) are aberrantly activated by 

largely unidentified mechanisms to engender an environment that favors tumor growth.4, 5 

Despite comprehensive evidence supporting CAFs in the TME, little is known about the 

pathways within these cells that fuel tumor growth. Our group demonstrated that genetic 

ablation of the tumor suppressor Pten within the mammary stroma greatly accelerates 

HER2/Neu (MMTV-ErbB2) driven mammary tumorigenesis.6, 7 These previous studies 

were the first to demonstrate that malignant transformation of tumor epithelium can depend 

on fibroblast-specific signaling. Importantly, decreased stromal PTEN was observed in a 

subset of breast cancer patients and inversely correlated with stromal pro-oncogenic 

activated AKT1.7 Although these studies established a tumor suppressive role for PTEN 

within the mammary stroma, the mechanisms by which pre-neoplastic epithelia are 

reprogrammed in response to altered signaling surrounding fibroblasts have not been 

elucidated

Mammary gland morphogenesis occurs predominantly postnatally whereby epithelial stem/

progenitor cells generate mammary ducts during puberty.8-13 Secretory alveoli then arise 

throughout estrus cycling, and become fully differentiated lobulo-alveoli during pregnancy 

and lactation.14 This process is highly dynamic and closely mirrors tumorigenesis in that the 

mammary epithelium proliferates, invades into the fat pad and stimulates angiogenesis in 

response to surrounding stromal cells, including fibroblasts.15 Thus, aberrant signaling 

between stroma and epithelia are likely to cause oncogenic disruptions within specific 

epithelial subpopulations. In this report, we show that genetic loss of stromal Pten elicits 

non-cell autonomous changes within associated pre-neoplastic epithelium resulting in 

stunted mammary ductal elongation and aberrant alveolar side-branching. This phenotype is 

paralleled by an expansion of the mammary stem cell (MaSC) enriched population. We 

further demonstrate that ablation of stromal PTEN decreases NOTCH signaling in the 

associated MaSC-enriched population, and NOTCH3, specifically, is decreased in the basal/
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myoepithelium upon stromal PTEN deletion. Mechanistically, PTEN-null fibroblasts exhibit 

significantly decreased JAGGED-1, one of the ligands for the NOTCH receptor, resulting in 

diminished JAGGED-1/NOTCH3 paracrine signaling, and a subsequent increase in 

mammary stem cell activity. Importantly, low stromal PTEN and JAG1 correlates with 

shorter time to recurrence in breast cancer patients implying similar signaling in the TME.

RESULTS

Loss of stromal PTEN restricts mammary ductal elongation and promotes aberrant 
alveolar side-branching

Loss of stromal PTEN accelerates MMTV-ErbB2-driven mammary tumor growth, which 

occurs at ~16-20wks of age.7 Since mammary gland development like tumorigenesis is 

regulated by the stromal microenvironment, we evaluated early changes in the adjacent 

epithelium associated with PTEN loss.9, 15 To this end, we compared pre-neoplastic 

mammary glands of post-pubertal virgin mice (8-9wks of age) in four genetic groups: 

Ptenfl/fl (wild-type epithelium; wild-type stroma), Fsp-cre;Ptenfl/fl (wild-type epithelium; 

PTEN-null stroma), MMTV-ErbB2;Ptenfl/fl (ErbB2 epithelium; wild-type stroma) and 

MMTV-ErbB2;Fsp-cre;Ptenfl/fl (ErbB2 epithelium; PTEN-null stroma). Importantly, 

ablation of stromal PTEN greatly impaired epithelial ductal elongation (Figure 1A,B) and 

increased alveolar side-branching in the presence or absence of ErbB2 (Figure 1A,C).

To explore how stromal PTEN alters the mammary epithelium, we analyzed gene expression 

between gravity prepped epithelium from wild-type versus stromal PTEN-null mice at 8wks 

of age previously published by our group.16 Unsupervised gene set enrichment analysis 

(GSEA) querying all the C2 curated genesets within the Molecular Signatures Database 

(MSigDB), indicated enrichment of an adipose stem cell gene set17 when comparing Fsp-
cre;Ptenfl/fl to Ptenfl/fl-associated epithelium (Supplementary Figure 1A,B). We confirmed 

this finding using mammary stem cell (MaSC) specific gene lists also available on MSigDB: 

genes known to be downregulated in MaSCs are de-enriched in Fsp-cre;Ptenfl/fl epithelium 

and genes upregulated in MaSCs are enriched in Fsp-cre;Ptenfl/fl epithelium 

(Supplementary Figure 1C).18 These combined results indicate that ablation of fibroblast 

PTEN elicits genomic changes within adjacent pre-neoplastic epithelial subpopulations.

Loss of stromal Pten expands the MaSC-enriched population

MaSCs exist within the basal/myoepithelium to coordinate ductal expansion and are strictly 

regulated by stromal cells and ECM components.13, 19-22 To determine if loss of fibroblast 

PTEN alters the mammary epithelial populations, we used well-described fluorescence 

activated cell sorting (FACS) markers to evaluate 8-9wk old control and experimental 

mice.23 First, we confirmed our technique using wild-type FVB/N animals with appropriate 

isotype controls (Supplementary Figure 2A,B). The purity of isolated Lin−CD24+CD29Hi 

MaSC-enriched basal/myoepithelium, Lin−CD24+CD29LoCD61+ luminal progenitors, and 

Lin−CD24+CD29LoCD61− mature luminal epithelial cells was confirmed by quantitative 

real-time PCR (qRT-PCR) using Trp63, cKit, and Esr1 as established MaSC, luminal 

progenitor and mature luminal markers, respectively (Supplementary Figure 2C).
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FACS analyses of Ptenfl/fl and Fsp-cre;Ptenfl/fl mice revealed that mammary glands with 

PTEN-null stroma exhibited a significant expansion of the MaSC-enriched basal/

myoepithelial population (Figure 2A). Similarly, the MaSC-enriched pool was expanded in 

ErbB2;Fsp-cre;Ptenfl/fl mice (Figure 2C). In contrast, no significant changes were observed 

in the Lin−CD24+CD29Lo total luminal populations in the absence of stromal PTEN with or 

without ErbB2 (Figure 2A,C; right graphs). Moreover, further sorting the total luminal 

populations with CD61 revealed no significant changes in either the Lin-

CD24+CD29LoCD61− mature luminal or Lin−CD24+CD29LoCD61+ luminal progenitor 

populations (Figure 2B,D). To extend this observation of increased MaSC-enriched cells, 

we assessed in vitro differentiation and stem cell activity. MaSC-enriched cells from ErbB2+ 

stromal PTEN-null mammary glands generated significantly more 3D organoids compared 

to control (Figure 3A), and these organoids exhibited increased dual cytokeratin-5/

cytokeratin-8 positivity demonstrating increased stem-like activity (Figure 3B). In 

corroboration, MaSC-enriched cells from fibroblast PTEN-null mice have significantly 

enhanced colony forming ability in vitro (Figure 3C), and demonstrate an enhanced ability 

to form mammospheres under non-adherent culture conditions (Figure 3D). Importantly, no 

loss of PTEN was detected in MaSC-enriched cells by indirect immunofluorescent staining 

(Supplementary Figure 3A,B).

MaSC-enriched cells within a stromal PTEN-null background have decreased NOTCH3

To assess the stromal PTEN-dependent changes within the adjacent MaSCs, we isolated 

MaSC-enriched populations from both ErbB2;Ptenfl/fl and ErbB2;Fsp-cre;Ptenfl/fl mice at 

8wks of age and performed genome wide expression profiling (Supplementary Figure 4A). 

Unsupervised evaluation by GSEA querying the C2 MSigDB revealed significant de-

enrichment of the NOTCH pathway in the MaSC-enriched cells from stromal PTEN-null 

glands (Figure 4A; Supplementary Figure 4B). Confirmatory qRT-PCR revealed that 

Notch3, which had the highest enrichment signal of the NOTCH receptors (Supplementary 
Figure 4B), was downregulated in epithelium from ErbB2;Fsp-cre;Ptenfl/fl mice (Figure 
4B). To verify Notch3 specifically drives the signature, the remaining family members 

(Notch1, Notch2, Notch4) were concluded as unchanged (Supplementary Figure 4C). 

Lastly, we confirmed the NOTCH target gene Hes1 was also downregulated supporting 

diminished NOTCH signaling (Figure 4C; Supplementary Figure 4B).

To confirm diminished NOTCH3 protein, we performed immunohistochemistry (IHC) 

staining in 8-9wk mammary glands. Discontinuous NOTCH3 staining was observed in the 

basal/myoepithelium of stromal PTEN-null mice with or without ErbB2 (Supplementary 
Figure 5A). NOTCH3 staining was also observed in the luminal lineage within all the 

glands, albeit at lower levels, and so to accurately quantify NOTCH3 exclusively in the 

MaSC-containing basal/myoepithelium, we carried out dual-immunofluorescence for 

NOTCH3 and alpha-smooth muscle actin (α-SMA), a marker for the basal/myoepithelium 

(Figure 4D,E). We measured the percentage of NOTCH3 positive area with respect to α-

SMA positive area and found that NOTCH3 was significantly downregulated in the α-SMA 

positive MaSC-enriched basal/myoepithelium in stromal PTEN-null mammary glands 

(Figure 4B,D). Notably, Notch3 mRNA was unchanged in both the luminal progenitor and 
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mature luminal populations (Supplementary Figure 5B) supporting a role for NOTCH3 

specifically within the MaSC-enriched cells.

PTEN-null fibroblasts promote increased stem cell activity through decreased JAGGED-1

Given that NOTCH signaling is known to restrict MaSC activity in vivo24, we hypothesized 

that Fsp-cre mediated ablation of stromal Pten decreases NOTCH signaling in associated 

MaSC basal/myoepithelial cells in a non-cell autonomous, paracrine manner. NOTCH3 

activation is mediated by JAGGED and DLL ligands. Since these ligands are single-pass 

transmembrane proteins requiring direct cell-cell contact for ligand mediated activation of 

Notch signaling25, 26, we postulated that changes in NOTCH3 in the basal/myoepithelium 

could be due to decreased ligand expression in adjacent stromal fibroblasts and subsequent 

autoregulation. To test this possibility, we isolated primary mouse mammary fibroblasts 

(MMFs) from 8wk old Ptenfl/fl and Fsp-cre;Ptenfl/fl animals and evaluated Jag1, Jag2, Dll1, 

Dll3 and Dll4 mRNA. Importantly, we observed significantly lower Jag1 mRNA expression 

in PTEN-null MMFs when compared to wild-type MMFs (Figure 5A; Supplementary 
Figure 6A). Jag2, Dll1 and Dll4 mRNA levels were unchanged, and Dll3 was undetectable 

by qRT-PCR (Supplementary Figure 6A). Combined, these results imply that low 

JAGGED-1 is specifically responsible for the observed phenotype. To further validate these 

findings, we evaluated Jag1 mRNA in a pair of immortalized wild-type and PTEN-null 

MMF cells16, observing almost complete loss of JAGGED-1 mRNA and protein (Figure 
5B,C; Supplementary Figure 6B). We further validated these results in vivo through dual 

immunofluorescence for JAGGED-1 and α-SMA in mammary gland sections from 8-9wk 

old Ptenfl/fl, Fsp-cre;Ptenfl/fl, ErbB2;Ptenfl/fl, and ErbB2;Fsp-cre;Ptenfl/fl mice. A decrease in 

stromal JAGGED-1 is observed in glands lacking stromal PTEN (Figure 5D,E) suggesting 

fibroblast PTEN mediates stromal-to-epithelial cross-talk through stromal JAGGED-1.

To test whether cross talk from the PTEN-null MMFs alters MaSC activity directly, we 

isolated Lin-CD24+CD29+ mammary epithelial cells from ErbB2 mice and cultured these 

cells on growth arrested wild-type or PTEN-null immortalized MMFs. PTEN-null MMFs 

greatly enhanced the colony forming ability of purified ErbB2 epithelium confirming a non-

cell autonomous role for these fibroblasts in the stem-like capacity of adjacent epithelium 

(Figure 6A). To test whether JAGGED-1 downregulation in the PTEN-null MMFs is 

directly responsible for the increased stem cell activity, we ectopically expressed JAGGED-1 

in the PTEN-null MMFs (Supplementary Figure 6C) and found that JAGGED-1 

overexpression abrogated the increased epithelial colony forming ability (Figure 6B). 

Importantly, NOTCH inhibition via a γ-Secretase inhibitor (GSI-XXI) increases the colony 

forming capacity of ErbB2 epithelium on wild-type MMFs further supporting a role for low 

JAGGED-1/NOTCH signaling in associated epithelial stem cell activity (Figure 6C).

Low expression of stromal JAG1 and stromal PTEN correlates with shorter time to 
recurrence in breast cancer patients

To test the relevance of stromal PTEN-mediated JAGGED-1 signaling in human breast 

cancer, we evaluated publicly available gene expression data of 53 laser-captured primary 

breast tumor samples for stromal JAG1 and PTEN expression.27 Patients were segregated 

into quartiles depending on stromal expression of JAG1, and survival was compared between 
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patients with high (top 75%) and low (bottom 25%) JAG1. Low stromal JAG1 (Figure 7A), 

and similarly, low stromal PTEN (Figure 7B) correlates with shorter time to recurrence in 

patients. Importantly, patients with a combination of low stromal PTEN and JAG1 exhibited 

the shortest time to recurrence when compared to other groups (Figure 7C) suggesting 

stromal PTEN acts through JAGGED-1 in suppressing tumor formation.

DISCUSSION

Stromal PTEN regulates mammary gland morphogenesis

Stromal fibroblasts maintain the architecture of the mammary gland by regulating ECM 

deposition, secreting growth factors and facilitating direct mesenchymal-epithelial 

interactions.15, 28 It is therefore logical to speculate that genetic alterations within fibroblasts 

could result in a multitude of disorders, including cancer. Recent evidence suggests that 

genetic manipulation of stromal cells can transform adjacent epithelium even in the absence 

of pre-existing hyperplasia.1, 29, 30 Our own work demonstrates that stromal PTEN loss 

induces changes in ECM deposition, immune cell infiltration and oncogenic factor secretion, 

thereby enabling malignant transformation of adjacent pre-neoplastic ErbB2 epithelial cells 

and accelerating tumor growth.7, 16 Despite this evidence, how fibroblasts reprogram pre-

neoplastic epithelial cells at the earliest stages of breast cancer is poorly understood. In this 

study, we characterize non-cell autonomous alterations within pre-neoplastic adjacent 

epithelia in response to stromal loss of PTEN. Specifically, these mice exhibited stunted 

ductal development and aberrant alveolar side-branching. In the mammary gland, excessive 

side branching can occur when the cellular microenvironment is disrupted. For example, 

overexpression of stromal regulators MMP-3 or MMP-14 induces unrestrained aberrant 

side-branching and consequent tumorigenesis.31, 32 Our previous findings revealed that loss 

of stromal PTEN increases MMP9 activity7, which could in part explain the restricted ductal 

elongation and aberrant alveolar side-branching as described herein.

Stromal PTEN regulates the mammary stem cell niche

Bipotential MaSCs found in the basal/myoepithelial layer are important in both development 

and maintenance of mammary homeostasis.8, 12, 22, 33 Cell fate decisions of stem cells are 

tightly regulated by extrinsic signals from the niche, which consists of adjacent stromal cells 

including fibroblasts, growth factors, cytokines and chemokines, and the ECM.19, 34, 35 Here 

we report that both wild-type and ErbB2 mice with PTEN-null stroma exhibit an expansion 

of the CD24+CD29Hi MaSC-enriched population. The altered stem cell activity in vivo was 

confirmed using well-defined in vitro stem cell assays. It is important to note that we do not 

see an expansion of MaSC-enriched cells in our ErbB2 animals when compared to 

syngeneic WT FVB/N controls, which is consistent with previous reports.22, 23, 33 A 

significant increase in ErbB2-driven MaSC-enriched basal/myoepithelium occurs only in the 

context of a PTEN-null stroma. These data corroborate the increase in aberrant alveolar side-

branching also seen in these mice implicating stromal PTEN in the regulation of epithelial 

lineage differentiation through altering the MaSC-enriched pool.

Whether MaSCs from a PTEN-null stromal microenvironment directly alters oncogenic 

transformation is still unclear. Two independent studies have identified novel CD24+Jag1− 
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and CD24+Sca1+ populations as potential tumor initiating cells in ErbB2-mediated 

tumorigenesis.36, 37 Even though the link between these subpopulations and CD24+CD29Hi 

MaSC cells remains undefined, it is likely that the CD24+Jag1− and CD24+Sca1+ 

populations exist within CD24+CD29Hi MaSC-enriched pool and that loss of stromal PTEN 

similarly alters these tumor initiating subsets. Another possibility is that genetic ablation of 

fibroblast Pten disrupts paracrine signaling between altered MaSCs and adjacent luminal 

cells. This disruption would affect proliferation, differentiation and the tumorigenic potential 

of the luminal cells, which have been postulated to be the cellular precursors for the HER2/

ErbB2 luminal subtype of breast cancer.22, 38 While beyond the scope of the current report, 

the data reported herein imply that fibroblast PTEN paracrine signaling possibly alters the 

cell of origin of ErbB2+ breast cancer.22, 33, 37, 39

Stromal Pten maintains JAGGED-1 and facilitates paracrine NOTCH3 mediated signaling in 
adjacent mammary epithelium

NOTCH receptors, including NOTCH3, are known to be key regulators of stem cell 

maintenance and differentiation in normal tissue.25, 40-46 In the mammary gland specifically, 

downregulation of NOTCH signaling results in the expansion of MaSCs in vivo, whereas 

constitutive activation of NOTCH signaling favors luminal cell fate at the expense of basal 

lineage commitment.24, 45 These studies revealed that forced NOTCH signaling expands the 

luminal progenitor population leading to hyperplasia and the highly aggressive basal-like 

breast cancer.24, 45 Thus, NOTCH signaling determines alternate outcomes in different 

mammary cell types in a developmental stage dependent manner. Utilizing genetic mouse 

models, we show for the first time that mammary glands lacking stromal PTEN exhibit an 

increase in the MaSC-enriched pool that is attributed to decreased NOTCH signaling within 

this population corroborating previous findings.24, 45 Mechanistically, we have identified 

loss of JAGGED-1 within the PTEN-null mammary fibroblasts as a key mediator of this 

MaSC niche. Importantly, JAGGED/NOTCH signaling has been well-described to be 

oncogenic in the breast tumor microenvironment, which may seemingly contradict our 

findings.47-52 However, these previous experiments utilized immortalized breast cancer cell 

lines to discern the function of stromal JAGGED/NOTCH in promotion of pre-existing 

tumors. In contrast, our study is quite distinct in that we have focused on the pre-neoplastic 

MaSC niche to dissect the role of this pathway in normal mammary gland development. 

Given that low stromal PTEN in combination with low stromal JAG1 is more predictive of 

earlier breast cancer patient recurrence compared to low stromal expression of either PTEN 
or JAG1 alone, future studies will focus on defining the association between stromal PTEN 

and JAGGED-1 in breast cancer.

Combined, we show for the first time that loss of stromal PTEN regulates the pre-neoplastic 

mammary stem cell niche through ‘altered’ JAGGED-1 to NOTCH3 paracrine signaling. 

Based on these results, we propose that at least one of the mechanisms by which stromal 

PTEN suppresses ErbB2 induced tumor growth is through blocking the expansion of the 

MaSC-enriched pool. These results highlight a novel role for stromal PTEN in mammary 

morphogenesis and provide new insights into the complex cross-talk between fibroblasts and 

the MaSC niche.
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MATERIALS AND METHODS

Ethics Statement

Animal use was in compliance with federal and University Laboratory Animal Resources 

regulations under protocols 2007A0120-R1 (MCO) and 2007A0239-R2 (GL) approved by 

the OSU Institutional Animal Care and Use Committee (IACUC).

Transgenic Mice

Fsp-cre mice were generated previously and confirmed to express Fsp specifically within the 

mammary stromal fibroblasts, with absence in the epithelium, macrophages and 

endothelium.6, 7 Ptenfl/fl mice were created and maintained as reported.7 MMTV-ErbB2 
mice were generously provided by Dr. William Muller.53 All mice were 8-10wks of age and 

at least tenth-generation congenic (N10) FVB/N. Wild-type FVB/N were purchased from 

Jackson Laboratories (Bar Harbor, Maine, USA). Primary mouse MMFs were isolated as 

described.54

Whole-mount analysis

Inguinal mammary glands were harvested as described.55 Mice in diestrus were excluded. 

Briefly, ductal length was determined by measuring from the farthest edge of the lymph 

node (relative to the nipple) to the longest duct. The longest three ducts were averaged per 

gland and the two inguinal glands averaged per mouse. Alveolar side-branching was 

determined by counting all aberrant ducts within a representative 4x field per gland and the 

two inguinal mammary glands were averaged per mouse.

Fluorescence activated cell sorting

Mammary tissue was harvested as described (4-8 mice/genotype were pooled/experiment).23 

Briefly, tissue was dissociated with a McIlwain tissue chopper (Mickle Laboratory 

Engineering, Guildford, Surrey, United Kingdom) and placed in Epicult-B medium (Stem 

Cell Technologies, Vancouver, British Columbia, Canada) supplemented with 5%FBS, 

300U/ml Collagenase (Sigma, St. Louis, Missouri, USA) and 100U/ml hyaluronidase 

(Sigma), and digested for 1hr at 37°C with gentle shaking. Red blood cells were lysed in 

ammonium chloride (Stem Cell Technologies). The digested tissue was then sequentially 

dissociated in 0.25% trypsin–EDTA (Sigma) for 1min, 5mg/ml Dispase (Stem Cell 

Technologies) plus 0.1mg ml−1 DNase1 (Sigma) for 1 min and filtered through a 40µm cell 

strainer. Single cell populations were subjected to a modified negative selection process to 

obtain lineage negative (Lin−) subpopulations.11 Specifically, CD45+, Ter119+, CD31+ and 

BP-1+ cells were removed using the EasySep Mammary Epithelial Cell Enrichment kit as 

per manufacturer's instructions (Stem Cell Technologies). Lin− cells were further stained for 

CD24-PE (#553262, BD Pharmingen, San Jose, California, USA), CD29-FITC (#555005, 

BD Pharmingen) and CD61-APC (#MCD6105; Invitrogen, Grand Island, New York, 

USA).23, 33, 56 Isotype controls for each antibody were used: PE-Rat IgG2b, κ isotype 

(#555848, BD Pharmingen); FITC-Hamster IgM, λ1 isotype (#553960, BD Pharmingen); 

APC-Hamster IgG, (#17-488-81, eBiosciences, San Diego, California, USA). All procedures 

were performed using FACSAria (BD Biosciences, San Jose, California, USA). Gating 
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excluded cells labeled with isoform-matched control antibodies. If isotype-control was 

unclean, experiment was excluded. Viable cells were determined by DAPI exclusion. For 

downstream assays, viable cell numbers were determined by Trypan Blue exclusion. All data 

analyses were performed using FlowJo single cell analysis software.

In vitro stem/progenitor cell assays

For colony forming assays, sorted MaSC-enriched or Lin-CD24+CD29+ cells were seeded 

onto a feeder layer of mitomycin C (Roche, Indianapolis, Indiana, USA) growth-arrested 

NIH3T3 cells (ATCC; grown in 10%DMEM + 1%penicillin/streptomycin), Ptenfl/fl, or Fsp-
cre;Ptenfl/fl MMFs in 6-well plates at a density of 2,000 cells/well. Fsp-cre;Ptenfl/fl MMFs 

were transiently transfected with empty vector (pENT-CMV4-EF1alpha-GFP) or mouse 

Jag1 (mJAG1) using jetPEI® (Polyplus Transfections, NY, NY, USA), mitomycin C treated 

on day 2 post-transfection, and epithelia added on day 3 post-transfection. The mJAG1 

construct was engineered by Welgen, Inc. PCR amplified mJAG1 (GE Dharmacon 

MMM1013-202859638) was inserted into pENT-CMV-EF1alpha-GFP via EcoR1 and XbaI. 
Ptenfl/fl MMFs were treated with vehicle (DMSO) or GSI-XXI (EMD Millipore, Billerica, 

Massachusetts, USA). After 24hrs, the media was replaced with serum-free culture medium 

as described.23 7-10 days later, colonies were fixed in ice-cold acetone:methanol (1:1), 

stained with Giemsa and % colony area assessed by a user defined threshold followed by 

analyzing particles with defined circularity in ImageJ57. To assess organoid formation, 

isolated MaSC-enriched cells were suspended in epithelial media (Stem Cell Technologies) 

with 5% FBS and then seeded within 50-μl growth factor-reduced matrigel (BD 

Biosciences) in an 8-well chamber slide at a density of 20,000 cells/well. After 10 days, 

individual 50-μl matrigel cultures were embedded in histogel (Richard-Allan Scientific, 

Grand Island, New York, USA) and fixed in 4% paraformaldehyde. These were sectioned 

and stained with hematoxylin and eosin (H&E) or processed for immunostaining. For 

mammosphere assays, single sorted MaSC-enriched cells were plated in ultralow attachment 

24-well plates (Corning, Tewksbury, Massachusetts, USA) at a density of 10,000 cells/well 

in serum-free mammary epithelial basal medium (Stem Cell Technologies) plus B27 (Life 

Technologies, Grand Island, New York, USA), 20ng/ml EGF (Sigma), 20ng/ml bFGF 

(PeproTech, Rocky Hill, New Jersey, USA) and 4ug/ml heparin (Sigma) as described. 

Mammosphere cultures were grown for 14 days and all observable mammospheres 

counted.58

Phase contrast imaging and immunostaining

All live cell imaging was taken on the EVOS XL Core (Life Technologies). For 

immunofluorescence (IF), paraffin-embedded tissue and matrigel sections were dewaxed, 

and subjected to antigen retrieval by steaming samples in DAKO Target retrieval solution 

(pH 6.1) (Carpinteria, California, USA) for at least 20 mins before blocking with the DAKO 

antibody diluent. The following primary antibodies were then used: CK8 (#TROMA-1, 

1:400, Developmental Studies Hybridoma Bank, Iowa City, Iowa, USA), CK5 (#ab24647, 

1:200, Abcam, Cambridge, Massachusetts, USA), α-SMA (#A2547, 1:400, Sigma), 

JAGGED-1 (#2620, 1:50, Cell Signaling, Danvers, Massachusetts, USA) and NOTCH3 

(#ab23426, 1:400, Abcam). Secondary detection was performed using antibodies conjugated 

to AlexaFluor dyes (Invitrogen; Molecular Probes) for 1hr at room temperature. Sections 
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were mounted with SlowFade® Gold Antifade mount with DAPI (Life Technologies). 

Representative fluorescent images were taken on an Eclipse E800 microscope (Nikon 

Instruments Inc., Melville, New York, USA) using the MetaVue™ Research Imaging system 

(Molecular Devices, Sunnyvale, California, USA) and images for NOTCH3 and JAGGED-1 

quantification were taken on the PerkinElmer (Hopkinton, Massachusetts, USA) Vectra 

Automated Quantitative Pathology Imaging system (VECTRA®).

NOTCH3 and JAGGED-1 Quantification

At least three 40x images were quantified per mammary gland. NOTCH3 in the basal/

myoepithelium was determined using ImageJ57 by separating the channels and individually 

adjusting the threshold for the green (α-SMA) and red (NOTCH3) until only the 

myoepithelial area staining was visible. The total area of each channel was determined by 

analyzing particles, and the percentage of red/green calculated. Stromal JAGGED-1 images 

were quantified using the pattern recognition algorithm in the Inform® software 

(PerkinElmer). Briefly, each image underwent manual tissue segmentation to select only the 

stroma adjacent to the mammary epithelium for scoring. Other cell types (macrophages, 

adipocytes, blood vessels) were manually excluded from the stromal area to be scored. The 

spectrally unmixed Alexafluor-594 signal (JAGGED-1 positivity) was scored based on a 

user defined threshold into four categories (0+, 1+, 2+ and 3+). The percent of cells within 

each scoring category was determined based on cell segmentation by DAPI. An H-Score was 

then calculated using following formula: [1x(%cells 1+) + 2x(%cells 2+) + 3x(%cells 3+)].

Quantitative Real-time PCR and immunoblots

Total RNA was obtained using TRIzol (Invitrogen), treated with DNAse I (DNA-free, 

Ambion, Grand Island, New York, USA), and cDNA produced using SuperScript III Reverse 

Transcriptase (Invitrogen). For cDNA generated from FACS isolated MaSC-enriched, 

luminal progenitor and mature luminal populations, a pre-amplification step was performed 

following the TaqMan® (Applied Biosystems, Grand Island, New York, USA) PreAmp 

Master Mix protocol as per manufacturer's instructions. qRT-PCR was performed using 

TaqMan® Gene Expression Assays and Roche Universal Probe Library primers (listed in 

Supplementary Methods). Sample quality was verified by comparing Ct values for Gapdh. 

For immunoblotting, fibroblasts were lysed on ice [50mM Tris-HCl, pH7.4; 100mM NaCl; 

1mM EDTA; 1mM EGTA; 1mM NaF; 0.1% SDS; 0.5% Sodium Deoxycholate; 1% Triton-

X-100; 10% Glycerol; Protease and Phosphatase Inhibitor Cocktails (Sigma)], and protein 

levels quantified (Bradford Assay, Bio-Rad, Hercules, California, USA). Protein lysate was 

resolved using SDS-PAGE, and transferred to PVDF membrane (EMD Millipore, Billerica, 

Massachusetts, USA). The LiCOR Odyssey TBS Blocking Buffer (Lincoln, Nebraska, USA) 

was used to block and as a diluent for both primary (Jagged-1-#2620, Cell Signaling; β-

actin-#A1978, Sigma) and secondary antibodies (LiCOR). Signal was detected using the 

LiCOR Odyssey®.

Statistical Methods

Sample size was not pre-determined statistically. All conclusions were determined by 

analyzing distinct genetic groups in a blinded fashion. Within each genetic group, mice were 

randomly utilized. For data of sample sizes >five, normal distribution was determined by 
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Kolmogorov-Smirnov Goodness-of-Fit. Sample variance was determined by F-test. 

Statistical comparison of multiple groups was performed by ANOVA while direct 

comparison between two groups of normally distributed data was done by homoscedastic or 

heteroscedastic Student's t-test as appropriate. All analyses using Student's t-test were two-

tailed except confirmation by qRT-PCR. For data not normally distributed, statistical 

comparisons were done by Mann-Whitney. For JAG1 and PTEN related survival analyses, 

patients in the Finak27 dataset were separated into low (bottom quartile) and high 

(remaining) expressing groups. Kaplan-Meier survival curves were generated to evaluate 

survival over a three year period. Statistical significance was determined using log-rank.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Loss of stromal PTEN impairs ductal elongation and promotes aberrant alveolar side-
branching
(A) Left: Representative whole mounts of mammary glands from 8wk old virgin mice 

stained with carmine alum (n=3 per genotype; scale bars=2mm). Center: Representative 

magnified regions to show ductal side-branching as indicated by arrowheads (n=3 per 

genotype except for ErbB2;Ptenfl/fl, n=2; scale bars=0.2mm). Right: Representative H&E 

images at 8-9wks (n=3 per genotype; scale bars=0.1mm). (B) Quantification of ductal length 

represented in A. Bars represent the mean of 3 animals per genotype plus s.e.m.; Ptenfl/fl v. 

Fsp-cre;Ptenfl/fl = p<0.05; ErbB2;Ptenfl/fl v. ErbB2:Fsp-cre;Ptenfl/fl = p<0.05. Statistical 

analysis was performed using ANOVA followed by Student's t-test. (C) Quantification of 
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aberrant alveolar side-branching represented in A. Bars represent the mean of 3 animals per 

genotype plus s.e.m. except for ErbB2;Ptenfl/fl, where the bar represents the mean of 2 

animals; Ptenfl/fl v. Fsp-cre;Ptenfl/fl = p<0.05. Statistical analysis was performed using 

Student's t-test.
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Figure 2. Loss of stromal PTEN expands the MaSC-enriched population in vivo
(A,C) Left: Representative FACS plots showing MaSC-enriched basal/myoepithelial and 

total luminal populations in 8-9wk old (A) Ptenfl/fl v. Fsp-cre;Ptenfl/fl and (C) ErbB2;Ptenfl/fl 

v. ErbB2;Fsp-cre;Ptenfl/fl animals. Right: Quantification of MaSC-enriched and total luminal 

populations represented on the left. MaSC comparison: Ptenfl/fl v. Fsp-cre;Ptenfl/fl = p<0.05; 

ErbB2;Ptenfl/fl v. ErbB2;Fsp-cre;Ptenfl/fl = p<0.05. (B,D) Left: Corresponding FACS plots 

for luminal subpopulations from A and C showing mature luminal and luminal progenitor 

subpopulations in 8-9wk old (B) Ptenfl/fl v. Fsp-cre;Ptenfl/fl and (D) ErbB2;Ptenfl/fl v. 

ErbB2;Fsp-cre;Ptenfl/fl animals. Right: Quantification of luminal subpopulations populations 

represented on the left. (A,B) Bars represent the mean of 4 independent experiments plus 

s.e.m, except for white bar (FVB/N control) where one experiment was performed. (C,D) 

Bars represent the mean of 5 independent experiments plus s.e.m for all indicated genotypes. 
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Statistical analysis for A-D was carried out using ANOVA followed by Student's t-test (NS = 

non-significant).
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Figure 3. MaSC-enriched populations from stromal PTEN-null mice exhibit enhanced stem cell 
activity in vitro
(A) Left: Representative phase contrast images of MaSC-enriched derived organoids 

(indicated by arrowheads) in 3D matrigel. Scale bars = 0.5mm. Right: Quantification of 

organoids shown on the left. Bars represent the mean of 3 independent sorting experiments 

plus s.e.m. Statistical analysis was performed using Student's t-test (p<0.05). (B) Paraffin 

embedded sections from MaSC-enriched derived organoids in A co-stained for CK5 and 

CK8 by immunofluorescence. Scale bars = 40μm. (C) Left: Representative images of 

Giemsa stained epithelial colonies (arrowheads) on growth arrested NIH3T3 cells. Scale 

bars = 5mm. Right: Quantification depicting colony formation as represented on the left. 
Bars represent fold change of the total colony area from 2 independent experiments plus 

s.e.m. Statistical analysis was performed using Student's t-test (p<0.05). (D) Left: 
Representative images of non-adherent mammospheres in vitro. Scale bars = 1mm. Right: 
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Quantification of the number of mammospheres. Bars represent the mean of 3 independent 

sorting experiments plus s.e.m. Statistical analysis was performed using Mann-Whitney 

(p<0.01).
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Figure 4. Stromal PTEN loss decreases NOTCH3 expression in associated MaSC basal/
myoepithelial cells
(A) GSEA depicting significant de-enrichment of NOTCH signaling pathway genes 

(KEGG_NOTCH_SIGNALING_ PATHWAY) in MaSC-enriched cells pooled and isolated 

from ErbB2;Fsp-cre;Ptenfl/fl mice when compared to cells pooled and isolated from 

ErbB2;Ptenfl/fl mice. NES = normalized enrichment score. FDR = false discovery rate. (B,C) 

Notch3 and Hes1 mRNA expression in MaSC-enriched cells: ErbB2;Ptenfl/fl (5 independent 

experiments of pooled mice) v. ErbB2;Fspcre;Ptenfl/fl (4 independent experiments of pooled 

mice) = p<0.05. Bars represent mean expression of technical replicates relative to Gapdh 
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plus s.e.m. Statistical analysis was performed using Student's t-test. (D,E) Left: 
Representative images depicting co-immunofluorescence of (D) Ptenfl/fl v. Fsp cre;Ptenfl/fl 

and (E) ErbB2;Ptenfl/fl v. ErbB2;Fsp-cre;Ptenfl/fl mammary glands from 8-9wk old animals 

for NOTCH3 (red) and α-SMA (green). Scale bars = 40μm. White and orange arrowheads 

indicate positive and negative basal/myoepithelial NOTCH3 immunofluorescence, 

respectively. Right: Quantification representing the mean percentage of NOTCH3+ area with 

respect to α-SMA+ area for at least 3 animals per genotype plus s.e.m: Ptenfl/fl v. Fsp-
cre;Ptenfl/fl = p<0.0005, ErbB2;Ptenfl/fl v. ErbB2;Fsp-cre;Ptenfl/fl = p<0.05. Statistical 

analysis was performed using Student's t-test.
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Figure 5. Loss of fibroblast PTEN decreases stromal JAGGED-1 expression
(A) Jag1 mRNA in isolated primary MMFs: Ptenfl/fl v. Fsp-cre;Ptenfl/fl = p<0.05 (n=5 mice 

per genotype). Bars represent mean expression of technical replicates relative to Gapdh plus 

s.e.m. Statistical analysis was performed using Student's t-test. (B) Jag1 mRNA in 

immortalized Ptenfl/fl and Fsp-cre;Ptenfl/fl MMFs. Bars represent mean expression of 

technical replicates relative to Gapdh plus s.e.m. (C) Western blot for JAGGED-1 in the 

immortalized Ptenfl/fl and Fsp-cre;Ptenfl/fl MMFs. (D,E) Left: Representative images 

depicting co-immunofluorescence of mammary glands from (D) Ptenfl/fl v. Fsp-cre;Ptenfl/fl 
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and (E) ErbB2;Ptenfl/fl v. ErbB2;Fsp-cre;Ptenfl/fl 8-9wk old animals for JAGGED-1 (red) 

and α-SMA (green). Scale bars = 40μm. White and orange arrowheads indicate positive and 

negative stromal JAGGED-1 immunofluorescence, respectively. Arrows represent 

JAGGED-1 positive macrophages. Right: Bars represent the mean stromal JAGGED-1 H-

Score for at least 3 animals per genotype plus s.e.m: Ptenfl/fl v. Fsp-cre;Ptenfl/fl = p<0.0005 

and ErbB2;Ptenfl/fl v. ErbB2;Fsp-cre;Ptenfl/fl = p=0.01. Statistical analysis was performed 

using (D) Student's t-test and (E) Mann-Whitney on independent H-Scores.
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Figure 6. PTEN-null fibroblasts promote epithelial stem cell activity through JAGGED-1
(A-C) Left: Representative panels depicting Giemsa stained colonies generated by FACS 

isolated Lin-CD24+CD29+ ErbB2 epithelia grown on growth arrested MMFs. (A) Epithelia 

on Ptenfl/fl v. Fspcre;Ptenfl/fl MMFs (n=2 independent experiments using pooled epithelia 

from 3-4 mice; bars represent fold change of the total colony area plus s.e.m.; p<0.0001 

using Student's t-test on biological replicates). (B) Epithelia on Fsp-cre;Ptenfl/fl control 

(pENT-vec) v. JAGGED-1 overexpressing (pENT-mJAG1) MMFs (n=1 experiment of 4 

mice; bars represent fold change of the total colony area plus s.e.m.). (C) Epithelia on 

Ptenfl/fl MMFs treated with DMSO v. GSI-XXI (n=2 independent experiments of 4 mice; 

bars represent fold change of the total colony area plus s.e.m.; p<0.001 using Student's t-test 

on biological replicates). Scale bars = 5mm.
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Figure 7. Low stromal PTEN and low stromal JAG1 correlate with shorter time to recurrence in 
human breast cancer patients
(A-C) Kaplan-Meier analysis exhibiting recurrence probability for the Finak patient 

population stratified by low (bottom quartile) v. high (remaining) (A) JAG1 (low, n=14; 

high, n=39), (B) PTEN (low, n=14; high, n=39), and (C) combined PTEN and JAG1 (PTEN 
low/JAG1 low, n=7; PTEN low/JAG1 high, n=7; PTEN high/JAG1 low, n=7; PTEN high/

JAG1 high, n=32) expression. Significance determined by log-rank.
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