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Abstract

Knowledge of the normal in vivo thickness of the retina, and its individual layers in pediatric

populations is important for diagnosing and monitoring retinal disorders, and for understand-

ing the eye’s normal development and the impact of eye growth and refractive error such as

myopia (short-sightedness) upon retinal morphology. In this prospective, observational lon-

gitudinal study, total retinal thickness (and individual retinal layer thickness) and the

changes in retinal morphology occurring over an 18-month period were examined in 101 chil-

dren with a range of refractive errors. In childhood, the presence of myopia was associated

with subtle but statistically significant (p<0.05) changes in the topographical thickness distri-

bution of macular retinal thickness (and retinal layer thickness), characterised by a thinning

of the parafoveal retina (and parafoveal or perifoveal thinning in most outer and inner retinal

layers). The parafoveal retina was on average 6 μm thinner in myopic children. However,

over 18 months, longitudinal changes in retinal thickness and individual layers were of small

magnitude (average changes of less than 2 μm over 18 months), indicative of a high degree

of stability in retinal morphology in healthy adolescent eyes, despite significant eye growth

over this same period of time. This provides the first detailed longitudinal assessment of

macula retinal layer morphology in adolescence, and delivers new normative data on

expected changes in retinal structure over time and associated with myopia during this

period of childhood development.

Introduction

Myopia is a refractive error that occurs due to excessive axial elongation of the eye, and is one

of the most common eye conditions affecting pediatric populations globally [1]. Due to its ris-

ing prevalence in recent decades and association with a range of ocular pathologies, myopia is

considered to be a significant public health concern [2]. The increased risk of myopic eyes

developing retinal complications later in life (e.g. retinal detachment, myopic maculopathy)

[2] provides significant impetus to expand our understanding of the retinal changes associated

with childhood myopia.
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The ability of spectral domain optical coherence tomography (SD-OCT) to rapidly and

non-invasively acquire high-resolution cross-sectional retinal images, has seen this imaging

modality establish itself as an invaluable tool in evaluating the pediatric retina [3]. In-vivo
imaging of the pediatric retina with OCT provides detailed morphological data, valuable in

the diagnosis, monitoring and grading of a variety of retinal conditions [4–7], and in the

assessment and monitoring of the effectiveness of treatments [8–10]. The diagnosis and

monitoring of abnormalities with OCT typically involves a comparison between a patient’s

global or local retinal morphology (and their changes over time) against a normal reference

morphology (normative database). Therefore, the reliable clinical application and interpreta-

tion of OCT measures in pediatric populations relies upon a thorough knowledge of the nor-

mative range of structural characteristics of the retina (and retinal layers) in childhood, and

the typical changes in structure expected to occur over time during normal childhood

development.

Recent research utilising SD-OCT has substantially advanced our understanding of the nor-

mal developmental changes occurring in the in vivo structure of the total retina [11–14] and

the retinal layers [15–21] throughout infancy [15–17,20] and childhood [11–14,18,19,21].

These studies have provided detailed information on the normal range of thickness in the ret-

ina and its layers and have demonstrated that substantial changes in retinal morphology

(including a reorganisation and redistribution of the inner and outer retinal layers) occurs in

normal children from birth and through infancy [15–17,20], with more subtle increases in

total retinal thickness and layer thickness change also noted throughout childhood [12,18,21].

It should be noted though, that the vast majority of these studies of normal children have

involved cross-sectional study designs, with only two studies, primarily focussed on measures

of retinal thickness in neonates and infants [15,20], including some longitudinal measures of

retinal thickness in a portion of their participants.

Since myopia typically manifests and progresses in childhood and adolescence, a number of

recent studies have also used SD-OCT to examine the impact of childhood myopia and refrac-

tive error upon retinal thickness [12–14,19], providing insights into the potential role of the

retina in the development of refractive error and the possible impact of the axial eye elongation

associated with myopia development and progression upon retinal morphology. These studies

have shown some subtle differences in macular retinal morphology in childhood associated

with myopia, with a small magnitude (most studies report an average difference in thickness

between myopic and emmetropic children of<10 μm) thinning of the retina in parafoveal

and/or perifoveal retinal regions being a typical finding [14,19]. One recent study using long

wavelength swept source OCT also examined the impact of myopia upon macular ganglion

cell layer (GCL) and retinal nerve fibre layer (NFL) thickness and found myopic children

exhibited a significantly thinner perifoveal GCL, but no significant difference in the NFL thick-

ness associated with myopia [19]. To date, these previous studies examining retinal thickness

(and retinal layer thickness) and its association with myopia in childhood have also involved

only cross-sectional study designs [12–14,19], which limits the insights that can be drawn

from the data regarding the time course of retinal changes associated with the development

and progression of childhood myopia.

In this study, we aimed to expand knowledge of the changes in macular retinal layer thick-

ness (and their topographical variations) associated with myopia in childhood, and the normal

changes occurring in retinal layer thickness over time in a healthy pediatric population. We

conducted a prospective longitudinal investigation of retinal layer thickness using SD-OCT in

myopic and non-myopic children with normal vision.

Longitudinal retinal changes in childhood
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Materials and methods

This prospective, longitudinal study examining macular retinal layer thickness in childhood,

involved the 102 children aged between 10–15 years, enrolled in the Role of Outdoor Activity

in Myopia Study (ROAM Study). Retinal thickness measures (and a range of individual retinal

layer thickness metrics) for each child were derived from SD-OCT images collected at 4 study

visits, conducted every 6 months over an 18 month period. The study was approved by the

Queensland University of Technology human research ethics committee (approval number:

1100001557) and all parents provided written informed consent, and children written assent

prior to participation. All children enrolled in the study were treated in accordance with the

tenets of the Declaration of Helsinki.

A detailed description of the study participants and procedures have been provided in a

number of previous publications [22,23]. All children enrolled had normal vision in both eyes

(logMAR visual acuity of 0.00 or better in each eye); no history or evidence of ocular disease,

injury or surgery and no manifest hyperopic refractive errors of greater than +1.25 DS. One

participant exhibited signs of developing macular neuroretinopathy at their second study visit

and was therefore excluded from all analyses. The 101 subjects included in the final analysis

had a mean age at the baseline visit of 13.1 ± 1.4 years, exhibited a mean spherical equivalent

refraction of their right eye of -0.76 ± 1.67 D (range to -8.0 to +1.0 D) and mean cylindrical

refraction of -0.21 ± 0.38 D (range -2.0 to 0.0 D). Fifty two percent of participants were female.

Subjects were classified based upon their right eye’s non-cycloplegic spherical equivalent sub-

jective refractive error (SER), as being either myopic (SER of -0.75 D or more myopia, mean

SER -2.39 ± 1.51 D, n = 41) or non-myopic (SER less than +1.25 D and greater than -0.50 D,

mean SER +0.35 ± 0.31 D, n = 60). Retention of subjects over the 18 month study was generally

good, with 94 children (92% of enrolled participants) completing all 4 study visits. Three chil-

dren were lost to follow-up (two after their baseline visit, and one after their second ocular

measurement visit) and four children were excluded after they began orthokeratology contact

lens wear (after their second (n = 3) or third (n = 1) ocular measurement visit).

SD-OCT imaging

At each of the 4 study visits, a series of high resolution cross-sectional retinal images were col-

lected from each child’s right eye using the Heidelberg Spectralis (Heidelberg Engineering,

Heidelberg, Germany) SD-OCT instrument. This device uses a super luminescent diode of

central wavelength of 870nm for OCT scanning, capturing 40,000 A-scans per second, in

order to provide cross-sectional retinal OCT images with a digital axial resolution of 3.9 μm.

Total retinal thickness [24] and individual retinal layer thickness [25] measures from this

device are reported to be highly precise in normal adult subjects. OCT images were collected

between 2pm and 5pm, to reduce the potential impact of ocular diurnal variations [26,27]

upon the data.

Fig 1 provides an overview of the scanning protocol, and analysis procedures performed on

the OCT images. At each study visit, 2 series of 6 high resolution radial OCT scan lines centred

on the fovea and separated by 30˚ were captured using the instrument’s Enhanced Depth

Imaging (EDI) mode (Fig 1a). Although EDI mode is typically used to enhance the visibility of

the choroid, it has been shown that retinal thickness measures from EDI scans are comparable

to those collected using the Spectralis instrument’s conventional imaging mode [28]. Frame

averaging was also employed to improve the OCT image signal to noise ratio, using the instru-

ment’s automatic real time eye tracking feature, and each OCT image was the average of 30

B-Scans. Only OCT images with a scan quality index of>20 dB were included (mean QI from

all images analysed was 32.8 ± 2.6 dB). Four children (2 non-myopes and 2 myopes) were

Longitudinal retinal changes in childhood
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unable to maintain stable central fixation for the capture of all 6 radial OCT images, and there-

fore a single horizontal OCT scan centred on the fovea was collected at each visit for these sub-

jects. The instrument’s auto-rescan feature was also used in order to register the scans from

each subject at each visit to the same retinal location as their baseline scans.

Axial optical biometry (Lenstar LS 900, Haag Streit AG, Koeniz, Switzerland) measures

were also collected at each of the 4 study visits, in order to assess axial length, central corneal

thickness, anterior chamber depth and crystalline lens thickness. These measures were used to

quantify each child’s axial eye growth over the 18 month study period, and to adjust the trans-

verse scaling of the OCT scans at each visit in order to account for ocular magnification

factors.

OCT image analysis

Following image capture at each study visit, the exported OCT images were analysed using

custom written software. Initially, an automated graph based method [21,29] was used to seg-

ment the boundaries of 8 different retinal layers, including: the outer boundary of the retinal

pigment epithelium (RPE), the inner boundary of the inner segment ellipsoid zone (ISe), the

inner boundary of the external limiting membrane (ELM), the boundary between the outer

plexiform layer and inner nuclear layer (OPL/INL), the boundary between the inner nuclear

layer and the inner plexiform layer (INL/IPL), the boundary between the ganglion cell layer

and the nerve fibre layer (GCL/NFL) and the inner boundary of the inner limiting membrane

(ILM) (Fig 1c). An experienced observer, masked to the demographic and refractive details of

the participants, then checked the integrity of the automated segmentation of each boundary

and manually corrected any segmentation errors. Each subject’s individual ocular biometry

data from each study visit was then used to adjust the transverse scale of their OCT data to

account for ocular magnification differences associated with children’s ocular dimensions

using methods described previously [30]. This procedure ensured that thickness analyses both

within- and between- subjects were derived from the same sized retinal regions.

Fig 1. Overview of the OCT imaging and analysis procedures used in the study. At each study visit each

child had 2 repeated series of OCT scans collected, each consisting of 6 radial scan lines centred on the fovea

and separated by 30˚ (a). Each of the captured OCT images (example from the horizontal scan line is shown

in [b]), were subsequently analysed using a semi-automated procedure to segment 8 retinal boundaries,

including: the retinal pigment epithelium (RPE), inner segment ellipsoid (ISe), external limiting membrane

(ELM), outer plexiform layer/inner nuclear layer (OPL/INL) boundary, inner nuclear layer/inner plexiform layer

(INL/IPL) boundary, ganglion cell layer/nerve fibre layer (GCL/NFL) boundary and the inner limiting

membrane (ILM) (c). These data from each scan were then used to derive 7 thickness measures including

total retinal thickness, RPE to ISe, IS, ONL + OPL, INL, IPL + GCL, and NFL thickness. The average of each

thickness metric was then calculated over the foveal (green zone in [d]), parafoveal (blue zone in [d]) and

perifoveal (red zone in [d]), in superior (S), superior nasal (SN), nasal (N), inferior nasal (IN), inferior (I),

inferior temporal (IT), temporal (T), superior temporal (ST) meridians (d).

https://doi.org/10.1371/journal.pone.0180462.g001
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The magnification corrected segmentation data from each of the OCT images were then

used to derive the total retinal thickness (defined as the axial distance from the RPE to the

ILM); and 3 thickness metrics describing the outer retinal layers: the RPE to ISe thickness

(axial distance from the RPE to the ISe), the inner segment (IS) thickness (axial distance from

the ISe to the ELM) and the ONL+OPL thickness (axial distance from the ELM to the OPL/

INL); and 3 thickness metrics describing the inner retinal layers: INL thickness (axial distance

from the OPL/INL to the INL/IPL), IPL+GCL thickness (the distance from the INL/IPL to the

GCL/NFL) and NFL thickness (the distance from the GCL/NFL to the ILM) (Fig 1c). Data

from each series of OCT scans collected at each study visit were then averaged in order to

determine the mean thickness for each metric, in 8 different meridians (temporal, superior

temporal, superior, superior nasal, nasal, inferior nasal, inferior and inferior temporal meridi-

ans) over a series of concentric annular zones (foveal, parafoveal and perifoveal zones) across

the central 6 mm diameter surrounding foveal centre (Fig 1d). Since inner retinal layers are

not present at foveal centre, only parafoveal and perifoveal thickness measures were derived

for the inner retinal layer metrics.

Statistical analysis

All statistical analyses were carried out using IBM SPSS Statistics Version 23. Initially, the

repeatability of the imaging and measurement procedures for each of the retinal thickness

metrics were assessed by comparing the thickness from each of the two repeated series of OCT

scans collected at each study visit for each child, using the methods of Bland and Altman [31].

To examine the topographical variations in each of the thickness metrics in the myopic and

non-myopic children, along with the longitudinal changes in thickness over the 18 months of

the study, linear mixed model (LMM) analyses with restricted maximum likelihood estimation

were used. The LMMs examined the effects of study visit time (in years from baseline visit),

retinal zone (i.e. foveal, parafoveal or perifoveal zone) and meridian upon each of the consid-

ered retinal thickness metrics, assuming a first order autoregressive covariance structure. The

effects of refractive error group, gender and subject age at the baseline visit were also examined

in each of the LMMs. Individual subject’s slopes and intercepts were included as random

effects in the model.

Results

Within-session measurement repeatability

Fig 2 illustrates the Bland-Altman analysis examining the repeatability of each of the consid-

ered retinal thickness metrics from the two repeated scans collected at each imaging session

for each subject in the study. The mean difference between repeated thickness measures was

negligible for each of the different thickness metrics assessed, ranging from -0.02 μm (for INL

thickness) to +0.06 μm (for total retinal thickness). Likewise, the 95% limits of agreement of

these differences were also small for each of the thickness metrics, with the widest LOA being

+2.9 to -2.8 μm for total retinal thickness and the narrowest LOA being +1.0 to -1.0 μm for the

IS thickness. There also did not appear to be any systematic differences in measurement

repeatability between the foveal, parafoveal and perifoveal zones, nor any relationship between

the mean thickness value and the difference between repeated measures (Fig 2).

Topographical thickness variations

Total retinal thickness. The topographical variations observed in total retinal thickness

for all subjects at the baseline visit are illustrated in Fig 3 and Table 1. The retina was thinnest

Longitudinal retinal changes in childhood
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Fig 2. Bland-Altman plots demonstrating the repeatability of the total retinal thickness (a), RPE to ISe thickness (b),

IS thickness (c), ONL+OPL thickness (d), INL thickness (e), IPL+GCL thickness (f), and NFL thickness (g) measures

within each imaging session for each subject for each of the derived thickness metrics. The difference between the

two repeated thickness estimates at each visit is plot against the mean of the two estimates. Solid line indicates the mean

difference and dashed lines the 95% limits of agreement (LOA).

https://doi.org/10.1371/journal.pone.0180462.g002
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Fig 3. The average total retinal thickness at the baseline study visit across the central 6 mm in all

children (a), the myopic children (b) and the non-myopic children (c). The difference in thickness

between the myopic and non-myopic children is highlighted in (d). Negative values in (d) indicate a thinner

retina in the myopic children and positive values indicate a thicker retina in the myopic children.

https://doi.org/10.1371/journal.pone.0180462.g003

Table 1. Overview of the mean ± SD total retinal thickness at the study baseline visit in each of the eight meridians and three retinal zones

assessed, for all subjects enrolled in the study.

Mean ± SD Thickness (μm)

Foveal Zone Parafoveal Zone Perifoveal Zone All Zones

Temporal All Subjects 260.4 ± 19.1 337.4 ± 12.8 296.5 ± 13.0 298.1 ± 11.9

Myopes 260.4 ± 18.7 335.0 ± 13.4 294.4 ± 14.5 296.6 ± 12.6

Non-Myopes 260.3 ± 19.9 339.1 ± 12.3 298.0 ± 11.7 299.1 ± 11.5

Superior-Temporal All Subjects 267.2 ± 17.1 348.8 ± 12.0 301.3 ± 12.7 305.8 ± 11.3

Myopes 266.6 ± 17.6 345.2 ± 12.9 298.5 ± 13.8 303.4 ± 11.7

Non-Myopes 267.6 ± 16.9 351.2 ± 10.9 303.1 ± 11.7 307.3 ± 10.8

Superior All Subjects 270.1 ± 16.1 358.5 ± 12.7 318.5 ± 13.2 315.7 ± 11.1

Myopes 270.2 ± 16.9 355.7 ± 13.0 316.4 ± 13.5 314.1 ± 11.3

Non-Myopes 270.1 ± 15.7 360.5 ± 12.2 319.9 ± 12.9 316.8 ± 11.0

Superior-Nasal All Subjects 270.3 ± 16.8 357.3 ± 12.7 332.5 ± 14.1 320.0 ± 11.8

Myopes 270.9 ± 17.7 354.0 ± 12.1 329.9 ± 14.2 318.2 ± 11.6

Non-Myopes 270.0 ± 16.3 359.5 ± 12.7 334.3 ± 13.9 321.3 ± 11.9

Nasal All Subjects 268.9 ± 17.4 355.0 ± 13.6 332.6 ± 15.7 318.8 ± 13.0

Myopes 268.4 ± 18.3 351.0 ± 12.4 330.7 ± 15.3 316.7 ± 12.1

Non-Myopes 269.2 ± 16.9 357.7 ± 13.9 333.9 ± 16.0 320.2 ± 13.5

Inferior-Nasal All Subjects 272.4 ± 17.5 355.2 ± 13.0 324.7 ± 14.6 317.5 ± 12.1

Myopes 271.9 ± 18.4 351.3 ± 13.1 322.0 ± 15.3 315.1 ± 12.1

Non-Myopes 272.8 ± 16.9 357.8 ± 12.4 326.6 ± 13.9 319.1 ± 11.9

Inferior All Subjects 270.1 ± 17.3 352.6 ± 13.6 302.0 ± 13.8 308.2 ± 12.0

Myopes 269.6 ± 18.9 348.7 ± 14.3 298.4 ± 15.2 305.6 ± 12.5

Non-Myopes 270.5 ± 16.4 355.3 ± 12.4 304.4 ± 12.3 310.1 ± 11.4

Inferior-Temporal All Subjects 265.1 ± 18.1 348.5 ± 13.0 297.5 ± 13.1 303.7 ± 11.8

Myopes 264.4 ± 19.3 344.5 ± 13.6 294.1 ± 14.4 301.0 ± 12.1

Non-Myopes 265.6 ± 17.3 351.2 ± 11.9 299.6 ± 11.4 305.5 ± 11.3

All Meridians All Subjects 268.0 ± 17.7 351.6 ± 14.4 313.2 ± 20.1 311.0 ± 14.1

Myopes 267.7 ± 18.6 348.1 ± 14.4 310.6 ± 20.7 308.8 ± 14.2

Non-Myopes 268.2 ± 17.2 354.0 ± 13.9 315.0 ± 19.4 312.4 ± 13.9

https://doi.org/10.1371/journal.pone.0180462.t001
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in the foveal zone (mean baseline thickness for all subjects was 268.0 ± 17.7 μm), and increased

to a maximum in thickness in the parafoveal zone (mean 351.6 ± 14.4 μm), before reducing

again in the perifoveal zone (313.2 ± 20.1 μm). In terms of meridians, the retina was found to

be thickest in nasal meridians (318.8 ± 13.0 μm) compared to temporal (298.1 ± 11.9 μm), and

thicker in superior (315.7 ± 11.1 μm) compared to inferior meridians (308.2 ± 12.0 μm). LMM

analysis revealed the topographical variations in total retinal thickness were statistically signifi-

cant, with variations in thickness observed with retinal zone (p< 0.001) and meridian

(p< 0.001) (S1 Table reports the parameter estimates from the LMM analysis for the effects of

retinal zone and meridian). Although there was no statistically significant difference in the

overall mean retinal thickness of the myopic (mean thickness across all zones and meridians

308.8 ± 14.2 μm) and non-myopic children (mean thickness 312.4 ± 13.9 μm), there was a sig-

nificant retinal zone by refractive group interaction (p < 0.001). Although on average myopic

children exhibited a thinner retina than the non-myopic children at most locations, the largest

differences in retinal thickness associated with refractive error were observed in the parafoveal

(mean estimate of difference -5.9 μm [95%CI: -10.54 to -1.20 μm]) and perifoveal zones (mean

estimate of difference -3.4 μm [95%CI: -8.13 to +1.31 μm]), compared to the foveal zone

(mean estimate of difference -0.8 μm [95%CI: -5.52 to +3.92 μm]). However, it was only in the

parafoveal zone that the differences associated with refractive error reached statistical signifi-

cance (p< 0.02). Analyses including baseline axial length as a factor rather than refractive

group also showed a significant axial length by retinal zone interaction (p< 0.001, parameter

estimate for parafoveal zone -1.15 μm/mm [95% CI: -2.16 to -0.14 μm/mm]). On average,

girls exhibited a slightly thinner total retina than boys (mean estimate of difference -4.6 μm

[95%CI: -9.21 to -0.06 μm], p = 0.05). There were no significant effects of baseline age upon

total retinal thickness (p> 0.05).

Outer retinal layer thickness. Statistically significant topographical variations in the

thickness of each of the considered outer retinal layer metrics were also found (significant vari-

ations with both retinal zone and meridian, all p< 0.001) (Fig 4, Table 2). S2 Table reports the

parameter estimates from the LMM analysis for the effects of retinal zone and meridian for the

outer retinal layers. All of the outer retinal layers (RPE to ISe, IS and ONL+OPL thickness)

exhibited their maximum thickness in the central foveal zone, and then reduced to a minimum

in thickness in the perifoveal zone. As illustrated in Fig 4, meridional variations, although sta-

tistically significant for each of the outer retinal metrics were of small magnitude, indicative of

a high degree of radial symmetry in the thickness variations. However, a consistent finding

was that the inferior meridian was the thinnest for each of the considered outer retinal thick-

ness metrics. There were no significant effects of baseline age on any of the outer retinal layer

thickness metrics (all p> 0.05). IS thickness was the only outer retinal layer to exhibit a small

magnitude difference in thickness associated with gender (estimated mean difference in thick-

ness of -0.6 μm [95% CI: -1.0 μm to -0.1 μm] thinner in males) that reached statistical signifi-

cance (p< 0.05).

A number of small magnitude, but statistically significant differences in the thickness of

each of the outer retinal layer metrics were also found to be associated with refractive group

(Fig 4d). The RPE to ISe thickness exhibited significant refractive group by zone (p< 0.001)

and refractive group by meridian (p< 0.01) interactions (but no overall differences in thick-

ness associated with refractive group, p = 0.74). The myopic children exhibited a more rapid

thinning in RPE to ISe thickness from the fovea to the perifovea (estimated mean change

-12.3 μm [95% CI: -12.5 to -12.0 μm]) compared to the non-myopes (estimated mean change

-11.2 μm [95% CI: -11.4 to -11.0 μm]). On average the IS thickness was marginally thinner in

the myopes compared to the non-myopes (estimated mean difference -0.5 μm [95% CI: -0.92

to -0.02 μm]) and this difference reached statistical significance (p = 0.02), however there were
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no significant refractive group by zone or refractive group by meridian interactions. For the

ONL+OPL thickness in the parafoveal and perifoveal zone, the myopic children exhibited sig-

nificantly less thickness than the non-myopic children (estimated mean difference of -2.5 μm

[95% CI: -4.9 to -0.1 μm] in the parafoveal zone and -2.8 μm [95% CI: -5.2 to -0.3 μm] in the

perifoveal zone), with the largest magnitude differences found in the superior meridian of the

perifoveal zone (estimated mean difference -3.6 μm [95% CI: -6.1 to -1.2 μm]) (refractive

group by zone, refractive group by meridian interaction both p< 0.001).

Inner retinal layer thickness. Topographical thickness variations were also observed

in each of the inner retinal layers (Fig 5, Table 2). The parameter estimates from the LMM

analysis for the effects of retinal zone and meridian are provided in S3 Table. Both the INL and

IPL+GCL were found to be thicker in the parafovea (mean thickness of 40.2 ± 3.6 μm and

95.5 ± 6.7 μm for the INL and IPL+GCL respectively) compared to the perifovea (mean thick-

ness of 33.0 ± 2.9 μm and 70.0 ± 7.2 μm for the INL and IPL+GCL), whereas the NFL exhibited

its greatest thickness in the perifoveal region (mean thickness of 29.1 ± 4.8 μm and

Fig 4. The average outer retinal thickness measures at the baseline study visit across the central 6

mm in all children (a), the myopic children (b) and the non-myopic children (c) for the RPE to ISe (top)

IS (middle) and ONL+OPL (bottom) thickness metrics. The difference in thickness between the myopic

and non-myopic children is highlighted in (d) for each metric. Negative values in (d) indicate a thinner retina in

the myopic children and positive values indicate a thicker retina in the myopic children.

https://doi.org/10.1371/journal.pone.0180462.g004
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Table 2. Overview of the mean ± SD retinal layer thickness at the study baseline visit in each of the eight meridians and three eccentricity zones

assessed for all subjects enrolled in the study.

Mean ± SD Thickness (μm)

Foveal Zone Parafoveal ZoneZone Perifoveal Zone All Zones

Zones

Temporal RPE to ISe 77.1 ± 2.9 68.9 ± 2.7 64.7 ± 2.7 70.3 ± 2.4

IS 30.5 ± 1.6 25.9 ± 1.6 21.2 ± 1.4 25.9 ± 1.3

ONL+OPL 104.5 ± 9.2 97.9 ± 7.2 80.3 ± 6.8 94.2 ± 6.4

INL 37.4 ± 3.7 34.1 ± 2.9 35.8 ± 2.8

IPL+GCL 86.2 ± 6.1 74.1 ± 6.1 80.2 ± 5.1

NFL 21.0 ± 2.4 22.0 ± 2.7 21.5 ± 2.2

Superior-Temporal RPE to ISe 76.0 ± 2.4 67.6 ± 2.4 65.6 ± 2.4 69.8 ± 2.1

IS 29.4 ± 1.6 23.6 ± 1.4 20.7 ± 1.2 24.6 ± 1.2

ONL+OPL 104.5 ± 7.7 93.1 ± 6.8 80.4 ± 6.3 92.7 ± 5.9

INL 39.6 ± 3.3 32.5 ± 2.5 36.0 ± 2.6

IPL+GCL 96.5 ± 5.4 68.9 ± 5.3 82.7 ± 4.9

NFL 28.3 ± 2.3 33.1 ± 3.8 30.7 ± 2.7

Superior RPE to ISe 75.9 ± 2.7 67.9 ± 2.6 65.6 ± 2.2 69.8 ± 2.2

IS 30.0 ± 1.6 24.3 ± 1.5 21.4 ± 1.2 25.2 ± 1.3

ONL+OPL 104.0 ± 7.9 94.5 ± 7.1 82.1 ± 6.7 93.5 ± 6.0

INL 41.0 ± 3.2 32.4 ± 2.5 36.7 ± 2.5

IPL+GCL 97.4 ± 5.7 68.1 ± 4.9 82.7 ± 4.7

NFL 33.5 ± 2.7 49.0 ± 6.1 41.2 ± 3.9

Superior-Nasal RPE to ISe 76.9 ± 2. 68.8 ± 2.5 65.9 ± 2.3 70.5 ± 2.3

IS 30.0 ± 1.7 24.1 ± 1.6 20.8 ± 1.1 25.0 ± 1.3

ONL+OPL 104.8 ± 8.3 94.9 ± 6.8 81.5 ± 6.8 93.7 ± 6.0

INL 40.6 ± 3.3 33.0 ± 2.6 36.8 ± 2.5

IPL+GCL 97.3 ± 5.3 69.1 ± 5.8 83.2 ± 5.0

NFL 31.5 ± 2.8 62.3 ± 6.0 46.9 ± 3.6

Nasal RPE to ISe 77.6 ± 2.9 70.0 ± 2.4 65.9 ± 2.4 71.2 ± 2.2

IS 30.5 ± 1.7 25.7 ± 1.8 21.1 ± 1.3 25.7 ± 1.3

ONL+OPL 106.4 ± 8.5 98.6 ± 7.3 80.6 ± 7.2 95.2 ± 6.3

INL 39.4 ± 3.1 35.3 ± 2.9 37.3 ± 2.3

IPL+GCL 95.9 ± 6.5 79.3 ± 6.7 87.6 ± 5.5

NFL 25.4 ± 2.4 50.4 ± 5.0 37.9 ± 2.9

Inferior-Nasal RPE to ISe 76.9 ± 2.6 68.5 ± 2.3 64.6 ± 2.2 70.0 ± 2.1

IS 30.1 ± 1.7 24.1 ± 1.5 20.3 ± 1.1 24.8 ± 1.3

ONL+OPL 105.3 ± 7.9 93.3 ± 6.8 75.4 ± 6.4 91.3 ± 5.9

INL 40.3 ± 2.8 32.2 ± 2.7 36.2 ± 2.2

IPL+GCL 97.8 ± 5.4 67.2 ± 5.5 82.5 ± 4.6

NFL 31.3 ± 2.7 64.9 ± 9.7 48.1 ± 5.4

Inferior RPE to ISe 75.6 ± 2.6 66.9 ± 2.5 63.4 ± 2.3 68.6 ± 2.2

IS 30.1 ± 1.6 23.9 ± 1.5 20.5 ± 1.2 24.8 ± 1.2

ONL+OPL 103.9 ± 8.1 89.4 ± 7.0 72.2 ± 6.1 88.5 ± 5.9

INL 42.8 ± 3.7 31.7 ± 2.8 37.2 ± 2.7

IPL+GCL 96.3 ± 5.3 63.5 ± 5.0 79.9 ± 4.6

NFL 33.3 ± 3.1 50.8 ± 6.4 42.1 ± 3.9

(Continued )
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45.9 ± 15.0 μm in the parafoveal and perifoveal zones respectively) (significant effect of retinal

zone for all layers p< 0.001). Each of these retinal layers also tended to exhibit their lowest

thickness in the temporal meridians, and greatest thickness in nasal meridians, with the NFL

exhibiting peaks in thickness in the superior nasal and inferior nasal meridians (Fig 5). There

were no significant effects of baseline age or gender upon the thickness for any of the inner ret-

inal layers (all p> 0.05). Each of these layers also exhibited small magnitude, but statistically

significant differences in thickness associated with refractive error (a significant refractive

group by retinal zone interaction was observed for all inner retinal layer thickness metrics, all

p< 0.05). For the INL, the myopic children exhibited thinner retinal layers in the parafoveal

zone (estimated mean difference of -1.3 μm, for the INL [95% CI: -2.2 to -0.4 μm]), whereas

the NFL was found to be thinner in the myopic children in the perifoveal zone (estimated

mean difference of -2.0 μm [95% CI: -2.9 to -1.0 μm], and a maximum difference of -3.0 μm

[95% CI: -4.0 to -1.9 μm] in the inferior nasal perifoveal meridian). The IPL+GCL thickness

was significantly greater in the myopic children in the perifoveal zone only (estimated mean

difference 2.1 μm [95% CI: +0.3 to +3.9 μm]).

Longitudinal changes in retinal thickness

Table 3 presents the mean changes (from baseline) in each of the retinal thickness metrics after

18 months. The 5th and 95th percentiles of the observed changes in this population of healthy

children are also presented to provide an overview of the range of thickness change observed

over the study period. Over the 18 months of the study, only small magnitude changes in total

retinal thickness were observed which were not statistically significant (mean change over 18

months across all considered zones was 0.8 ± 2.2 μm, p = 0.1). There was also no significant

time by zone, time by meridian or time by refractive group (or axial length) interactions

observed (all p > 0.05). The average changes observed in total retinal thickness at each of the

study visits (compared to the baseline visit) are illustrated in Fig 6a.

The magnitude of longitudinal change observed in each of the retinal layers was also small,

however these small changes reached statistical significance for a number of the layers (Fig 6).

Of the outer retinal layers (Fig 6b–6d), only RPE to ISe thickness was found to increase by a

small but statistically significant amount over the 18 months of the study (mean change over

Table 2. (Continued)

Mean ± SD Thickness (μm)

Foveal Zone Parafoveal ZoneZone Perifoveal Zone All Zones

Zones

Inferior-Temporal RPE to ISe 76.4 ± 2.6 67.6 ± 2.4 64.2 ± 2.4 69.4 ± 2.2

IS 29.8 ± 1.6 23.8 ± 1.5 20.2 ± 1.1 24.6 ± 1.3

ONL+OPL 102.2 ± 8.2 90.9 ± 6.5 75.6 ± 6.0 89.6 ± 5.8

INL 40.3 ± 3.3 32.8 ± 2.5 36.5 ± 2.5

IPL+GCL 97.2 ± 5.2 69.3 ± 5.5 83.2 ± 4.7

NFL 28.7 ± 2.4 35.4 ± 3.7 32.0 ± 2.6

All Meridians RPE to ISe 76.6 ± 2.7 68.3 ± 2.3 65.0 ± 2.5 70.0 ± 2.3

IS 30.0 ± 1.5 24.4 ± 1.8 20.8 ± 1.3 25.1 ± 1.4

ONL+OPL 104.5 ± 8.3 94.1 ± 7.5 78.6 ± 7.3 92.4 ± 6.4

INL 40.2 ± 3.6 33.0 ± 2.9 36.6 ± 2.6

IPL+GCL 95.5 ± 6.7 70.0 ± 7.2 82.8 ± 5.4

NFL 29.1 ± 4.8 45.9 ± 15.0 37.5 ± 9.2

https://doi.org/10.1371/journal.pone.0180462.t002
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18 months was 0.8 ± 1.2 μm, p< 0.001), with slightly larger magnitude changes observed in

the inferior (mean change of 1.4 ± 1.4 μm) and superior (mean change of 1.2 ± 1.6 μm) meridi-

ans (meridian by time interaction, p < 0.001). IS thickness and ONL+OPL thickness did not

show any statistically significant changes over time (both p> 0.05). There were no significant

interactions between thickness changes over time and refractive group or gender for any of the

outer retinal layer thickness metrics (all p> 0.05).

The inner retinal layers were also seen to undergo small magnitude, statistically significant

changes in thickness over the course of the study (visit time p< 0.001 for INL, IPL+GCL and

NFL thickness) (Fig 6e–6g). INL thickness increased by a small amount over the 18 months

(mean increase of 0.6 ± 1.2 μm), and these changes were most prominent in the parafoveal

zone (mean increase of 0.9 ± 1.6 μm, zone by visit time interaction p = 0.002). Small increases

in thickness were also observed in NFL thickness (mean increase of 1.2 ± 1.8 μm). Conversely,

IPL+GCL thickness exhibited a small but statistically significant decrease over the course of

Fig 5. The average inner retinal thickness measures at the baseline study visit across the central 6

mm in all children (a), the myopic children (b) and the non-myopic children (c) for the INL (top) IPL

+GCL (middle) and NFL (bottom) thickness metrics. The difference in thickness between the myopic and

non-myopic children is highlighted in (d) for each thickness metric. Negative values in (d) indicate a thinner

retina in the myopic children and positive values indicate a thicker retina in the myopic children. The central

1 mm foveal zone has been removed in all maps since, the inner retinal layers do not extend to foveal centre.

https://doi.org/10.1371/journal.pone.0180462.g005
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the study (mean change of -1.2 ± 1.4 μm). No interactions between the thickness changes over

time and gender were observed for any metrics (all p> 0.05).

Of all of the considered thickness metrics, only NFL thickness exhibited a significant refrac-

tive group by visit time interaction (p = 0.001), with significantly greater increases in NFL

thickness over time being observed in the non-myopic children (mean change of 1.6 ± 1.9 μm)

compared to the myopic children (mean change of 0.4 ± 1.2 μm). Further analyses of these

data revealed a significant association between the rate of axial eye growth, and the changes in

NFL thickness, with greater axial eye growth being associated with less increase in NFL thick-

ness over time (p< 0.05). Fig 7 illustrates the average changes in the NFL thickness in myopic

and non-myopic children, and the relationship between the rate of axial eye growth and the

NFL changes observed in the study.

We have previously documented significant longitudinal changes and variations associated

with refractive group in the macular choroidal thickness of this population of children [20,28].

Table 3. The mean ± SD changes from baseline over 18 months (and the normative reference range of

these changes), in each of the retinal thickness metrics, across each of the considered macular zones

for the normal children.

Change in thickness from baseline over 18 months

(μm)

Mean ± SD Percentile

5th 95th

Total Retina All Zones +0.8 ± 2.2 -2.5 +4.4

Foveal Zone +0.7 ± 2.6 -3.4 +4.8

Parafoveal Zone +0.4 ± 2.7 -3.7 +4.2

Perifoveal Zone +1.4 ± 2.5 -2.5 +5.5

RPE to ISe All Zones +0.8 ± 1.2 -1.0 +2.8

Foveal Zone +0.9 ± 1.5 -1.6 +3.6

Parafoveal Zone +0.7 ± 1.4 -1.4 +3.0

Perifoveal Zone +0.9 ± 1.1 -1.1 +2.9

IS All Zones 0.0 ± 0.6 -0.8 +1.1

Foveal Zone -0.1 ± 0.8 -1.3 1.2

Parafoveal Zone +0.1 ± 0.7 -0.9 1.4

Perifoveal Zone 0.0 ± 0.5 -1.0 0.9

ONL+OPL All Zones +0.2 ± 1.2 -2.5 +1.7

Foveal Zone 0.5 ± 1.7 -2.4 +3.5

Parafoveal Zone -1.2 ± 1.6 -4.0 +1.5

Perifoveal Zone 0.0 ± 1.1 -2.1 +1.7

INL All Zones +0.6 ± 1.2 -1.1 +2.6

Foveal Zone

Parafoveal Zone +0.9 ± 1.6 -1.8 +3.5

Perifoveal Zone +0.4 ± 0.9 -1.0 +2.0

IPL+GCL All Zones -1.2 ± 1.4 -3.5 +1.4

Foveal Zone

Parafoveal Zone -0.8 ± 1.7 -4.0 +1.9

Perifoveal Zone -1.5 ± 1.6 -3.8 +1.4

NFL All Zones +1.2 ± 1.8 -1.0 +4.4

Foveal Zone

Parafoveal Zone +0.7 ± 1.8 -2.1 +4.5

Perifoveal Zone +1.6 ± 2.0 -1.0 +4.7

https://doi.org/10.1371/journal.pone.0180462.t003
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Fig 6. Notched box-plots illustrating the changes in total retinal thickness (a), RPE to ISe thickness (b),

IS thickness (c), ONL+OPL thickness (d), INL thickness (e), IPL+GCL thickness (f), and NFL thickness

(g) (averaged across all zones and meridians) from baseline at each visit over the 18 months study

period. Solid horizontal line indicates the median, and box extends between the 25th and 75th percentile,

whiskers extend to 1.5 times the interquartile range. The width of the notches in each box represents the 95%

confidence interval of the median.

https://doi.org/10.1371/journal.pone.0180462.g006
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Correlation analysis revealed that there was no significant association between the longitudinal

changes in choroidal thickness and the changes observed in any of the macular retinal layer

metrics (all p> 0.05). Baseline choroidal thickness was also not significantly correlated with

the considered retinal layer metrics (p>0.05), with the exception of INL thickness, which

showed a weak but statistically significant positive association with choroidal thickness

(r = 0.279, p< 0.01).

Fig 7. Notched box-plots illustrating the average change in NFL thickness (from baseline) at each

visit in the study for the myopic (blue) and non-myopic (red) children in the study (solid horizontal

line indicates the median change, and box extends between the 25th and 75th percentile, width of

notches in each box represent the 95% confidence interval of the median, whiskers extend to 1.5

times the interquartile range of the data at each visit) (a) and the relationship between the rate of

change in axial length and the rate of changes in NFL layer thickness over the course of the study

(dashed line shows the best fit regression line) (b).

https://doi.org/10.1371/journal.pone.0180462.g007
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Discussion

In this paper we have examined macular retinal thickness (and individual retinal layer thick-

ness) using SD-OCT, in a population of 10–15 year old children with healthy eyes, normal

vision and a range of refractive errors, and have explored the topographical thickness varia-

tions and the changes in thickness associated with myopia. Furthermore, we have also moni-

tored the changes in retinal thickness and individual layer thickness longitudinally over an

18-month period of time, where this population of normal children were also documented to

have undergone significant eye growth and changes in choroidal thickness [22,23]. The find-

ings from this study further our understanding of the normal characteristics of macular retinal

layer morphology in childhood, the differences in morphology associated with refractive error

and the normal changes in retinal layer characteristics occurring over time in adolescence.

Although total retinal thickness did not show significant main effects of refractive group,

the topographical thickness distribution of the total retina did show differences associated with

the presence of myopia, with myopic subjects typically exhibiting a thinner retina, primarily in

the parafoveal zone. These findings are indicative of a redistribution of retinal tissue thickness

with myopia. We repeated each of the LMM analyses, using baseline axial length as a factor

instead of refractive error group, and found similar trends of statistically significant associa-

tions between axial length and retinal thickness, indicating that the topographical changes in

thickness associated with myopia are related to the increased axial length of myopic eyes.

Although not a universal finding [12,13], previous studies using SD-OCT have also noted a

thinning of the total retina in the parafoveal and/or the perifoveal region associated with myo-

pia in childhood of similar magnitude to that found in the current study [14,19].

We also found small, but statistically significant differences in the thickness distribution of

most of the outer and inner individual retinal layer metrics, with a thinner parafoveal or peri-

foveal zone found in the myopic children for most of the metrics examined. The outer retinal

layer metrics, typically exhibited a small magnitude thinning in the perifoveal zones (with the

exception of IS thickness which showed a small overall thinning in the myopic subjects),

whereas inner retinal thickness metrics typically showed a small magnitude thinning in the

parafoveal zone or perifoveal zone (with the exception of the IPL+GCL, that was thicker in

myopes in the perifoveal zone). These findings suggest that the changes in total retinal thick-

ness associated with myopia appear to be due to the combined effects of subtle changes in each

of the retinal layers examined, rather than being driven by larger changes in a single layer. One

previous study [19], has also examined the differences in macular retinal layer thickness associ-

ated with myopia in childhood, however they only examined the inner retinal layer thickness

metrics of NFL and IPL+GCL thickness. Our current study, builds upon these previous find-

ings by demonstrating small but statistically significant changes in layer thickness over a num-

ber of additional retinal layers. Jin et al [19] found that Chinese myopic children exhibited a

thinner IPL+GCL thickness, in the perifoveal zone, and did not find a significant difference in

NFL thickness associated with myopia in any considered zones. These differences from our

current findings could potentially reflect differences associated with ethnicity, or may relate to

the analytical methods used by Jin et al [19] who did not account for the effects of axial length

upon transverse scan magnification, which could potentially mask some of the subtle regional

differences in layer thickness with myopia observed in our current study.

It is noteworthy that although statistically significant, the average magnitude of thickness

difference associated with myopia in our current study was generally small (the largest average

magnitude of thinning of 6 μm was found for the total retina in the parafoveal zone) and

unlikely to be of clinical significance. This suggests that in this population of young myopic

subjects with mild to moderate levels of myopia (and significant differences in axial ocular
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biometrics to the non-myopic participants [22,23]), the changes in retinal morphology associ-

ated with refractive error are relatively subtle. In contrast to these small differences in retinal

thickness associated with myopia, we have previously reported in this same population of chil-

dren a substantial thinning of the macular choroid associated with myopia [22,30] (the subfo-

veal choroid was approximately 56 μm thinner in the myopic children). This suggests that

choroidal changes associated with myopia appear to occur earlier and/or more rapidly in the

process of childhood myopia development, compared to the more subtle retinal changes

observed here.

Studies of adults have also documented reductions in total retinal thickness [32–34] and

retinal layer thickness [33,34] in the parafoveal and perifoveal zones associated with myopia,

typically of slightly higher magnitude than observed in our current study. The pattern of

change in retinal layer thickness with myopia documented in adults appears to differ from

what we have observed in children, with adult studies documenting evidence of thinning in

inner (e.g. INL thickness) and outer retinal layers (e.g. ONL thickness) in the parafoveal and

perifoveal zones, along with a small magnitude increase in other outer retinal layers (e.g. IS

thickness) in this region associated with myopia. Although these studies have utilised different

OCT instruments, scanning protocols and analytical approaches to our current study, these

differences in layer thickness variations with myopia suggests that some redistribution and

reorganisation of the retinal tissue layers continue during the progression of refractive error in

later adolescence and early adulthood.

The total retinal thickness and each of the retinal layer thickness metrics examined showed

significant topographical variations in thickness across the macular region. These thickness

variations appear to be consistent with the previously documented topographical distribution

and regional specialisation of retinal cells, and the pathways of the nerve fibres across the mac-

ula region [35–37]. The average values and topographical variations in total retinal thickness

found in our current study are comparable with previous cross-sectional studies of pediatric

populations using the same SD-OCT device [18]. Similarly the topographical distribution and

average thickness values of the individual retinal layer thickness values in our current study

also compare closely with previous studies assessing children of similar ages [18,19,21]. Studies

of macular retinal layer thickness in healthy adults also report a similar thickness magnitude

and pattern of topographical variation to our current study for the majority of layers exam-

ined, suggesting that the retinal morphology of the children in our current study was

approaching adult dimensions [34,38,39].

We have also examined in detail, the longitudinal changes occurring in total retinal thick-

ness, and individual layer thickness occurring in this population of normal children over an 18

month period. To date, only a limited number of studies have examined the longitudinal in
vivo changes in retinal thickness occurring in childhood, and the majority of subjects exam-

ined in this previous work have been infants and very young children [15,20]. Our current

study therefore provides new information regarding the normal thickness changes occurring

over time in the retina and retinal layers of healthy eyes in adolescence. For total retinal thick-

ness, no statistically significant changes were observed in our population of children over the

study period, with a mean change of less than 1 μm observed over 18 months. This is in con-

trast to our previously documented significant increases in eye growth (a mean increase in

axial length of 105 μm over 18 months for all 101 subjects [23]), and choroidal thickness (a

mean increase of subfoveal choroidal thickness of 13 μm over 18 months was found for all sub-

jects considered together) over time in this population of children [22]. Previous studies of

total retinal thickness in childhood have noted substantial changes in total retinal thickness

occurring throughout infancy and early childhood [20], with evidence that thickness changes

appear to stabilise to adult levels by approximately the age of 12. This is consistent with our

Longitudinal retinal changes in childhood

PLOS ONE | https://doi.org/10.1371/journal.pone.0180462 June 29, 2017 17 / 22

https://doi.org/10.1371/journal.pone.0180462


current longitudinal findings of no significant change in total retinal thickness over 18 months

in adolescence.

Longitudinal analysis of the individual retinal layer thickness revealed a number of small

magnitude, but statistically significant changes in retinal layer thickness over the 18 months of

the study. Small magnitude increases in thickness were observed for the RPE to ISe, INL and

NFL thickness metrics (up to a maximum mean increase of 1.6 μm for the NFL thickness in

the perifoveal region over 18 months), and a small magnitude decrease in thickness was

observed for the IPL+GCL thickness metrics (the largest mean decrease of 1.5 μm over 18

months was found in the perifoveal region). Although these statistically significant longitudi-

nal changes in macular retinal layer thickness suggest the presence of some subtle re-organisa-

tion of the retinal tissue layers occurring in adolescence, the very small magnitude of these

changes suggests a high degree of stability of the macular retinal layer thickness in the age of

children examined in the study.

The retinal thickness values obtained for this population of healthy children over time pro-

vides novel normative data that can inform clinical practice and assist in the interpretation of

clinical changes observed in pediatric macula OCT measures. The data presented in Table 3

provide an estimate of the normal range of changes expected over an 18 month period in mac-

ular retinal thickness metrics in healthy adolescents. These data suggest that (for the mean

thickness change across each of the considered retinal zones) 95% of this population of chil-

dren exhibited changes in total retinal thickness over 18 months between -4 μm and + 6 μm.

Based upon these data, changes in total retinal thickness greater than this magnitude are

unlikely to be found in the majority of normal children and should therefore raise clinical sus-

picion for the potential presence of retinal abnormalities. Examining these data for all of the

considered individual retinal layer thickness metrics, shows the 5th percentile of change in this

population ranging from -1 to -4 μm and the 95th percentile of change ranging from to +1 to

+5 μm. Considering the largest range of changes across all of the considered layer metrics, a

thinning of greater than 4 μm and a thickening of greater than 5 μm would be considered out-

side the normal range of change in retinal layers in this population of normal adolescent chil-

dren. The small magnitude of these normative ranges emphasises the high measurement

precision possible with SD-OCT, and the stability of the macular retinal layers in the popula-

tion of children tested.

The longitudinal changes occurring in total retinal thickness and the majority of retinal

layer thickness metrics examined were not significantly different between myopic and non-

myopic children, despite the fact that the myopic children (mean increase in axial length of

184 μm over 18 months) exhibited significantly greater axial eye growth over time compared

to the non-myopes (mean increase in axial length of 59 μm). This finding, coupled with the

small magnitude of retinal change observed across all study visits, indicates that the magnitude

of axial elongation observed in this population of children has limited effects upon the macular

retinal morphology, and further suggests that retinal changes associated with myopia and axial

elongation are relatively slow to manifest. Only one of the considered retinal layers (the NFL)

showed a significant difference in longitudinal change between myopic and non-myopic chil-

dren. While on average this layer showed a small but statistically significant increase in thick-

ness over time, the myopic children showed significantly less increase in thickness compared

to the non-myopic subjects. The changes in this layer were also related to the rate of axial eye

growth, with greater axial elongation being associated with less NFL change over time.

Although the small magnitude of these differences in NFL change means the clinical signifi-

cance, and implications of this finding is unclear, it leaves open the possibility that longer term

changes in NFL thickness associated with increased axial elongation could potentially play a
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role in the apparent increased susceptibility of adult myopic subjects to glaucomatous optic

neuropathy [40].

Although our current study does provide the first detailed longitudinal analysis of macular

retinal layer thickness in adolescence, a limitation of the study is the relatively short follow-up

period of 18 months. Future studies with longer follow-up periods will expand our knowledge

of the retinal changes expected in normal subjects throughout childhood and adolescence.

The findings from our current study are also limited to the macular region of the retina, and

while the macula is critically important for central vision, it does represent only a small pro-

portion of the total retinal area. Future research utilising wide-field scanning methods is

required to improve our knowledge of the normative morphology, and expected changes in

morphology over time in childhood in more peripheral retinal regions. A further limitation of

our data is that the retinal thickness metrics were derived from a 6-line radial scanning proto-

col, which was chosen to allow frame averaging to optimise scan quality while limiting the

total scan time in this population of children. Although previous work examining macular

layer thickness in children has also employed either a radial scanning protocol [19,21] or a sin-

gle line scan [18] for analysis, it should be noted that more precise measures of topographical

thickness distribution would be attained from a more densely sampled volumetric scanning

protocol.

In summary, this longitudinal study has examined macular retinal thickness (and individ-

ual layer thickness) in a population of myopic and non-myopic children, and demonstrates

subtle but statistically significant differences in the topographical thickness distribution associ-

ated with refractive error, characterised by a parafoveal retinal thinning (and parafoveal or

perifoveal thinning in most outer and inner retinal layers) associated with myopia. Longitudi-

nal retinal changes observed over the 18 month study were generally of small magnitude,

indicative of a high degree of stability in total retinal thickness and retinal layer thickness in

healthy adolescent eyes.
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