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ABSTRACT 

Prostate cancer (PCa) poses a significant global health challenge, particularly due to its 

progression into aggressive forms like neuroendocrine prostate cancer (NEPC). This study 

developed and validated a stemness-associated gene signature using advanced machine 

learning techniques, including Random Forest and Lasso regression, applied to large-scale 

transcriptomic datasets. The resulting 7-gene signature (KMT5C, MEN1, TYMS, IRF5, DNMT3B, 

CDC25B and DPP4) was validated across independent cohorts and patient-derived xenograft 

(PDX) models. The signature demonstrated strong prognostic value for progression-free, 

disease-free, relapse-free, metastasis-free, and overall survival. Importantly, the signature not 

only identified specific NEPC subtypes, such as large-cell neuroendocrine carcinoma, which is 

associated with very poor outcomes, but also predicted a poor prognosis for PCa cases that 

exhibit this molecular signature, even when they were not histopathologically classified as NEPC. 

This dual prognostic and classifier capability makes the 7-gene signature a robust tool for 
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personalized medicine, providing a valuable resource for predicting disease progression and 

guiding treatment strategies in PCa management. 
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INTRODUCTION 

Prostate cancer (PCa) remains one of the most significant health challenges for men globally, 

with a high incidence and mortality, particularly in advanced stages of the disease [1]. Despite 

advancements in early detection and treatment, accurately predicting which patients will 

experience aggressive disease progression remains a major challenge. A critical gap in the 

management of PCa is the lack of reliable prognostic biomarkers capable of identifying patients 

at the highest risk of developing more aggressive forms of PCa, such as neuroendocrine prostate 

cancer (NEPC), a subtype associated with poor prognosis [2,3]. Addressing this gap is essential 

for improving patient outcomes and guiding effective therapeutic strategies. 

To overcome this challenge, we propose the identification of stem-like characteristics within 

prostate tumors. Cancer stem cells (CSCs) are a subpopulation of cells within tumors that 

possess the ability to self-renew, differentiate, and drive tumor growth, metastasis, and resistance 

to conventional therapies [2,4]. These cells have been implicated in the recurrence and 

progression of PCa, making them critical targets for both prognostic and therapeutic interventions 

[5]. Moreover, CSCs are believed to contribute to the heterogeneity of PCa, which complicates 

treatment and highlights the need for more refined biomarkers [6]. However, despite the 

recognized importance of CSCs, there is still a need for concise and clinically applicable 

biomarkers, such as transcriptomic signatures, that can reliably point out the presence of 

stemness traits in prostate tumors and their associated risk of progression. 

In addition to their role in driving tumor growth, CSCs are more abundant after the neuroendocrine 

differentiation of prostate cancer, which results in NEPC [7]. This PCa subtype can arise either 

de novo or through the transdifferentiation of adenocarcinoma under selective pressures such as 

androgen deprivation therapy (ADT) [8,9]. This transdifferentiation process, driven by cellular 

plasticity and epigenetic changes, results in a highly aggressive cancer subtype that is associated 

with poor outcomes and limited treatment options [10,11]. Identifying biomarkers that can detect 

early shifts toward a neuroendocrine phenotype is crucial for managing treatment-resistant cases. 

However, existing NEPC-related gene signatures are often complex, including a large number of 

genes, limiting their practical use in clinical settings [12,13]. 

In this study, we aimed to address these challenges by developing a concise and robust 

stemness-associated gene signature using machine learning techniques. By analyzing large-

scale transcriptomics data from multiple cohorts, we identified a 7-gene signature that predicts 

multiple PCa disease progression events. This signature was rigorously validated across 

independent datasets and further substantiated using patient-derived xenograft (PDX) models 

and a NEPC dataset, where we observed that our signature is able to classify samples as NEPC 

and, particularly, the large cell neuroendocrine carcinoma subtype. Our comprehensive approach 

provides a novel and clinically applicable tool for patient stratification and treatment 

personalization, offering new insights into the role of stem-like traits in PCa and their association 

with neuroendocrine differentiation.  
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MATERIALS AND METHODS 

Stemness-associated genes 

We gathered 144 stemness-associated genes from PCa literature [6,14–18]. We conducted 

transcriptomics analyses using publicly available PCa datasets (see below) to study differential 

gene expression across multiple comparisons, including normal/benign tissues, primary PCa 

tumors, CRPC tumors and metastatic samples. We performed univariable survival analysis to 

study the association between gene expression and different endpoints (progression, disease-

free time biochemical-relapse, metastasis, and death). We also performed multivariable survival 

analyses that included clinico-pathological features as covariables. 

Transcriptomics analyses 

Dataset selection criteria 

To study differential gene expression across different PCa datasets, we searched Gene 

Expression Omnibus (GEO) and the Genomic Data Commons Data Portal to identify eligible 

datasets that met the following criteria: (1) PCa tissue samples with available transcriptomic and 

clinico-pathological data; (2) The datasets must have ≥2 different tissue sample types (Table 1). 

Table 1: PCa transcriptomics datasets for differential expression analysis. 

Dataset Samples 

GSE35988 [19]  Localized PCa (n=59), matched benign prostate tissues (n=28), and 

metastatic CRPC (n=35). 

GSE3933 [20,21] Localized PCa (n=62) and normal prostate (n=41). 

GSE46602 [22] PCa (n=36) and benign tissue (n=14). 

GSE6956 [23] Primary PCa (n=69) and normal adjacent prostate (n=18) 

GSE70768 [24] Primary PCa (n=112), benign tissue (n=74) and CRPC (n=13) 

TCGA-PRAD [25] Primary PCa (n=497) and normal adjacent tissue samples (n=51) 

GSE21034 [26] Primary PCa (n=131) and metastatic tissue samples (n=19). 

Differential Gene Expression Analyses 

We used the limma package (Linear Models for Microarray Analysis) [27] to study differential 

gene expression from both microarrays and RNA-sequencing (RNA-seq). In the case of non-

normalized data, quantile normalization was applied [27]. For RNA-seq data, the voom function 

in the limma package was used for processing [28]. We conducted pair-wise differential 

expression analyses within each dataset. For each available probe or gene, the fold changes (FC) 
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between conditions were calculated, and expressed as log2FC. To correct for multiple testing, we 

used the Benjamini-Hochberg method to control the type I error, and reported adjusted p-values. 

Survival analyses 

Dataset selection criteria 

To perform survival analysis, we searched Gene Expression Omnibus (GEO), cBioPortal and the 

Genomic Data Commons Data Portal to identify eligible datasets that met the following criteria: 

(1) PCa cases with available gene expression data and (2) available clinico-pathological features 

with ≥5 years of follow-up. Gene expression and clinical data were downloaded and analyzed for 

the resulting selected datasets. Samples with incomplete gene expression data or missing 

essential clinico-pathological metadata were not included. Datasets were randomly distributed in 

training (5 datasets, 7 survival analyses) and validation cohorts (4 datasets) (Table 2). 

Table 2: PCa transcriptomics datasets for survival analyses. 

Dataset Samples Survival end-point Covariates Cohort 

TCGA-PRAD 

[25]  
497 PCa 

(RNAseq) 

Disease Progression 

Disease-Free Time 

(n=337) 

Gleason Group, PSA 

levels, Clinical T Stage, 

Targeted Molecular/ 

Radiation Therapy 

Training 

GSE70768 [24] 111 PCa 

(Microarray) 

Biochemical 

Relapse 

Age, Gleason Group, 

PSA levels, T Stage 

Training 

GSE70769 [24] 92 PCa 

(Microarray) 

Biochemical 

Relapse 

Gleason Group, PSA 

levels, T Stage 

Training 

GSE116918 [29]  248 PCa 

(Microarray) 

Metastasis 

Development 

Relapse 

Age, Gleason Score, 

PSA levels, T Stage 

Training 

GSE16560 [30] 281 PCa 

(Microarray) 

Death Age, Gleason Group Training 

GSE54460 [31] 106 PCa 

(RNA-seq) 

Biochemical 

Relapse 

Age, Gleason Score,  

PSA levels, T Stage 

Validation 

GSE94767 [32] 233 PCa 

(Microarray) 

Biochemical 

Relapse 

Gleason Group, PSA 

levels, T Stage 

Validation 

DKFZ [33] 81 PCa 

(RNA-seq) 

Biochemical 

Relapse 

Age, Gleason Score, 

PSA levels, T Stage 

Validation 
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SU2C-PCF [34] 81 metastatic 

CRPC (RNA-

seq) 

Death Age, Gleason Score, 

PSA levels 

Validation 

Survival analyses 

We used the log-rank test to analyze differences in the risk of disease progression-events 

between different groups of patients [35]. To stratify patients according to high- or low-expression, 

we used the Cutoff Finder tool to find the optimal cutoff point for each gene [36]. The Cox 

proportional hazards model was used to estimate the risk of the disease progression-event for 

the different groups [37]. Multivariable analyses included clinico-pathological features as 

covariables. All modeling, calculations, and graphs were performed with the R packages survival 

[38] and survminer [39]. 

Selection of candidate genes for modeling a risk score 

To identify the 15 most important genes for predicting events we used a machine learning 

ensemble based approach (i.e Random Forest Classifier) as implemented in the 

randomForestSRC R package [40]. The mtry and nodesize parameters were optimized through 

a grid search approach to minimize the out-of-bag error. We used the Breiman-Cutler variable 

importance (VIMP) measure to estimate the relative importance of each variable in predicting 

event-free survival within the training datasets. We applied the subsampling method [41] to 

estimate the standard error of the VIMP and to calculate the confidence intervals. Genes were 

ranked according to their variable importance. To facilitate the comparison across datasets, VIMP 

values were converted into fractions, with 1 representing the most important variable and 0 

representing the least important variable within a given dataset. 

Gene Signature and Risk Score Calculation 

We modelled a risk score based on the gene expression of the 15 most important genes identified 

across training datasets using Random Forest. To develop this risk score, we calculated model 

coefficients through Lasso regression using TCGA-PRAD data. Patient scores were then 

calculated based on the expression of the selected genes following Lasso regression. The 

performance of this risk score was evaluated within each training dataset. Univariable Cox 

regression was used to estimate the risk of poor survival in patients with high-risk scores. Patients 

were stratified either by a dichotomized risk score (with the median as the cutpoint) or by a 

continuous risk score. The concordance index (CI) was used to measure the performance of the 

signature within each dataset. 

In the validation stage, those same coefficients were used in all additional datasets. For each 

patient, the score was calculated, and its association with event-free survival were studied using 

univariable and multivariable Cox regressions. 

Transcriptome analysis of MDA PCa PDXs 
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To assess the association of the stemness-signature and other clinico-pathological characteristics 

in an extensively annotated cohort, we used the MDA PCa PDX series, which was previously 

developed in the “Prostate Cancer Patient Derived Xenograft Program” at MD Anderson Cancer 

Center and the David H. Koch Center for Applied Research of Genitourinary Cancers [42]. Briefly, 

PCa tissue samples used were derived from various procedures and small pieces were then 

implanted into subcutaneous pockets of 6 to 8 week-old male CB17 SCID mice (Charles River 

Laboratories) [42]. RNA-Seq and transcriptome analysis on these samples was performed as 

previously described [43].  

Unsupervised Clustering and Principal Component Analysis (PCA) 

Unsupervised clustering analysis including the expression data of the stemness-associated 

genes included in the signature was performed using the pheatmap [44] package and Principal 

Component Analysis was performed using the factoextra package in R [45].  

Receiver Operating Characteristic (ROC) curve for NEPC classification 

pRoc package [46] was used for the estimation of receiver operating characteristic (ROC) curve 

and area under ROC curve (AUC). 

NEPC patients samples dataset 

To assess gene expression in NEPC samples, we downloaded the data from the Neuroendocrine 

Prostate Cancer (Multi-Institute, Nat Med 2016) dataset published by Beltran et al. [12] from 

cBioPortal [47–49]. Briefly, this dataset contains transcriptomics and histopathological data from 

49 PCa samples (34 CRPC-Adeno and 15 CRPC-NE) obtained by RNA-Seq.  

Statistical analyses 

All bioinformatics analyses were performed using the R programming language [50] through the 

RStudio platform (RStudio, PBC, Boston, MA, USA) [51]. The tidyverse package was used for 

general data analysis and manipulation [52]. For graphics, the packages ggplot2 [53], ggpubr 

[54], and RColorBrewer [55] were used. Datasets available in GEO were downloaded with 

GEOquery [56]. All heatmaps were created with the pheatmap package [44]. Forest plots were 

created using GraphPad Prism (La Jolla, CA, USA). Student’s t test and ANOVA followed by 

Tukey’ test were used to assess differences in risk score values across groups. We used the log-

rank test and Cox proportional hazard model regression to study the association between gene 

expression and patients’ survival. Multivariable analyses were performed in R and plotted in 

GraphPad Prism software (La Jolla, CA, USA). Statistical significance was set at p ≤ 0.05.  
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RESULTS 

Dysregulation of stemness-associated genes across multiple PCa comparisons 

We gathered 144 stemness-associated genes in PCa from literature [6,14–18] (Supplementary 

Table 1) and analyzed their expression and association with multiple survival endpoints (Figure 

1A). First, we performed pair-wise differential gene expression analyses using 7 PCa datasets 

(n=1,259), which included 11 comparisons between normal prostate, primary tumor, metastatic 

and castration-resistant PCa (CRPC) samples (Figure 1A). Volcano plots evidenced 

dysregulation of 139 stemness-associated genes, with both up- (red, adjusted p<0.05, log2FC>0) 

and down-regulation (blue, adjusted p<0.05, log2FC<0) in all comparisons (Primary PCa vs. 

Benign/Normal/Adjacent, Metastatic PCa vs. Benign, Metastatic PCa vs. Primary PCa, CRPC vs. 

Benign; CRPC vs. Primary PCa) (Figure 1Bi). Figure 1Bii summarizes these results across 

comparisons. We observed that all stemness-genes were dysregulated in at least one dataset, 

with 29 genes consistently up-regulated and 26 genes consistently down-regulated (Figure 1Bii, 

Supplementary Table 2). 

Association of stemness markers with PCa patients’ survival 

We evaluated the association with different events in PCa patients, including progression-free 

survival (PFS), biochemical relapse-free survival (RFS), metastasis-free survival (MFS), overall 

survival (OS), and disease specific survival (DSS) for the 139 differentially expressed genes. 

Figure 2Ai shows representative Kaplan-Meier plots for three example genes (DBNL, UBTD2, 

and MBNL2) in the TCGA-PRAD dataset (n=497, PFS). Results showed that high expression of 

DBNL, and low expression of MBNL2 were significantly associated with poor PFS (HR=2, Log-

rank P=0.0011 and HR=0.39, Log-rank P<0.0001, respectively. Figure 2Ai, left and right panels). 

No significant associations were observed for UBTD2 (Log-rank P=0.1062, Figure 2Ai, middle 

panel). Figure 2Aii shows a heatmap summarizing the results of the univariable survival analysis 

for each of the 139 candidate genes performed across the 5 training datasets including 5 different 

types of events (n=1,229; detailed in Supplementary Table 3). The results are color-coded as 

follows: red squares represent genes with high expression significantly associated with shorter 

times to the event, white squares indicate genes with no significant associations to the event, and 

blue squares represent genes with high expression significantly associated with a better outcome. 

Of note, there was a group of genes whose high expression was consistently associated with 

poor prognosis (Figure 2Aii, left, in red), while others were associated with a better outcome 

(Figure 2Aii, right, in blue). 

Next, we performed multivariable Cox regression analyses for each of the 139 previously 

mentioned genes to evaluate their independence from other known risk factors for PCa 

progression in predicting an event (Table 2). For the three examples mentioned above, DBNL 

(HR=2.61, 95% CI 1.40-4.86, Cox P=0.002) and MBNL2 (HR=0.69, 95% CI 0.54-0.88, Cox 

P=0.003) displayed a significant association with high and low risk of PFS, respectively, 

independently from the other covariates available in the TCGA-PRAD dataset (PSA levels, ISUP 

grade, Clinical T Stage, and Targeted Molecular/Radiation Therapy; Figure 2Bi). No significant 

associations were observed for UBTD2 (Figure 2Bi). The overall results for the multivariable 
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analyses are summarized as a heatmap in Figure 2Bii and detailed in Supplementary Table 4. 

Most associations observed in the univariable analysis (Figure 2Aii) lost statistical significance 

after adjusting for clinical covariates (Figure 2Bii). 

Modeling a stemness-associated signature with prognostic value 

We used a machine learning algorithm to identify the most relevant prognostic candidate genes 

to model a gene-expression signature that could stratify patients into risk groups of disease 

progression and death. We used a Random Forest algorithm to rank genes according to their 

relevance for event prediction in the training datasets and calculated the mean relative importance 

score for each gene (Figure 3A). The top 15 genes were: ALDH1A1, KMT5C, DPP4, RPS6KB1, 

TYMS, CCT3, IL1RAP, MICAL3, CDC25B, IRF5, MEN1, DNMT3B, CD24, RND3, and CASP9 

(Figure 3A, purple square). Next, we used these genes to develop our stemness-associated risk 

signature. Model coefficients were calculated on the TCGA-PRAD cohort by Lasso regression, a 

feature selection method that keeps the most important predictors by shrinking the coefficients of 

less significant genes to zero. This analysis resulted in a signature of 7 significant genes, 

generating the following weighted linear model: 0.284×KMT5C + 0.2723×MEN1 + 0.2178×TYMS 

+ 0.09×IRF5 + 0.0827×DNMT3B + 0.048×CDC25B - 0.0597×DPP4, where gene expressions are 

considered a continuous variable (Figure 3Bi).  

Next, in order to evidence this 7-gene signature prognostic performance, we calculated the risk 

score for each patient on the TCGA-PRAD dataset and stratified them into high-risk and low-risk 

groups using the median score as the cutpoint. As expected, we evidenced a shorter progression 

time for the high-risk group compared to the low-risk group (HR=3.36, 95% CI 2.11-5.35, Log-

rank P<0.0001, Figure 3Bi). When we considered the score as a continuous variable, we 

observed a HR=4.34 (95% CI 2.95-6.37, Cox P<0.0001) for each unit increase in the score 

(Figure 3Bii, Supplementary Table S5). We then extended the score to the other training 

datasets and corroborated its prognostic significance within these cohorts. When analyzing the 

event-free survival in all the other training datasets, we observed significant associations with our 

model in 5 out of 6 analyses, both using the dichotomous and continuous score, suggesting our 

7-gene signature is able to predict risk of multiple disease progression-events across our training 

cohorts (Figure 3Bii, Supplementary Table S5). The identified genes and the developed risk 

score model effectively stratify patients based on their risk of adverse outcomes, suggesting their 

potential as prognostic biomarkers. 

Consistent performance across validation datasets 

Next, we validated our model using datasets from independent cohorts (n=501). We calculated 

the 7-gene score for all patients in the different datasets and categorized them into high or low 

risk using the median as a cutoff. Interestingly, the risk score was significantly associated with 

event-free survival in all validation cohorts (Figure 4Ai-ii). Of note, in the SU2C dataset, which 

comprises metastatic PCa samples, patients with high score had near 2-fold risk of death 

compared to patients with low score (Figure 4Aii). This demonstrates that the 7-gene signature 

is a robust predictor of the risk of death even in advanced stages. Moreover, when analyzing the 

7-gene signature as a continuous variable, all datasets presented significant results, with higher 

concordance indexes than the dichotomized analysis (Figure 4Aiii). Multivariable analyses 
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demonstrated that our score predicts disease progression-events independently of the other 

clinico-pathological variables (Figure 4B), which highlights its potential utility in clinical decision-

making. 

The stemness-associated gene signature captures neuroendocrine disease heterogeneity 

in the MDA PCa PDX series 

Next, we sought to analyze the association between the 7-gene signature and other clinico-

pathological characteristics available in the MDA PCa PDX series, which was developed in the 

Laboratory of Dr. Navone within the “Prostate Cancer Patient Derived Xenograft Program” at MD 

Anderson Cancer Center and the David H. Koch Center for Applied Research of Genitourinary 

Cancers. PCa tissue samples used for PDX development were derived from therapeutic or 

diagnostic procedures, namely, radical prostatectomies, orthopedic, and neurosurgical 

procedures to palliate complications, and biopsies of metastatic lesions [42] (Figure 5A). We 

analyzed the expression of the 7 stemness-associated genes selected in the present study using 

previously generated RNA-Seq data from the 44 MDA PCa PDXs [43]. Surprisingly, the 

expression of this signature was able to accurately cluster PDXs according to their 

histopathological classification (adenocarcinoma or sarcomatoid vs. neuroendocrine tumors) in 

an unsupervised clustering analysis (Figure 5Bi). Moreover, NEPC PDXs displayed significantly 

higher scores (Figure 5Bii). Specifically, CDC25B, TYMS, KMT5C and DNMT3B were 

significantly upregulated in NEPC vs. no-NEPC PDXs, while IRF5 and DPP4 were significantly 

downregulated (Figure 5Biii).  

These results were also observed in a Principal Component Analysis (Figure 5Ci), which 

highlighted KMT5C as the main gene in the signature contributing to the variance (PC1) between 

samples of different histopathological profiles (Figure 5Cii), followed by CDC25B and DNMT3B. 

Of note, KMT5C is also the gene that weighs higher in our score (Figure 3Ci). To evaluate the 

power of the signature in predicting whether a tumor is NEPC, we performed ROC analysis. The 

AUC of our 7-gene score was 0.92 (Figure 5D), highlighting its high performance for classifying 

NEPC samples.  

Our stemness-score adds value to pre-existing NEPC score 

To compare our risk score performance with a pre-established NEPC classification score, we 

analyzed the expression of the genes from the 70-gene signature by Beltran et al. [12], in the 

MDA PCa PDX series. We observed a good segregation of the PDXs according to their 

histopathological classification when using the 70 genes from Beltran et al. NEPC score; however, 

the 2 double-negative tumors (negative for AR and NE features) were clustered within the NEPC 

tumors group (Figure 6Ai). Nonetheless, when also including the expression of the 7 genes 

identified in this work alongside the genes from the NEPC classification score [12], clustering of 

the PDX was more accurate, not only grouping adenocarcinomas vs. NEPC tumors, but also 

sarcomatoid samples (Figure 6Aii). 

The 7-gene signature effectively classifies large-cell neuroendocrine carcinomas 

To validate the association of our risk score model with NEPC, we analyzed the transcriptomics 

dataset from Beltran et al. (n=49) [12], which includes 15 samples from CRPC-neuroendocrine 
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(NE) and 34 CRPC-adenocarcinomas tumors. Our signature was able to distinguish CRPC-NE 

tumors to a limited extent (Figure 6Bi), while, overall, our risk score was significantly higher in 

CRPC-NE compared to CRPC-Adeno (p<0.01, Figure 6Bii). However, we looked further into the 

available pathology classification (prostate adenocarcinoma with no neuroendocrine 

differentiation, n=34; prostate adenocarcinoma with neuroendocrine differentiation >20%, n=2; 

small-cell carcinoma n=4; large-cell neuroendocrine carcinoma, n=7; mixed small-cell carcinoma–

adenocarcinoma, n=2) and observed that 6/7 samples of the large-cell NEPC clustered together 

(Figure 6Bi), while the 7-gene signature was particularly higher in that subtype (Figure 6Ci). 

Strikingly, the AUC=0.99 suggests that the signature of 7 stemness-associated genes proposed 

in this work is accurate in classifying samples as large-cell NEPC (Figure 6Cii). Since large-cell 

NEPC molecular characterization remains elusive [57], our findings set ground for future research 

on the implications of these genes in this subtype pathogenesis. 
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DISCUSSION 

In this study we identified and validated a novel 7-gene signature that represents a significant 

advancement in the prediction of poor outcomes and molecular detection of NEPC. Our findings 

demonstrate that this signature not only reliably stratifies PCa patients based on their risk of 

progression but also reveals a crucial link between stemness-associated pathways and 

neuroendocrine characteristics. Importantly, this signature is particularly adept at identifying 

tumors within the Prostate Cancer Foundation (PCF) and World Health Organization (WHO)-

defined large-cell neuroendocrine carcinoma [58,59], which is regarded as very rare and 

associated with very poor outcomes (mean survival of 7 months) [59].  

Large-cell NEPC are high grade tumors that usually develop from treatment-resistant clones [60]; 
they are mainly diagnosed histopathologically, thus remaining a challenge and underrecognized 

[57,58,61]. Hence, there is a need for molecular biomarkers that could subclassify NEPC tumors 

for better clinical management [57]. The ability of our 7-gene signature to pinpoint this specific 

aggressive and challenging NEPC subtype underscores the clinical utility of our model in guiding 

more precise therapeutic interventions. 

Our stemness-associated signature addresses a critical need for improving PCa prognosis, while 

also offering precise stratification of NEPC, which is often characterized by poor clinical outcomes 

and high proliferative indices [62]. NEPC is recognized as one of the most aggressive and 

treatment-resistant forms of PCa, often arising in the context of advanced CRPC after multiple 

rounds of ADT [63]. While most NEPC cases develop in patients with a history of extensive anti-

androgen treatment, the disease can also manifest de novo, albeit rarely, in treatment-naïve 

patients [9,12]. Further, ADT-induced NE transdifferentiation could be explained by altered mast 

cell infiltration [64,65]. Maimaitiyiming et al. have established a mast cell gene signature with 

prognostic efficacy in PCa [66], and, interestingly, mast cells have been reported to support the 

stem phenotype of cancer cells [67]. Altogether, focusing on stemness-associated genes could 

offer insights into NEPC biology and potential targets. 

The molecular landscape of NEPC has been increasingly clarified in recent years, with significant 

contributions from studies like those of Beltran et al., who have delineated the heterogeneity within 

NEPC and highlighted distinct molecular subtypes [12,58,68]. Their research highlights the 

genetic, epigenetic and molecular diversity of NEPC, particularly noting alterations such as RB1 

and TP53 loss, MYCN overexpression, and the activation of the PI3K/AKT pathway, which 

contribute to the aggressive nature of these tumors [12,58,68]. Our study builds on these findings 

by focusing on a 7-gene stemness signature. Unlike previous signatures that include a broad 

array of genes, our streamlined 7-gene model achieves comparable or superior predictive 

accuracy, underscoring its practical utility in diverse clinical contexts. 

The biological relevance of the genes in our signature — KMT5C, MEN1, TYMS, IRF5, DNMT3B, 

CDC25B and DPP4 (also known as CD26)— lies in their involvement in critical processes such 

as chromatin modification, DNA methylation, DNA repair, cell cycle regulation, immune escape 

and extracellular matrix remodelling [69–75]. These processes are fundamental to maintaining 
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the plasticity and adaptability of cancer stem cells (CSCs) [5,76], which are enriched after 

transdifferentiation of prostate adenocarcinoma into more aggressive neuroendocrine 

phenotypes [77]. For example, KMT5C, DNMT3B and MEN1 play pivotal roles in chromatin 

remodeling and methylation [69–71], processes that are crucial for the epigenetic reprogramming 

observed in NEPC [78]. Additionally, TYMS has been previously associated with neuroendocrine 

differentiation in other types of cancer [79,80]. The integration of these stemness-associated 

genes into our model highlights the potential for characterizing NEPC-like tumors. 

One of the key strengths of our study is the extensive validation of our signature across patient 

datasets and PDXs models. The latter, which faithfully replicate the histological and genetic 

features of human tumors, are widely regarded as the gold standard for preclinical studies [81]. 
Our findings demonstrate that the 7-gene signature consistently distinguishes NEPC from other 

PCa subtypes in these models, underscoring its clinical utility and its potential for identifying 

NEPC-like tumors. This aspect of our research not only validates the predictive power of the 

signature but also highlights its potential utility in translational research, particularly in the 

development of novel therapeutic strategies aimed at targeting the molecular underpinnings of 

NEPC. 

LIMITATIONS 

Despite the robustness of our findings, there are several limitations that must be acknowledged. 

Our study primarily relies on transcriptomic data from publicly available repositories, while 

comprehensive, may not fully represent the genetic diversity of PCa patients globally. Future 

research should focus on further validating our signature in ethnically and genetically diverse 

cohorts to ensure its broad applicability. Additionally, while our focus on transcriptomic data has 

provided valuable insights into NEPC biology, integrating multi-omics data, including proteomics 

and metabolomics, could enhance the predictive power of our model. Moreover, the scarce 

number of NEPC samples with transcriptomics data and, particularly, of large-cell NEPC 

(probably due to under-recognition and underreporting [57]) requires further validation in larger 

cohorts. Functional validation of the identified genes through in vivo studies will also be critical for 

determining their role in disease and translating findings into clinical practice. 

CONCLUSION 

This study presents a significant advancement in PCa prognosis and classification of NEPC, 

particularly for the challenging large-cell subtype. Importantly, PCa cases presenting this 

molecular signature, even when not histopathologically identified as NEPC, also exhibit a poor 

prognosis. This reinforces the clinical relevance of our model, which is capable of identifying 

aggressive tumor subtypes that may not yet display overt NE differentiation but still represent a 

high risk for adverse outcomes. Through the development of this novel stemness-associated 7-

gene signature, our model offers a robust and practical tool with potential clinical application, 

paving the way for more personalized and effective therapeutic strategies in PCa. 

 

ACKNOWLEDGEMENTS 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 25, 2024. ; https://doi.org/10.1101/2024.09.24.24314303doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.24.24314303
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Funding: The present study was supported by Agencia Nacional de Promoción de la Investigación 

el Desarrollo Tecnológico y la Innovación (ANPCyT) PICT-RAICES-2021-III-A-00080; David H. 

Koch Center for Applied Research in Genitourinary Cancers at MD Anderson (Houston, TX); and 

NIH/NCI U01 CA224044. The funders of the study had no role in study design, data collection, 

data analysis, data interpretation, writing or decision to submit. 

DECLARATION OF COMPETING INTEREST 

The authors declare no conflict of interest. 

AUTHOR CONTRIBUTIONS 

Conceptualization: AS, PS, EV, DA, FC, MM, JC, AT, EL, JB and GG. 

Methodology: AS, PS, RS, GP, MM, JC, JB and GG. 

Software: AS, PS, MM, JC, and JB. 

Validation: AS, PS, RS, GP, EV, MM, JC, AT, JB and GG. 

Formal Analysis: AS, PS, NA, DA, FC, EV, MM, JC, AT, JB and GG. 

Investigation: AS, PS, RS, GP, AT, JB and GG. 

Resources: EV, JC, AT, EL and GG. 

Data Curation: AS, PS and JB. 

Writing – Original Draft Preparation: AS, PS, NA, DA, FC, EV, MM, JC, AT, EL, JB and GG. 

Writing – Review & Editing: AS, PS, NA, DA, FC, EV, MM, JC, AT, EL, JB and GG. 

Visualization: AS, JB, GG. 

Supervision: EV, MM, JC, AT, JB and GG. 

Project Administration: JB and GG. 

Funding Acquisition: EV, JC, AT, EL and GG. 

 

REFERENCES 

1.  Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality 
Worldwide for 36 Cancers in 185 Countries - Bray - 2024 - CA: A Cancer Journal for 
Clinicians - Wiley Online Library Available online: 
https://acsjournals.onlinelibrary.wiley.com/doi/10.3322/caac.21834 (accessed on 18 
July 2024). 

2.  Beltran, H.; Rickman, D.S.; Park, K.; Chae, S.S.; Sboner, A.; MacDonald, T.Y.; Wang, 
Y.; Sheikh, K.L.; Terry, S.; Tagawa, S.T.; et al. Molecular Characterization of 
Neuroendocrine Prostate Cancer and Identification of New Drug Targets. Cancer 
Discov. 2011, 1, 487–495, doi:10.1158/2159-8290.CD-11-0130. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 25, 2024. ; https://doi.org/10.1101/2024.09.24.24314303doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.24.24314303
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

3.  Robinson, D.; Van Allen, E.M.; Wu, Y.-M.; Schultz, N.; Lonigro, R.J.; Mosquera, J.-M.; 
Montgomery, B.; Taplin, M.-E.; Pritchard, C.C.; Attard, G.; et al. Integrative Clinical 
Genomics of Advanced Prostate Cancer. Cell 2015, 161, 1215–1228, 
doi:10.1016/j.cell.2015.05.001. 

4.  Liu, C.; Kelnar, K.; Liu, B.; Chen, X.; Calhoun-Davis, T.; Li, H.; Patrawala, L.; Yan, H.; 
Jeter, C.; Honorio, S.; et al. The microRNA miR-34a Inhibits Prostate Cancer Stem 
Cells and Metastasis by Directly Repressing CD44. Nat. Med. 2011, 17, 211–215, 
doi:10.1038/nm.2284. 

5.  Al Salhi, Y.; Sequi, M.B.; Valenzi, F.M.; Fuschi, A.; Martoccia, A.; Suraci, P.P.; Carbone, 
A.; Tema, G.; Lombardo, R.; Cicione, A.; et al. Cancer Stem Cells and Prostate 
Cancer: A Narrative Review. Int. J. Mol. Sci. 2023, 24, 7746, 
doi:10.3390/ijms24097746. 

6.  Maitland, N.J.; Collins, A.T. Prostate Cancer Stem Cells: A New Target for Therapy. J. 
Clin. Oncol. 2008, 26, 2862–2870, doi:10.1200/JCO.2007.15.1472. 

7.  Banerjee, P.; Kapse, P.; Siddique, S.; Kundu, M.; Choudhari, J.; Mohanty, V.; Malhotra, 
D.; Gosavi, S.W.; Gacche, R.N.; Kundu, G.C. Therapeutic Implications of Cancer Stem 
Cells in Prostate Cancer. Cancer Biol. Med. 2023, 20, 401–420, 
doi:10.20892/j.issn.2095-3941.2022.0714. 

8.  Beltran, H.; Tomlins, S.; Aparicio, A.; Arora, V.; Rickman, D.; Ayala, G.; Huang, J.; True, 
L.; Gleave, M.E.; Soule, H.; et al. Aggressive Variants of Castration-Resistant Prostate 
Cancer. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2014, 20, 2846–2850, 
doi:10.1158/1078-0432.CCR-13-3309. 

9.  Aggarwal, R.; Huang, J.; Alumkal, J.J.; Zhang, L.; Feng, F.Y.; Thomas, G.V.; Weinstein, 
A.S.; Friedl, V.; Zhang, C.; Witte, O.N.; et al. Clinical and Genomic Characterization of 
Treatment-Emergent Small-Cell Neuroendocrine Prostate Cancer: A Multi-
Institutional Prospective Study. J. Clin. Oncol. 2018, 36, 2492–2503, 
doi:10.1200/JCO.2017.77.6880. 

10.  Dardenne, E.; Beltran, H.; Benelli, M.; Gayvert, K.; Berger, A.; Puca, L.; Cyrta, J.; 
Sboner, A.; Noorzad, Z.; MacDonald, T.; et al. N-Myc Induces an EZH2-Mediated 
Transcriptional Program Driving Neuroendocrine Prostate Cancer. Cancer Cell 2016, 
30, 563–577, doi:10.1016/j.ccell.2016.09.005. 

11.  Mu, P.; Zhang, Z.; Benelli, M.; Karthaus, W.R.; Hoover, E.; Chen, C.-C.; Wongvipat, J.; 
Ku, S.-Y.; Gao, D.; Cao, Z.; et al. SOX2 Promotes Lineage Plasticity and Antiandrogen 
Resistance in TP53- and RB1-Deficient Prostate Cancer. Science 2017, 355, 84–88, 
doi:10.1126/science.aah4307. 

12.  Beltran, H.; Prandi, D.; Mosquera, J.M.; Benelli, M.; Puca, L.; Cyrta, J.; Marotz, C.; 
Giannopoulou, E.; Chakravarthi, B.V.S.K.; Varambally, S.; et al. Divergent Clonal 
Evolution of Castration-Resistant Neuroendocrine Prostate Cancer. Nat. Med. 2016, 
22, 298–305, doi:10.1038/nm.4045. 

13.  Bluemn, E.G.; Coleman, I.M.; Lucas, J.M.; Coleman, R.T.; Hernandez-Lopez, S.; 
Tharakan, R.; Bianchi-Frias, D.; Dumpit, R.F.; Kaipainen, A.; Corella, A.N.; et al. 
Androgen Receptor Pathway-Independent Prostate Cancer Is Sustained through FGF 
Signaling. Cancer Cell 2017, 32, 474-489.e6, doi:10.1016/j.ccell.2017.09.003. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 25, 2024. ; https://doi.org/10.1101/2024.09.24.24314303doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.24.24314303
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

14.  Huang, R.; Wang, S.; Wang, N.; Zheng, Y.; Zhou, J.; Yang, B.; Wang, X.; Zhang, J.; Guo, 
L.; Wang, S.; et al. CCL5 Derived from Tumor-Associated Macrophages Promotes 
Prostate Cancer Stem Cells and Metastasis via Activating β-Catenin/STAT3 Signaling. 
Cell Death Dis. 2020 114 2020, 11, 1–20, doi:10.1038/s41419-020-2435-y. 

15.  Sharpe, B.; Beresford, M.; Bowen, R.; Mitchard, J.; Chalmers, A.D. Searching for 
Prostate Cancer Stem Cells: Markers and Methods. Stem Cell Rev. Rep. 2013, 9, 721–
730, doi:10.1007/s12015-013-9453-4. 

16.  Maitland, N.J.; Frame, F.M.; Polson, E.S.; Lewis, J.L.; Collins, A.T. Prostate Cancer 
Stem Cells: Do They Have a Basal or Luminal Phenotype? Horm. Cancer 2011, 2, 47–
61, doi:10.1007/s12672-010-0058-y. 

17.  Leong, K.G.; Wang, B.E.; Johnson, L.; Gao, W.Q. Generation of a Prostate from a 
Single Adult Stem Cell. Nature 2008, 456, 804–810, doi:10.1038/nature07427. 

18.  Goldstein, A.S.; Huang, J.; Guo, C.; Garraway, I.P.; Witte, O.N. Identification of a Cell 
of Origin for Human Prostate Cancer. Science 2010, 329, 568–571, 
doi:10.1126/science.1189992. 

19.  Grasso, C.S.; Wu, Y.M.; Robinson, D.R.; Cao, X.; Dhanasekaran, S.M.; Khan, A.P.; 
Quist, M.J.; Jing, X.; Lonigro, R.J.; Brenner, J.C.; et al. The Mutational Landscape of 
Lethal Castration-Resistant Prostate Cancer. Nature 2012, 487, 239–243, 
doi:10.1038/nature11125. 

20.  Lapointe, J.; Li, C.; Higgins, J.P.; Van De Rijn, M.; Bair, E.; Montgomery, K.; Ferrari, M.; 
Egevad, L.; Rayford, W.; Bergerheim, U.; et al. Gene Expression Profiling Identifies 
Clinically Relevant Subtypes of Prostate Cancer. Proc. Natl. Acad. Sci. U. S. A. 2004, 
101, 811–816, doi:10.1073/pnas.0304146101. 

21.  Malhotra, S.; Lapointe, J.; Salari, K.; Higgins, J.P.; Ferrari, M.; Montgomery, K.; van de 
Rijn, M.; Brooks, J.D.; Pollack, J.R. A Tri-Marker Proliferation Index Predicts 
Biochemical Recurrence after Surgery for Prostate Cancer. PLoS ONE 2011, 6, 
doi:10.1371/journal.pone.0020293. 

22.  Mortensen, M.M.; Høyer, S.; Lynnerup, A.S.; Ørntoft, T.F.; Sørensen, K.D.; Borre, M.; 
Dyrskjøt, L. Expression Profiling of Prostate Cancer Tissue Delineates Genes 
Associated with Recurrence after Prostatectomy. Sci. Rep. 2015, 5, 
doi:10.1038/srep16018. 

23.  Wallace, T.A.; Prueitt, R.L.; Yi, M.; Howe, T.M.; Gillespie, J.W.; Yfantis, H.G.; Stephens, 
R.M.; Caporaso, N.E.; Loffredo, C.A.; Ambs, S. Tumor Immunobiological Differences 
in Prostate Cancer between African-American and European-American Men. Cancer 
Res. 2008, 68, 927–936, doi:10.1158/0008-5472.CAN-07-2608. 

24.  Ross-Adams, H.; Lamb, A.; Dunning, M.; Halim, S.; Lindberg, J.; Massie, C.; Egevad, L.; 
Russell, R.; Ramos-Montoya, A.; Vowler, S.; et al. Integration of Copy Number and 
Transcriptomics Provides Risk Stratification in Prostate Cancer: A Discovery and 
Validation Cohort Study. EBioMedicine 2015, 2, 1133–1144, 
doi:10.1016/j.ebiom.2015.07.017. 

25.  TCGA-PRAD Available online: https://portal.gdc.cancer.gov/projects/TCGA-PRAD 
(accessed on 4 August 2021). 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 25, 2024. ; https://doi.org/10.1101/2024.09.24.24314303doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.24.24314303
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

26.  Taylor, B.S.; Schultz, N.; Hieronymus, H.; Gopalan, A.; Xiao, Y.; Carver, B.S.; Arora, 
V.K.; Kaushik, P.; Cerami, E.; Reva, B.; et al. Integrative Genomic Profiling of Human 
Prostate Cancer. Cancer Cell 2010, 18, 11–22, doi:10.1016/j.ccr.2010.05.026. 

27.  Shi, W.; Oshlack, A.; Smyth, G.K. Optimizing the Noise versus Bias Trade-off for 
Illumina Whole Genome Expression BeadChips. Nucleic Acids Res. 2010, 38, e204, 
doi:10.1093/nar/gkq871. 

28.  Law, C.W.; Chen, Y.; Shi, W.; Smyth, G.K. Voom: Precision Weights Unlock Linear 
Model Analysis Tools for RNA-Seq Read Counts. Genome Biol. 2014, 15, R29, 
doi:10.1186/gb-2014-15-2-r29. 

29.  Jain, S.; Lyons, C.A.; Walker, S.M.; McQuaid, S.; Hynes, S.O.; Mitchell, D.M.; Pang, B.; 
Logan, G.E.; McCavigan, A.M.; O’Rourke, D.; et al. Validation of a Metastatic Assay 
Using Biopsies to Improve Risk Stratification in Patients with Prostate Cancer Treated 
with Radical Radiation Therapy. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2018, 29, 
215–222, doi:10.1093/annonc/mdx637. 

30.  Sboner, A.; Demichelis, F.; Calza, S.; Pawitan, Y.; Setlur, S.R.; Hoshida, Y.; Perner, S.; 
Adami, H.O.; Fall, K.; Mucci, L.A.; et al. Molecular Sampling of Prostate Cancer: A 
Dilemma for Predicting Disease Progression. BMC Med. Genomics 2010, 3, 
doi:10.1186/1755-8794-3-8. 

31.  Long, Q.; Xu, J.; Osunkoya, A.O.; Sannigrahi, S.; Johnson, B.A.; Zhou, W.; Gillespie, T.; 
Park, J.Y.; Nam, R.K.; Sugar, L.; et al. Global Transcriptome Analysis of Formalin-Fixed 
Prostate Cancer Specimens Identifies Biomarkers of Disease Recurrence. Cancer 
Res. 2014, 74, 3228–3237, doi:10.1158/0008-5472.CAN-13-2699. 

32.  Luca, B.-A.; Brewer, D.S.; Edwards, D.R.; Edwards, S.; Whitaker, H.C.; Merson, S.; 
Dennis, N.; Cooper, R.A.; Hazell, S.; Warren, A.Y.; et al. DESNT: A Poor Prognosis 
Category of Human Prostate Cancer. Eur. Urol. Focus 2018, 4, 842–850, 
doi:10.1016/j.euf.2017.01.016. 

33.  Gerhauser, C.; Favero, F.; Risch, T.; Simon, R.; Feuerbach, L.; Assenov, Y.; Heckmann, 
D.; Sidiropoulos, N.; Waszak, S.M.; Hübschmann, D.; et al. Molecular Evolution of 
Early-Onset Prostate Cancer Identifies Molecular Risk Markers and Clinical 
Trajectories. Cancer Cell 2018, 34, 996-1011.e8, doi:10.1016/j.ccell.2018.10.016. 

34.  Abida, W.; Cyrta, J.; Heller, G.; Prandi, D.; Armenia, J.; Coleman, I.; Cieslik, M.; Benelli, 
M.; Robinson, D.; Van Allen, E.M.; et al. Genomic Correlates of Clinical Outcome in 
Advanced Prostate Cancer. Proc. Natl. Acad. Sci. U. S. A. 2019, 116, 11428–11436, 
doi:10.1073/pnas.1902651116. 

35.  Bland, J.M.; Altman, D.G. The Logrank Test. BMJ 2004, 328, 1073, 
doi:10.1136/bmj.328.7447.1073. 

36.  Budczies, J.; Klauschen, F.; Sinn, B.V.; Gyorffy, B.; Schmitt, W.D.; Darb-Esfahani, S.; 
Denkert, C. Cutoff Finder: A Comprehensive and Straightforward Web Application 
Enabling Rapid Biomarker Cutoff Optimization. PLoS ONE 2012, 7, 1–7, 
doi:10.1371/journal.pone.0051862. 

37.  Breslow, N.E. Analysis of Survival Data under the Proportional Hazards Model. Int. 
Stat. Rev. Rev. Int. Stat. 1975, 43, 45–57, doi:10.2307/1402659. 

38.  Therneau, T. A Package for Survival Analysis in S. R Package Version. Survival 2012. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 25, 2024. ; https://doi.org/10.1101/2024.09.24.24314303doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.24.24314303
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

39.  Kassambara, A.; Kosinski, M.; Biecek, P.; Fabian, S. Package ‘Survminer’. Drawing 
Survival Curves Using ‘Ggplot2’. R Package Version 0.3.1, Https://CRAN.R-
Project.Org/Package=survminer. null 2014. 

40.  Ishwaran, H.; Kogalur, U.B. randomForestSRC: Fast Unified Random Forests for 
Survival, Regression, and Classification (RF-SRC) 2024. 

41.  Ishwaran, H.; Lu, M. Standard Errors and Confidence Intervals for Variable 
Importance in Random Forest Regression, Classification, and Survival. Stat. Med. 
2019, 38, 558–582, doi:10.1002/sim.7803. 

42.  Palanisamy, N.; Yang, J.; Shepherd, P.D.A.; Li-Ning-Tapia, E.M.; Labanca, E.; Manyam, 
G.C.; Ravoori, M.K.; Kundra, V.; Araujo, J.C.; Efstathiou, E.; et al. The MD Anderson 
Prostate Cancer Patient-Derived Xenograft Series (MDA PCa PDX) Captures the 
Molecular Landscape of Prostate Cancer and Facilitates Marker-Driven Therapy 
Development. Clin. Cancer Res. 2020, 26, 4933–4946, doi:10.1158/1078-0432.CCR-
20-0479. 

43.  Anselmino, N.; Labanca, E.; Shepherd, P.D.A.; Dong, J.; Yang, J.; Song, X.; 
Nandakumar, S.; Kundra, R.; Lee, C.; Schultz, N.; et al. Integrative Molecular Analyses 
of the MD Anderson Prostate Cancer Patient-Derived Xenograft (MDA PCa PDX) 
Series. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2024, 30, 2272–2285, 
doi:10.1158/1078-0432.CCR-23-2438. 

44.  Kolde, R. Pheatmap: Pretty Heatmaps 2019. 
45.  Kassambara, A.; Mundt, F. Factoextra: Extract and Visualize the Results of 

Multivariate Data Analyses. R Package. 2020. 
46.  Robin, X.; Turck, N.; Hainard, A.; Tiberti, N.; Lisacek, F.; Sanchez, J.-C.; Müller, M. 

pROC: Display and Analyze ROC Curves 2010, 1.18.5. 
47.  Cerami, E.; Gao, J.; Dogrusoz, U.; Gross, B.E.; Sumer, S.O.; Aksoy, B.A.; Jacobsen, A.; 

Byrne, C.J.; Heuer, M.L.; Larsson, E.; et al. The cBio Cancer Genomics Portal: An Open 
Platform for Exploring Multidimensional Cancer Genomics Data. Cancer Discov. 
2012, 2, 401–404, doi:10.1158/2159-8290.CD-12-0095. 

48.  Gao, J.; Aksoy, B.A.; Dogrusoz, U.; Dresdner, G.; Gross, B.; Sumer, S.O.; Sun, Y.; 
Jacobsen, A.; Sinha, R.; Larsson, E.; et al. Integrative Analysis of Complex Cancer 
Genomics and Clinical Profiles Using the cBioPortal. Sci. Signal. 2013, 6, 
doi:10.1126/scisignal.2004088. 

49.  de Bruijn, I.; Kundra, R.; Mastrogiacomo, B.; Tran, T.N.; Sikina, L.; Mazor, T.; Li, X.; 
Ochoa, A.; Zhao, G.; Lai, B.; et al. Analysis and Visualization of Longitudinal Genomic 
and Clinical Data from the AACR Project GENIE Biopharma Collaborative in 
cBioPortal. Cancer Res. 2023, 83, 3861–3867, doi:10.1158/0008-5472.CAN-23-0816. 

50.  Dexter, T.A. R: A Language and Environment for Statistical Computing. Quat. Res. 
2014, 81, 114–124, doi:10.1016/j.quascirev.2005.03.008. 

51.  RStudio RStudio | Open Source & Professional Software for Data Science Teams - 
RStudio Available online: https://www.rstudio.com/ (accessed on 22 September 
2021). 

52.  Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.; François, R.; 
Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; et al. Welcome to the Tidyverse. J. 
Open Source Softw. 2019, 4, 1686, doi:10.21105/joss.01686. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 25, 2024. ; https://doi.org/10.1101/2024.09.24.24314303doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.24.24314303
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

53.  Wickham; Hadley Ggplot2. Elegant Graphics for Data Analysis; Springer-Verlag: NY, 
2016; ISBN 978-3-319-24277-4. 

54.  Kassambara, A. Ggpubr: “ggplot2” Based Publication Ready Plots.R Package Version 
0.4.0.999.Https://Rpkgs.Datanovia.Com/Ggpubr/ 2020. 

55.  Neuwirth, E.; Maindonald, J. Package “RColorBrewer.” 2015. 
56.  Davis, S.; Meltzer, P.S. GEOquery: A Bridge between the Gene Expression Omnibus 

(GEO) and BioConductor. Bioinforma. Oxf. Engl. 2007, 23, 1846–1847, 
doi:10.1093/bioinformatics/btm254. 

57.  Serritella, A.V.; Beltran, H.; Lotan, T.L.; VanderWeele, D.J.; Karzai, F.; Madan, R.A.; 
Hussain, M. Large Cell Neuroendocrine Prostate Cancer: Large Is Not Small. The 
Oncologist 2024, 29, 185–189, doi:10.1093/oncolo/oyad344. 

58.  Epstein, J.I.; Amin, M.B.; Beltran, H.; Lotan, T.L.; Mosquera, J.-M.; Reuter, V.E.; 
Robinson, B.D.; Troncoso, P.; Rubin, M.A. Proposed Morphologic Classification of 
Prostate Cancer With Neuroendocrine Differentiation. Am. J. Surg. Pathol. 2014, 38, 
756–767, doi:10.1097/PAS.0000000000000208. 

59.  Humphrey, P.A.; Moch, H.; Cubilla, A.L.; Ulbright, T.M.; Reuter, V.E. The 2016 WHO 
Classification of Tumours of the Urinary System and Male Genital Organs—Part B: 
Prostate and Bladder Tumours. Eur. Urol. 2016, 70, 106–119, 
doi:10.1016/j.eururo.2016.02.028. 

60.  Evans, A.J.; Humphrey, P.A.; Belani, J.; van der Kwast, T.H.; Srigley, J.R. Large Cell 
Neuroendocrine Carcinoma of Prostate: A Clinicopathologic Summary of 7 Cases of a 
Rare Manifestation of Advanced Prostate Cancer. Am. J. Surg. Pathol. 2006, 30, 684–
693, doi:10.1097/00000478-200606000-00003. 

61.  Nguyen, N.; Ronald Dean Franz, I.I.; Mohammed, O.; Huynh, R.; Son, C.K.; Khan, R.N.; 
Ahmed, B. A Systematic Review of Primary Large Cell Neuroendocrine Carcinoma of 
the Prostate. Front. Oncol. 2024, 14, doi:10.3389/fonc.2024.1341794. 

62.  Aggarwal, R.; Zhang, T.; Small, E.J.; Armstrong, A.J. Neuroendocrine Prostate Cancer: 
Subtypes, Biology, and Clinical Outcomes. J. Natl. Compr. Cancer Netw. JNCCN 
2014, 12, 719–726, doi:10.6004/jnccn.2014.0073. 

63.  Bhagirath, D.; Liston, M.; Akoto, T.; Lui, B.; Bensing, B.A.; Sharma, A.; Saini, S. Novel, 
Non-Invasive Markers for Detecting Therapy Induced Neuroendocrine Differentiation 
in Castration-Resistant Prostate Cancer Patients. Sci. Rep. 2021, 11, 8279, 
doi:10.1038/s41598-021-87441-2. 

64.  Dang, Q.; Li, L.; Xie, H.; He, D.; Chen, J.; Song, W.; Chang, L.S.; Chang, H.-C.; Yeh, S.; 
Chang, C. Anti-Androgen Enzalutamide Enhances Prostate Cancer Neuroendocrine 
(NE) Differentiation via Altering the Infiltrated Mast Cells → Androgen Receptor 
(AR) → miRNA32 Signals. Mol. Oncol. 2015, 9, 1241–1251, 
doi:10.1016/j.molonc.2015.02.010. 

65.  Ou, Y.-H.; Jiang, Y.-D.; Li, Q.; Zhuang, Y.-J.; Dang, Q.; Tan, W.-L. [Infiltrating mast cells 
promote neuroendocrine differentiation and increase docetaxel resistance of 
prostate cancer cells by up-regulating p21]. Nan Fang Yi Ke Da Xue Xue Bao 2018, 38, 
723–730, doi:10.3969/j.issn.1673-4254.2018.06.13. 

66.  Maimaitiyiming, A.; An, H.; Xing, C.; Li, X.; Li, Z.; Bai, J.; Luo, C.; Zhuo, T.; Huang, X.; 
Maimaiti, A.; et al. Machine Learning-Driven Mast Cell Gene Signatures for Prognostic 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 25, 2024. ; https://doi.org/10.1101/2024.09.24.24314303doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.24.24314303
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

and Therapeutic Prediction in Prostate Cancer. Heliyon 2024, 10, 
doi:10.1016/j.heliyon.2024.e35157. 

67.  Aller, M.-A.; Arias, A.; Arias, J.-I.; Arias, J. Carcinogenesis: The Cancer Cell–Mast Cell 
Connection. Inflamm. Res. 2019, 68, 103–116, doi:10.1007/s00011-018-1201-4. 

68.  Conteduca, V.; Oromendia, C.; Eng, K.W.; Bareja, R.; Sigouros, M.; Molina, A.; Faltas, 
B.M.; Sboner, A.; Mosquera, J.M.; Elemento, O.; et al. Clinical Features of 
Neuroendocrine Prostate Cancer. Eur. J. Cancer 2019, 121, 7–18, 
doi:10.1016/j.ejca.2019.08.011. 

69.  Cherif, C.; Nguyen, D.T.; Paris, C.; Le, T.K.; Sefiane, T.; Carbuccia, N.; Finetti, P.; 
Chaffanet, M.; Kaoutari, A.E.; Vernerey, J.; et al. Menin Inhibition Suppresses 
Castration-Resistant Prostate Cancer and Enhances Chemosensitivity. Oncogene 
2022, 41, 125–137, doi:10.1038/s41388-021-02039-2. 

70.  Quan, Y.; Zhang, X.; Wang, M.; Ping, H. Histone Lysine Methylation Patterns in 
Prostate Cancer Microenvironment Infiltration: Integrated Bioinformatic Analysis and 
Histological Validation. Front. Oncol. 2022, 12, 981226, 
doi:10.3389/fonc.2022.981226. 

71.  Tzelepi, V.; Logotheti, S.; Efstathiou, E.; Troncoso, P.; Aparicio, A.; Sakellakis, M.; 
Hoang, A.; Perimenis, P.; Melachrinou, M.; Logothetis, C.; et al. Epigenetics and 
Prostate Cancer: Defining the Timing of DNA Methyltransferase Deregulation during 
Prostate Cancer Progression. Pathology (Phila.) 2020, 52, 218–227, 
doi:10.1016/j.pathol.2019.10.006. 

72.  Enz, N.; Vliegen, G.; De Meester, I.; Jungraithmayr, W. CD26/DPP4 - a Potential 
Biomarker and Target for Cancer Therapy. Pharmacol. Ther. 2019, 198, 135–159, 
doi:10.1016/j.pharmthera.2019.02.015. 

73.  Burdelski, C.; Strauss, C.; Tsourlakis, M.C.; Kluth, M.; Hube-Magg, C.; Melling, N.; 
Lebok, P.; Minner, S.; Koop, C.; Graefen, M.; et al. Overexpression of Thymidylate 
Synthase (TYMS) Is Associated with Aggressive Tumor Features and Early PSA 
Recurrence in Prostate Cancer. Oncotarget 2015, 6, 8377–8387, 
doi:10.18632/oncotarget.3107. 

74.  Ngan, E.S.W.; Hashimoto, Y.; Ma, Z.-Q.; Tsai, M.-J.; Tsai, S.Y. Overexpression of 
Cdc25B, an Androgen Receptor Coactivator, in Prostate Cancer. Oncogene 2003, 22, 
734–739, doi:10.1038/sj.onc.1206121. 

75.  Roberts, B.K.; Collado, G.; Barnes, B.J. Role of Interferon Regulatory Factor 5 (IRF5) in 
Tumor Progression: Prognostic and Therapeutic Potential. Biochim. Biophys. Acta 
BBA - Rev. Cancer 2024, 1879, 189061, doi:10.1016/j.bbcan.2023.189061. 

76.  Chen, H.; Fang, S.; Zhu, X.; Liu, H. Cancer-Associated Fibroblasts and Prostate 
Cancer Stem Cells: Crosstalk Mechanisms and Implications for Disease Progression. 
Front. Cell Dev. Biol. 2024, 12, doi:10.3389/fcell.2024.1412337. 

77.  Ellis, L.; Loda, M. Advanced Neuroendocrine Prostate Tumors Regress to Stemness. 
Proc. Natl. Acad. Sci. 2015, 112, 14406–14407, doi:10.1073/pnas.1519151112. 

78.  Chakraborty, G.; Gupta, K.; Kyprianou, N. Epigenetic Mechanisms Underlying Subtype 
Heterogeneity and Tumor Recurrence in Prostate Cancer. Nat. Commun. 2023, 14, 
567, doi:10.1038/s41467-023-36253-1. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 25, 2024. ; https://doi.org/10.1101/2024.09.24.24314303doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.24.24314303
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

79.  Guijarro, M.V.; Nawab, A.; Dib, P.; Burkett, S.; Luo, X.; Feely, M.; Nasri, E.; Seifert, R.P.; 
Kaye, F.J.; Zajac-Kaye, M. TYMS Promotes Genomic Instability and Tumor Progression 
in Ink4a/Arf Null Background. Oncogene 2023, 42, 1926–1939, doi:10.1038/s41388-
023-02694-7. 

80.  Ibe, T.; Shimizu, K.; Nakano, T.; Kakegawa, S.; Kamiyoshihara, M.; Nakajima, T.; Kaira, 
K.; Takeyoshi, I. High-Grade Neuroendocrine Carcinoma of the Lung Shows Increased 
Thymidylate Synthase Expression Compared to Other Histotypes. J. Surg. Oncol. 
2010, 102, 11–17, doi:10.1002/jso.21576. 

81.  Gao, H.; Korn, J.M.; Ferretti, S.; Monahan, J.E.; Wang, Y.; Singh, M.; Zhang, C.; Schnell, 
C.; Yang, G.; Zhang, Y.; et al. High-Throughput Screening Using Patient-Derived Tumor 
Xenografts to Predict Clinical Trial Drug Response. Nat. Med. 2015, 21, 1318–1325, 
doi:10.1038/nm.3954. 

 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 25, 2024. ; https://doi.org/10.1101/2024.09.24.24314303doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.24.24314303
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

FIGURES 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 25, 2024. ; https://doi.org/10.1101/2024.09.24.24314303doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.24.24314303
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 25, 2024. ; https://doi.org/10.1101/2024.09.24.24314303doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.24.24314303
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Figure 1. Stemness-associated gene expression changes in PCa patient samples using 

multiple public datasets. A) Schematic representation of gene selection, transcriptomics and 

survival analyses to define potential prognostic biomarkers. B) i) Volcano plots showing the 

results of the differential expression analysis of all available genes within the included 

transcriptomics datasets. Red = significantly upregulated stemness-associated gene. Blue = 

significantly downregulated stemness-associated gene. Dark gray = Non-significantly 

dysregulated stemness-associated genes. Light gray = other genes available in the dataset. ii) 

Summary heatmap of the transcriptomics analyses performed in multiple publicly available 

datasets (n=1259). Genes of interest and the results of the differential expression analysis for 

each dataset are displayed. Each row represents the results of a specific comparison. Annotation 

depicts the absolute number of comparisons in which each gene is up (red) or downregulated 

(blue). Red = significantly upregulated gene. Blue = significantly downregulated gene. White = 

not significant changes. Gray = non available. Datasets: GSE35988 (n=122); GSE3933 (n=103); 

GSE46602 (n=50); GSE6956 (n=87); GSE70768 (n=179); TCGA-PRAD (n=548); GSE21034 

(n=150). Statistical significance was set to adjusted p value<0.05. 
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Figure 2. Uni and multivariable survival analysis. A) i) Examples of Kaplan-Meier (KM) curves 

depicting the association of each gene to the risk of event (purple = high expression of a gene; 

green: low expression of a gene). HR: Hazard Ratio; Cox P: p-value from the Cox proportional 

hazards model. Log-rank P: p value of the log-rank test. ii) Summary heatmap of the univariable 

survival analyses performed on multiple datasets. The red box indicates that high gene 

expression is associated with a high risk of an event (HR>1 and Cox P<0.05), blue boxes indicate 
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that high gene expression is associated with a low risk of survival-related events (HR<1 and Cox 

P<0.05) and white boxes indicate that there are no significant associations between gene 

expression and risk of an event. Gray = gene no available. Patients were stratified by the median 

expression of each gene. B) i) Examples of forest plots depicting the association of each gene to 

the risk of event adjusted for all available covariates using the TCGA-PRAD dataset. ii) Summary 

heatmap of the multivariable survival analyses performed on multiple datasets. The red box 

indicates that high gene expression is associated with a high risk of an event (HR>1 and Cox 

P<0.05), blue boxes indicate that high gene expression is associated with a low risk of survival-

related events (HR<1 and Cox P<0.05) and white boxes indicate that there are no significant 

associations between gene expression and risk of an event. Gray = gene no available. All 

comparisons consider low-expression patients as the reference group. Annotation depicts the 

absolute number of comparisons in which high expression of each gene is associated with high 

(red) or low (blue) risk. OS: Overall Survival; DSS: Disease-Specific Survival; PFS: Progression-

Free Survival; RFS: Relapse-Free Survival; MFS: Metastasis-Free Survival. Datasets: TCGA-

PRAD (n=497 PFS, n=337 DFS); GSE70768 (n=111 RFS); GSE70769 (n=92 RFS); GSE116918 

(n=248 RFS and MFS); GSE16560 (n=281 OS). Statistical significance was set at Cox P<0.05. 

**Cox P<0.01; ***Cox P<0.001. 
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Figure 3. Machine learning Random Forest algorithm for prognostic candidates’ selection. 

A) Heatmap summarizing the relative importance of the variables (genes) for all training datasets. 

The relative importance was converted into percentiles, where 1 represents maximum relative 

importance (red) and 0 indicates minimum relative importance (blue). Gray = gene not available 

in the dataset. The 15 top-ranked genes (purple) were selected as candidates for our stemness-

associated risk signature. B) i) Example of Kaplan-Meier (KM) curve using the TCGA-PRAD 

dataset depicting the association of the 7-gene score to the risk of progression (purple = high 7-

gene score; green: low 7-gene score). The coefficients for each gene were calculated by Lasso 

regression using TCGA-PRAD data, and the 7-gene score was constructed as follows: 

0.284×KMT5C - 0.0597×DPP4 + 0.2178×TYMS + 0.048×CDC25B + 0.09×IRF5 + 0.2723×MEN1 

+ 0.0827×DNMT3B. Patients were stratified by the median of the score. HR: Hazard Ratio; p-

value: p-value from the Cox proportional hazards model. Log-rank P: p value of the log-rank test. 

ii) Summary forest plot displaying the survival analysis of the association of the 7-gene signature 

with the risk of disease progression-events in the training datasets. Patients survival was analysed 

by either stratification by the median of the 7-gene score (circles) or taking the 7-gene score as a 

continuous variable (squares). On the right, heatmap depicting the concordance index value for 

each of the analyses. The concordance index is a performance measure of the signature within 

each dataset. Cox P = p-value of the Cox regression coefficient. HR = Hazard Ratio. (95% CI) = 

95% Confidence Interval. PFS: Progression-Free Survival; DFS: Disease-Free Survival; RFS: 

Relapse-Free Survival; OS: Overall Survival; MFS: Metastasis-Free Survival. Statistical 

significance was set at Cox P<0.05. *Cox P<0.05; **Cox P<0.01; ***Cox P<0.001; ****Cox 

P<0.0001. 
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Figure 4. Gene signature’s performance across external validation datasets A) i) Kaplan-

Meier curves depicting the association of the 7-gene score to the risk of disease progression-

events included in the validation datasets. The coefficients for each gene were calculated by 

Lasso regression using TCGA-PRAD data, and the 7-gene score was calculated as follows: 

0.284×KMT5C + 0.2723×MEN1 + 0.2178×TYMS + 0.09×IRF5 + 0.0827×DNMT3B + 

0.048×CDC25B - 0.0597×DPP4. Patients were stratified by the median of the score. HR: Hazard 

Ratio; Cox P: p-value from the Cox proportional hazards model. Log-rank P: p value of the log-

rank test. ii) Summary forest plot displaying the survival analysis of the association of the 7-gene 

signature with the risk of disease progression-events in the validation datasets. Patients survival 
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was analysed by either stratification by the median of the 7-gene score (circles) or taking the 7-

gene score as a continuous variable (squares). On the right, heatmap depicting the concordance 

index value for each of the analyses. The concordance index (CI) is a performance measure of 

the signature within each dataset. RFS: Relapse-Free Survival; OS: Overall Survival. B) Forest 

plots depicting the association of each gene to the risk of event adjusted for all available 

covariates within each validation dataset. Cox P = p-value of the Cox regression coefficient. HR 

= Hazard Ratio. [95% CI] = 95% Confidence Interval. Datasets: GSE54460 (n=106); GSE94767 

(n=233); DKFZ (n=81); SU2C-PCF (n=81).Statistical significance was set at Cox P<0.05. *Cox 

P<0.05; **Cox P<0.01; ***Cox P<0.001; ****Cox P<0.0001.  
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Figure 5. Transcriptome analysis of the MDA PCa PDX series. A) Schematic representation 

of the MDA PCa PDX series establishment and transcriptome analysis (n=44) (created with 

BioRender.com). B) i) Heatmap depicting unsupervised clustering analysis of RNAseq data from 

the 44 MDA PCa PDXs considering the expression of the 7-gene signature (KMT5C, MEN1, 

TYMS, IRF5, DNMT3B, CDC25B and DPP4). Red, white, and blue represent greater, 

intermediate, and lower gene expression levels. ii) Violin plot showing the 7-gene score levels in 

no-NEPC and NEPC samples from the MDA PCa PDX series. iii) Violin plots showing the 

expression levels (FPKM) of the genes included in the 7-gene score in no-NEPC and NEPC 

samples from the MDA PCa PDX series. C) i) PCA biplot considering the expression of the 7-

gene signature using the MDA PCa PDX data assessed by RNA-seq. Each point represents one 

PDX. Samples are coloured according to the histopathological classification: adenocarcinoma 

(red), sarcomatoid (beige) and neuroendocrine (purple). ii) Bar plot showing the contribution (%) 

of each gene in the signature to the variance in the PC1 from the PCA. D) ROC curve showing 

the performance of the 7-gene score in classifying MDA PCa PDXs as NEPC. Statistical 

significance was calculated using Student’s t test and was set at p<0.0.5. *p<0.05; **p<0.01; 

***p<0.001; ****p<0.0001. 
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Figure 6. Clinical validation in NEPC samples. A) i) Heatmap depicting an unsupervised 

clustering analysis of RNAseq data from the MDA PCa PDX series considering the expression of 
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the 70-gene signature proposed by Beltran et al. [12] ii) Heatmap depicting an unsupervised 

clustering analysis of RNAseq data from the MDA PCa PDX series considering the expression of 

the 70-gene signature proposed by Beltran et al. plus the 7 genes (KMT5C, MEN1, TYMS, IRF5, 

DNMT3B, CDC25B and DPP4) from the risk score model propose in our work. B) i) Heatmap 

depicting an unsupervised clustering analysis of RNAseq data from human patients in Beltran et 

al., dataset (n=49) [12] considering the expression of the 7-gene signature. Red, white, and blue 

represent greater, intermediate, and lower gene expression levels. Expression values are 

presented as z-scores. ii) Violin plot showing 7-gene score levels in CRPC-Adeno and CRPC-NE 

samples from the Beltran et al., dataset. C) i) Violin plot showing risk score levels in samples from 

the Beltran et al., dataset according to the histological classification: prostate adenocarcinoma 

without neuroendocrine differentiation, prostate adenocarcinoma with neuroendocrine 

differentiation >20%, small-cell carcinoma, large-cell neuroendocrine carcinoma, and mixed 

small-cell carcinoma–adenocarcinoma. ii) ROC curve showing the performance of the 7-gene 

score in classifying PCa patient samples from Beltran et al. dataset as Large-Cell NEPC. 

Statistical significance was calculated using Student’s t test or ANOVA followed by Tukey’s test, 

and was set at p<0.05. **p<0.01; ****p<0.0001.  
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