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Bayesian tomography of high-dimensional
on-chip biphoton frequency combs with
randomized measurements

Hsuan-Hao Lu 1,2,6 , Karthik V. Myilswamy 2,6 , Ryan S. Bennink1,
Suparna Seshadri 2, Mohammed S. Alshaykh 2,3, Junqiu Liu 4,
Tobias J. Kippenberg 4, Daniel E. Leaird 2,5, Andrew M. Weiner 2 &
Joseph M. Lukens 1

Owing in large part to the advent of integrated biphoton frequency
combs, recent years have witnessed increased attention to quantum
information processing in the frequency domain for its inherent high
dimensionality and entanglement compatible with fiber-optic networks.
Quantum state tomography of such states, however, has required complex
and precise engineering of active frequency mixing operations, which are
difficult to scale. To address these limitations, we propose a solution that
employs a pulse shaper and electro-optic phase modulator to perform
random operations instead of mixing in a prescribed manner. We suc-
cessfully verify the entanglement and reconstruct the full density matrix of
biphoton frequency combs generated from an on-chip Si3N4 microring
resonator in up to an 8 × 8-dimensional two-qudit Hilbert space, the
highest dimension to date for frequency bins. More generally, our
employed Bayesian statistical model can be tailored to a variety of quan-
tum systems with restricted measurement capabilities, forming an
opportunistic tomographic framework that utilizes all available data in
an optimal way.

Encodingd levels of quantum informationon single photons, knownas
photonic qudits1, offers crucial advantages for quantum communica-
tion and networking applications2, such as higher information
capacities3, increased noise tolerance4,5, and stronger violations of
Bell’s inequalities6. Generation and manipulation of photonic qudits
have been explored in many degrees of freedom, including path7,8,
orbital angular momentum9,10, frequency bins11–14, and time bins15,16.
Integrated photonics plays a pivotal role in scaling the complexity of
quantum states17,18 and quantum operations19, and the frequency

degree of freedom is particularly attractive as on-chip biphoton fre-
quency combs (BFCs) can produce a large number of spectrally
entangled bins in a compact fashion.

Joint spectral intensity (JSI) measurements are commonly used to
characterize BFCs, but such measurements are insensitive to phase
coherence (and hence entanglement) across frequency-bin pairs.
Thus, reconstruction of BFC density matrices has been realized
through activemixing of frequency bins11,12,20, such thatmeasurements
in multiple bases can be realized. In one method, by properly setting
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the amplitude andphase on a pulse shaper and themodulation voltage
on a subsequent electro-optic phase modulator (EOM), one can filter
out overlapping sidebands to perform projective frequency-bin
measurements11,12. Alternatively, a quantum frequency processor21

can be used to synthesize full quantum gates for tomography 20.
Nevertheless, both methods face roadblocks en route to higher
dimensions: aggressive amplitude filtering of the input state is inevi-
table in the first approach, while the number of elements required for
arbitrary frequency qudit operations22 limits the maximum dimen-
sionality possible with current technology. Accordingly, these existing
methods are ill-suited to single-frequency electro-optic modulation:
for them, the infinite Fourier series of Bessel functions produced by
sinewave electro-optic modulation—a far cry from standard quantum
bases—present a challenge to be overcome.

In this work, we instead leverage the complex mixing behavior
of an EOM to our advantage as built-in randomized measurements
for BFC characterization. By applying Bayesian tomographic
techniques23,24, we obtain complete state estimates for any dataset,
including uncertainties commensurate with the data gathered, thus
bolstering all results obtained from our measurement technique
with a principled foundation. Importantly, these Bayesian features
extend beyond the specific nuances of frequency-bin encoding to
any quantum system, offering the promise of meaningful inference
irrespective of whatever experimental constraints may have limited
the measurements performed.

Results
Experimental scheme and Bayesian analysis
Figure 1a illustrates the experimental setup and concept behind our
proposed scheme. The states of interest are BFCs with mode spa-
cing Δω/2π ~40 GHz and dimension d in both signal and idler pho-
tons. The first test source is prepared by pumping a periodically
poled lithium niobate (PPLN) waveguide with a continuous-wave
laser operating at ∼780 nm, followed by filtering the broadband
spontaneous parametric down-conversion spectrum with a

Fabry-Perot etalon20,21. The second source exploits spontaneous
four-wave mixing in an on-chip Si3N4 microring resonator (MRR)25,
where we pump the ring with a tunable continuous-wave laser
operating in the optical C-band at one of the ring resonances11,12.
Ideal maximally entangled states are of the form
∣Ψd

�
= 1ffiffiffi

d
p ∑d

m= 1 e
iαm ∣m,mi, where ∣m,mi represents the photon pair

which is centered at frequency ω0 ± (m + B)Δω for the signal (idler);
αm is the phase of each pair. The integer B here denotes the number
of signal (idler) bins at the center of the biphoton spectrum that are
blocked by bandstop filters (omitted in Fig. 1a). Details regarding
BFC state preparation can be found in the “Methods”.

The generated state is then directed to a pulse shaper and an
EOM for the implementation of Rtot randomly chosen operations.
For each operation, we apply a set of d random spectral phases θm
(ϕm) onto the signal (idler) bins with the pulse shaper. The spectral
phases (θm,ϕm) are uniformly sampled between 0 and 2π. The EOM
is driven by a sinusoidal voltage with amplitude δ and frequency
equal to the mode spacing Δω, imposing a temporal phase
exp½�iδ sinΔωt� onto each photon—equivalently introducing cou-
pling between distinct frequency bins with weights given by Bessel
functions of the first kind Jn(δ). The strength of the imposed phase
modulation δ is selected from a set of Rtot values equispaced
between δ 2 ½0,δmax�, with δmax set by the maximum radio-
frequency (RF) power attainable at Δω. Among these Rtot opera-
tions, we designate δ = 0 for the first measurement (i.e., the EOM
turned off, making it a conventional JSI), while the modulation
indices for the remaining Rtot − 1 operations are chosen in a random
order from the equispaced set, without replacement.

The photons are then passed to a wavelength-selective switch
and we scan the filters to collect coincidences over the original d × d
frequencymode grid for each implemented operation, omitting any
photons scattered outside of this computational space. Figure 1d
shows examples of such measurements, simulated using multi-
nomial statistics, corresponding to two different random opera-
tions for the cases of a classically correlated separable state
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Fig. 1 | Illustrationofour proposed scheme. a Experimental setup and conceptual
illustration. A random operation is uniquely determined by the d random spectral
phases θm (ϕm) on the signal (idler) bins and the EOM modulation index δ.
bMicroscope image of the MRR chip. The device in the last column of the second

row is used experimentally. c JSI of the output generated by theMRR.d Examplesof
JSI measurements simulated for the cases of both an entangled state and a classi-
cally correlated separable state for two different operations with δ = 1.5 rad (left)
and δ = 2 rad (right) and randomly chosen spectral phases.
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(ρsep =
1
d∑

d
m= 1∣m,mi m,mh ∣) and a maximally entangled quantum

state (ρent =
1
d∑

d
m,n= 1∣m,mi n,nh ∣) for d = 4. In the absence of mod-

ulation (δ = 0), their JSIs are identical, yet when the EOM is turned
on, the frequency correlations vary strongly. For example, in the
extreme case of complete incoherence between energy-matched
bins (ρsep here), applying random phases on the initial pulse shaper
has no impact on the measured output. Such differences imply that
a collection of thesemeasurements can be exploited to infer the full
density matrix.

Given our knowledge of the quantumoperations applied and a set
of R d × d coincidence results, we then employ Bayesian tomographic
techniques23,24 to estimate the input quantum state. Conceptually
simple—though numerically challenging—Bayesian quantum state
tomography (QST) assigns a posterior probability distribution to all
unknown parameters x, given a set of observations D, according to
Bayes’ theorem, Prðx∣DÞ= PrðD∣xÞPrðxÞ=PrðDÞ, which incorporates
both a physical model through PrðD∣xÞ and any prior information in
Pr(x). Significantly, the estimator formed by averaging any quantity of
interest over the posterior Prðx∣DÞ is guaranteed to offer the lowest
squared error on average26, making the Bayesian mean provably
optimal for any number of measurements. Using the model and
algorithm described in the “Methods”, we obtain estimates of the
density matrix ρ, fidelity F d , and logarithmic negativity Ed; Ed >0 is a
sufficient condition for nonseparability, and Ed upper bounds distill-
able entanglement27,28.

BFCs from a χ(2) source
For PPLN experiments, we consider BFCs of qudit dimension
d∈ {3, 4, 5}. We implement a total of Rtot = 21 randomly chosen
operations for each dimension, with a maximum modulation index
δmax = 2:5 rad. We compute the fidelity of the retrieved density matri-
ces at various stages of Bayesian estimation with respect to the ideal
state ∣Ψd

�
with αm = β2LΔω2(m+B)2, corresponding to dispersion

accumulated over L = 20 m of single-mode fiber (approximate length
of fiber between the PPLN source and EOM). Figure 2a shows the
evolution of the Bayesian-estimated fidelity after R ≤ Rtot random
operations are performed. (For these and all results in this paper, no
subtraction of accidentals is performed.) In Fig. 2b, we plot the mean
density matrices retrieved from Bayesian analysis for d = 5, at specific
numbers of random operations. For the case of R = 1, the density
matrix resembles a separable statewith small off-diagonal elements.As
R increases, the off-diagonal elements rise as the phase coherence in
the BFC is revealed by operations involving frequency mixing; the
fidelity with respect to the ideal state increases accordingly, conver-
ging at R ≈ 10 operations for all three dimensions (see “Methods” for
discussion of possible explanations of this convergence behavior).

In Fig. 3, we plot both the ideal and the final estimated density
matrices (R =Rtot = 21). Both absolute values and phases align well with
theory—the only discrepancy being the inconsequential phase values
of the near-zero off-diagonal elements. From the Bayesian results, we
report fidelities Fd of F 3 = ð95:8±0:4Þ%, F 4 = ð94:0±0:4Þ%, and
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F 5 = ð91:7 ±0:4Þ%, which are in the neighborhood of the theoretically
predicted F 3 = 97:1%, F 4 = 96:0%, and F 5 = 94:9% for a white noise
model ρλ = λ∣Ψd

�
Ψd

�
∣+ 1�λ

d2 Id2 , with λ chosen such that the
coincidences-to-accidentals ratio (CAR) matches the experimentally
measured value of 90 (see “Methods”). The Bayesian-estimated log-
negativities are E3 = 1.523 ± 0.006 ebits, E4 = 1.911 ± 0.006 ebits, and
E5 = 2.198 ± 0.007 ebits, comparable with those of ∣Ψd

�
(log2 d) given

by 1.58, 2, and 2.32 ebits, respectively.

BFCs from a χ(3) source
We then adopt the same methodology for BFCs generated using an
on-chip Si3N4 MRR (Fig. 1b)25. The measured JSI is shown in Fig. 1c,
with coincidences recorded over 49 signal-idler bin pairs, eight of
which (bins 23–30) are selected for testing. The estimated on-chip
pair generation rate varies between ∼1.3 × 106 and ∼2.2 × 106 s−1 per
frequency-bin pair, and the CAR—here defined as the ratio of a given
diagonal element to the average of all off-diagonal elements—lies in
the interval [17, 30] for the eight bins we test. We perform tomo-
graphy for qudit dimension d∈ {2, 3,…, 8} with Rtot = 30 operations
for each d and δmax = 3:4 rad (increased from 2.5 rad in the PPLN
case due to reoptimization of the RF setup for lower loss). We also
apply additional spectral phases that compensate for the residual
biphoton phase (see “Methods”), and thus we compute the fidelities
of retrieved density matrices with respect to the ideal state ∣Ψd

�
with αm = 0.

In Fig. 4a, we plot the final estimated density matrices. The ele-
ments indexed by ∣m,mi n,nh ∣ have strong nonzero amplitudes,
agreeing well with theory for ideal entangled states. The background
corresponding to energy-mismatched bins (gray baseline on the
diagonal) is consistent with a white noise model and real-valued owing
tohermiticity. Figure4bplots thefidelitieswith respect to ∣Ψd

�
and the

corresponding log-negativities Ed, lying comfortably within the range
predicted for our noise model using experimentally observed CARs
(shaded region). Significantly, our d = 8 result of E8 = 2.50±0.08 ebits
can only be achieved by two-qudit states with d ≥ 6, indicating the
genuine high-dimensional nature of the observed entanglement.
These results showcase the highest dimension of a fully reconstructed

density matrix—Hilbert space dimension of 64—in experimental
frequency-bin encoding.

Discussion
Technologically speaking, our approach aligns closely with recent
ideas presented in EOM-based frequency-bin quantum randomwalks29,
where here we precede the walk with random spectral phases and
consider varying circuit depths. Yet beyond the confines of frequency-
bin encoding, our statistical treatment hints at themuchwider value of
Bayesian models in quantum information. Neither the choice of mea-
surement settings nor number of datapoints has any bearing on the
legitimacy of Bayesian tomography23,24; hence, Bayesian estimationwill
return a reasonable result for any dataset, with automatic uncertainty
quantification indicating the confidence warranted from the data. This
feature imparts Bayesian inference with unique flexibility compared to
other advanced random measurement approaches, in that it does not
assume, e.g., low-rank states30 or rely onunitary operations drawn from
specific distributions31,32. Therefore, any quantum system for which an
appropriate physical model can be constructed is ripe to potentially
benefit from Bayesian models like the one presented here. Although
not required conceptually, well-chosen measurements are practically
valuable for obtaining final estimates accompanied by low uncertain-
ties. Our experimental results show through example that the datasets
from randommodulation aremore than sufficient to converge from an
initially uniform (Bures) prior to density matrices with small error bars
and in good agreement with the expected ground truth. Indeed,
arguments from a simple theoretical model suggest that random EOM
measurements with δmax ~OðdÞ efficiently cover the entire Hilbert
space of a d-dimensional quantum system (see “Methods” for details),
so that our measurement approach offers a straightforward path for
high-dimensional frequency-bin characterization and should widen
opportunities for BFCs in quantum information processing.

Methods
PPLN source setup
Our test source is a 2.1-cm-long fiber-pigtailed PPLN ridge waveguide
(AdvR), possessing an internal efficiency of 150%/W for second-
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harmonic generation and fiber-coupling efficiency of ~75% per facet.
We couple a continuous-wave laser (Toptica) operated at ~5mW and
∼780 nm into the PPLN waveguide, temperature-controlled to 51.6 °C
for SPDC under type-0 phase matching. Broadband spectrally entan-
gled photon pairs spanning >5 THz are generated and subsequently
filtered by a tunable fiber-pigtailed Fabry-Perot etalon (Luna Innova-
tions) with 20GHz mode spacing and a full-width at half-maximum
linewidth of 1 GHz. We carefully tune the etalon’s temperature to align
its transmission peaks with the generated entangled photons, i.e., to
maximize the coincidences between the symmetric, spectrally filtered
mode pairs.

To minimize crosstalk in our 20GHz-resolution demultiplexer
(FinisarWaveshaper 4000S/X), we utilize the first pulse shaper (Finisar
Waveshaper 1000S) to perform amplitude filtering (on top of the
phase masks programmed for the QST) and block every other fre-
quency bin, resulting in a 40GHz-spaced BFC with a measured CAR ≈
90. A 300GHz bandstop filter (corresponding to the case of B = 3) is
programmed on the same pulse shaper in the middle of the BFC
spectrum, which allows us to apply strong modulation on the EOM
without the possibility of the signal photon jumping over into the
idler’smodes, and vice versa. For coincidencemeasurements, we use a
window of 128 ps and integration times of 20 s for all dimensions.

MRR source set up
The Si3N4 MRR used in our experiment is fabricated using the opti-
mized photonic Damascene reflow process33 with a cross-section of
2μm×0.95μm. Such a process has enabled ultralow loss waveguides
that have paved the way for dissipative Kerr solitons with free spectral
ranges (FSRs) as low as 10GHz25. In the current work, the radius of the
ring is 561μm, corresponding to an FSR of 40.5 GHz—within the range
of commercial EOMs—allowing us to drive the EOM at a frequency
equal to the FSR for randomoperations. The gap between the ring and
the bus waveguide is 0.3μm, resulting in strong overcoupling with an
intrinsic Q-factor of ∼107 and a loaded Q-factor of ∼106. We pump the
ring using a tunable continuous-wave laser (New Focus) operating in
the optical C-band, with an on-chip power of ∼10mW—well below the
classical comb threshold of ∼80mW. The pump is amplified using an
erbium-doped fiber amplifier (EDFA), which is subsequently filtered
using a set of two 100GHz-wide dense wavelength division multi-
plexing (DWDM) filters to suppress amplified spontaneous emission
from the EDFA. Lensed fibers are used to couple the pump into the
MRR, which is positioned on a temperature-controlled stage main-
tained at ∼23 °C. The fiber-to-fiber coupling loss of the ring is around
∼4 dB. Such a low loss was realized using engineered inverse wave-
guide tapers34. When the pump is tuned into the ring resonance
(∼1550.5 nm) and operated below threshold for classical comb gen-
eration, it gives rise toBFC states. Since the pumpandnewly generated
biphotons are in the same wavelength band, it is essential to suppress

the residual pump after the ring to reduce accidentals in coincidence
measurements. We use a set of three 200GHz-wide DWDM filters,
which when combined with bandstop filters in the pulse shaper and
demultiplexer gives a net pump suppression of ~100dB. We also tap a
portion of the pump power to track its wavelength using a wavelength
meter, setting up a computer-based feedback loop to ensure that the
pump is operated at the intended resonance. For coincidence mea-
surements, we use a window of 2048 ps (roughly equivalent to the
inverse resonance linewidth) and integration time of 5 s for
d∈ {2, 3,…, 6}. For d∈ {7, 8}, we reduce the integration time to 3 s in
the interest of minimizing the total experimental duration.

It is necessary to experimentally characterize the FSR of the
MRR to determine the precise modulation frequency needed. In
addition to this, we also characterize the residual spectral phase
accumulated by the biphotons, likely due to fiber dispersion, to
precompensate for it. For characterization of these quantities, the
experimental setup remains the same as shown in Fig. 1a. We select
two adjacent signal-idler bin pairs in the first pulse shaper and
drive the EOM at a frequency ωRF with amplitude δ = 1.43 such that
∣J0ðδÞ∣= ∣J1ðδÞ∣ for equal mixing. We then pass one energy-matched
pair of signal-idler frequency bins through the demultiplexer, now
consisting of equal contributions from the adjacent bin due to
phase modulation, and measure the biphoton time-correlation
function. The theoretical expression for the coincidence rate,
assuming both bins have identical Lorentzian lineshape and equal
probability amplitude, is given by35

RðτÞ / e�γ∣τ∣ 1� cos ϕ+ϕ0 � ωFSR � ωRF

� �
τ

� 	
 � ð1Þ

where γ represents the Lorentzian linewidth, τ the signal-idler delay, ϕ
the joint spectral phase between the bins applied by the pulse shaper,
ϕ0 the residual biphoton phase, andωFSR the FSR. In Fig. 5a, we plot the
coincidences at τ =0 as a function ofϕ for a set of two adjoining signal-
idler bin pairs, where τ =0 is defined as thepeakof the histogram in the
unmodulated case. The offset of the experimentally obtained cosine
function from the origin can be used to deduce the residual spectral
phase between the bins. This process is repeated for all sets of
adjoining signal-idler bin pairs used in our experiment to deduce the
residual spectral phase of the entire biphoton state. For finding ωFSR,
we again work with a set of two adjoining signal-idler bin pairs and
operate at a spectral phase that minimizes the coincidences at τ = 0. In
Fig. 5b, we plot the coincidences integrated over τ as we sweep the
applied RF frequency ωRF. When ωRF =ωFSR, the coincidences are
minimized, so that Fig. 5b impliesωFSR/2π = 40.5 GHz. The solid lines in
Fig. 5 are theoretical estimates, scaled and vertically offset to match
the datapoints via least squares. The vertical offset and the scaling
account for both the nonzero accidentals and unequal bin probability
amplitudes. The width of the trace in Fig. 5b can be expressed as 2γ
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deviation predicted by Poissonian statistics.
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from Eq. (1), from which γ/2π ≈ 200MHz is inferred. These obtained
resonator linewidth and FSR values are consistent with linear spectro-
scopy measurements.

Bayesian inference model
The ultimate goal of the inference process is to estimate the full BFC
state, which can be represented as a d2 × d2 density matrix ρ. The fre-
quency bins of the signal (idler) qudit possess annihilation operators
âðSÞ
k (âðIÞ

l ) where k, l∈ {1,…, d} correspond to center frequencies of
ωk =ω0 + (k +B)Δω and ωl =ω0 − (l + B)Δω. The density matrix of
interest can be formally written as

ρ = ∑
d

k,l,k0 ,l0 = 1
ρðklÞðk0 l0 Þ âðSÞ

k

h iy
âðIÞ
l

h iy
∣vaci vach ∣âðSÞ

k0 âðIÞ
l0 , ð2Þ

where ∣vaci is the vacuum state.
We use the index s to denote a specific measurement, which

consists of a particular EOM and pulse shaper setting r(s)∈ {1,…, Rtot},
the signal frequency bin measured m(s)∈ {1,…, d}, and the idler bin
measured n(s)∈ {1,…, d}. For notational convenience, the explicit s-
dependence is suppressed inmany of the formulas below, but remains
implied for (r,m, n). For a given r, the frequency bins of the signal
photon undergo unitary transformations into the output modes via

b̂
ðSÞ
m = ∑

d

k = 1
V ðrÞ

mkâ
ðSÞ
k , ð3Þ

and similarly for idler photon we have

b̂
ðIÞ
n = ∑

d

l = 1
W ðrÞ

nl â
ðIÞ
l : ð4Þ

The unitary operations V(r) and W(r) consist of line-by-line phase
shifts on each of the input modes, followed by sinewave electro-optic
modulation. The index r defines the phase shifts andmodulation index
for a specific setting: θðrÞn , ϕðrÞ

n , δ(r). We can therefore write

V ðrÞ
mk = Jm�kðδðrÞÞeiθðrÞk , ð5Þ

and

W ðrÞ
nl = Jl�nðδðrÞÞeiϕðrÞ

l , ð6Þ

where Jn( ⋅ ) is the Bessel function of the first kind, and for definiteness
we have assumed a modulation function of the form
exp½�iδðrÞ sinΔωt�. The only major difference between the signal and
idler equations is the input/output index reversal in the Bessel function
order, which results from our definition of signal frequencies that
increase with index and idler frequencies that decrease with index.

After these operations, we look for coincidences between bins m
and n, the probability of which can be computed for the input density
matrix as

ps = m, nh ∣ρ∣m, ni= vach ∣b̂
ðSÞ
m b̂

ðIÞ
n ρ b̂

ðSÞ
m

� 
y
b̂
ðIÞ
n

� 
y
∣vaci

= ∑
d

k,l,k0 ,l0 = 1
ρðklÞðk 0l0 ÞV

ðrÞ
mkW

ðrÞ
nl V ðrÞ

mk0

h i
* W ðrÞ

nl0

h i
*

= ∑
d

k,l,k0 ,l0 = 1
ρðklÞðk 0l0 Þ Jm�kðδðrÞÞ Jl�nðδðrÞÞ Jm�k 0 ðδðrÞÞ Jl0�nðδðrÞÞei θðrÞ

k
+ϕðrÞ

l
�θðrÞ

k0 �ϕðrÞ
l0

� 	
,

ð7Þ

using Eqs. (2)–(6) to simplify. This expression provides a linear map-
ping from the density matrix elements ρðklÞðk0l0 Þ to each output prob-
ability ps.

We then need to relate these probabilities to the observed
coincidence counts Ns through an appropriate likelihood function.

In typical quantum tomographic contexts where the full Hilbert
space is detected at each setting, a multinomial model is the most
conceptually straightforward23; in our case, this would consist of
products of the factors pNs

s . However, such a model does not readily
apply to situations in which some of the outcomes are unmonitored.
In our particular experiment, many bins outside of the original d2-
dimensional computational space can be populated, owing to the
nonzero Bessel function weights in Eq. (7). As a rule of thumb, the
success probability (i.e., the possibility of a single photon staying in
the original d-mode computational space) is roughly 1/2 when the
modulation depth δ ~OðdÞ36. Rather than attempting to measure all
output mode combinations—which in principle involves an infinite-
dimensional Hilbert space and in practice means the addition of
many measurements with few counts—we focus only on the central
d × d space here.

On the model side, we can account for unobserved outcomes
by introducing an additional flux parameter K, defined as the aver-
age number of total coincidences that would be measured if all
(m, n) combinations were tested. Since the EOM and pulse shaper
operations are unitary when considered over all modes—apart from
an overall insertion loss that does not vary with setting r—this scale
factor is fixed for all measurement settings. It also automatically
accounts for efficiency; explicitly, it can be written as K = ηSηIΦΔT,
where ηS (ηI) is the total system efficiency from generation through
detection for the signal (idler), Φ the photon pair generation flux,
and ΔT the integration time. Although these quantities themselves
could be inferred by considering both singles counts as well as
coincidences20,37,38, they are not of interest in the present investi-
gation, and so through K we are able to reduce to their combined
effect only.

Thus, the mean number of coincidences for a specific setting s
becomes Kps, which we can model with a Poissonian distribution, the
product of which produces the full likelihood LDðρ, KÞ / PrðD∣ρ, KÞ

LDðρ, KÞ=
YRd2

s = 1

e�Kps ðKpsÞNs , ð8Þ

where D= fN1, . . . ,NRd2 g denotes the set of measured coincidences
for all Rd2 settings. This likelihood matches the form we adopted
previously in the construction of JSIs (not the full quantum state)
from random measurements39. And not only does it readily handle
probabilities that do not encompass the full Hilbert space, but it
also more accurately reflects the physical situation of high-
dimensional measurements with single-outcome detectors. For
example, our use of raster scanning with two single-photon
detectors means that, for any given configuration, we measure
events only for a specific (m, n) frequency-bin pair. Although one
can pool the results for all pairs (m, n) and view them synthetically
as resulting from a single ΔT integration time of true d2-outcome
measurements—the situation assumed by a multinomial distribu-
tion—this ultimately does not align with the actual measurement
procedure. Accordingly, the Poissonian likelihood provides both a
practical and conceptually satisfying model for our tomographic
scenario.

With the likelihood defining the relationship between a given
densitymatrix and the observed data, Bayesian inferencenext requires
specification of a suitable prior distribution for ρ and K. In the case of
QST,uniformpriors are generally preferred, as these apply appreciable
weights to all possible states and thereby minimally bias the final
results. Although a variety of reasonable uninformative priors can be
posited for density matrices, we select the Bures distribution, which
enjoys a unique position as the singlemonotonemetric which reduces
to both the Fisher and Fubini–Study metrics in the classical and pure
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state limits, respectively40, and in this sense can claim preference as a
“definitive” uniform prior for Bayesian inference41.

To work with the Bures ensemble, it is convenient to express any
d2 × d2 density matrix ρ in the computational basis as

ρ=
ðId2 +UÞGGyðId2 +UyÞ

Tr ðId2 +UÞGGyðId2 +UyÞ
h i , ð9Þ

where the d2 × d2 matrices Id2 , U, and G are the identity, a unitary
matrix, and a general complex matrix, respectively. This expression
automatically satisfies all physicality conditions (unit-trace, hermiti-
city, and positive semidefiniteness); by sampling U from the Haar
distribution and G from the Ginibre ensemble, the ρ thus formed
represents a single draw from the Bures distribution41. We can in turn
parameterize ρ by the complex vector y= ðy1, . . . ,y2d4 Þ, with each yk
observing a complex standard normal distribution yk ~i:i:d: CN ð0,1Þ. d4 of
the components comprise the d2 × d2 elements of the Ginibrematrix G
directly, while the remaining d4 parameters form a second Ginibre
matrix which is converted to the unitary U through the Mezzadri
algorithm42, thereby ensuring Haar randomness.

In addition to the parameters forming ρ, the scale factor K must
also be suitably parameterized. Following ref. 39, we find it convenient
to write K =K0(1 + σz), where K0 and σ are hyperparameters defined
separate of the inference process, and z is taken to follow a standard
normal distributionN ð0,1Þ, leading to a normal prior on K of mean K0

and standard deviation K0σ. We take σ =0.1 and K0 equal to the sum of
the counts in all d2 bins for the first JSI measurement (r = 1), where the
absence of modulation ensures that all initial photon flux remains in
measured bins, i.e., K0 = ∑d2

s = 1 Ns. This provides an effectively uniform
prior, since a fractional deviation of 0.1 is much larger than the max-
imum amount of fractional uncertainty 1=

ffiffiffiffiffiffi
K0

p
≈ 0:02 expected from

statistical noise at our total count numbers; the use of a normal dis-
tribution simplifies the sampling process.

The total parameter set can therefore be expressed as the vector
x= ðy, zÞ= ðy1, . . . ,y2d4 , zÞ, with the prior distribution

π0ðxÞ /
Y2d4

k = 1

e�
1
2∣yk ∣

2

0
@

1
Ae�

1
2z

2
: ð10Þ

We note that this parameterization entails a total of 4d4 + 1 inde-
pendent real numbers (2d4 complex parameters for ρ, one real para-
meter for K)—noticeably higher than theminimumof d4 − 1 required to
uniquely describe a density matrix. Nevertheless, this ρ(y) para-
meterization is to our knowledge the only existing constructive
method to produce Bures-distributed states, and is straightforward to
implement given its reliance on independent normal parameters only.

Following Bayes’ rule, the posterior distribution becomes

πðxÞ = 1
Z LDðxÞπ0ðxÞ /

YRd2

s = 1

e�KðzÞps ðyÞ KðzÞpsðyÞ
� 	Ns

0
@

1
A Y2d4

k = 1

e�
1
2∣yk ∣

2

0
@

1
Ae�

1
2z

2
, ð11Þ

where Z is a constant such that ∫dxπ(x) = 1. We have adopted this
notation for Bayes’ theorem—rather than the more traditional
Prðx∣DÞ= PrðD∣xÞPrðxÞ=PrðDÞ—to emphasize the functional depen-
dencies on x, which are all that must be accounted for in the sampling
algorithm below. From π(x), the Bayesian mean estimator fB of any
quantity (scalar, vector, ormatrix) expressible as a function of x canbe
estimated as

f B =
Z

dxπðxÞf ðxÞ ≈ 1
S
∑
S

j = 1
f ðxðjÞÞ, ð12Þ

where, in lieu of direct integration, S samples {x(1),…, x(S)} are obtained
from thedistributionπ(x) throughMarkov chainMonte Carlo (MCMC)
techniques, as described below.

MCMC sampling
Acquiring the samples necessary for computation of high-dimensional
integrals of the form in Eq. (12) forms the primary bottleneck in Baye-
sian inference. The most common family of solutions to address this
challenge fall under the general umbrella of MCMC, in which samples
from a well-chosen Markov chain are designed to approach the statis-
tics of π(x) asymptotically26,43. Recently, we applied a particularly effi-
cient MCMC algorithm—known as preconditioned Crank–Nicolson
(pCN)44—to the problem of Bayesian QST, finding significant compu-
tational improvements over previous implementations24. We utilize the
samepCN approach here; the only difference from the algorithm in ref.
24 is a simpler acceptance probability depending exclusively on the
likelihood ratio, a consequence of the fact that all parameters here have
normally distributed priors44.

For each collection of measurement results considered in the
main text, we retain S = 210 samples {(y(j), z(j))} from an MCMC chain of
total length ST, whereT is a thinning factor that is successively doubled
until convergence is obtained. From these samples, we then compute
the Bayesian mean estimate of the density matrix

ρB =
1
S
∑
S

j = 1
ρðyðjÞÞ, ð13Þ

examples of which are plotted in Figs. 2–4. The mean and standard
deviation of fidelity with respect to some ideal state ∣Ψd

�
can also be

computed as

F d =
1
S
∑
S

j = 1
Ψd

�
∣ρðyðjÞÞ∣Ψd

� ð14Þ

and

ΔFd =
1
S
∑
S

j = 1
Ψd

�
∣ρðyðjÞÞ∣Ψd

�� 	2 � F d
2

� �1
2

, ð15Þ

respectively. For the PPLN states specifically, which are not dispersion-
compensated, we take the state for comparison as

∣Ψd

�
=

1ffiffiffi
d

p ∑
d

m= 1
eiβ2LΔω

2ðm+BÞ2 ∣m, mi, ð16Þ

with β2 = 2.06 × 10−2 ps2m−1 for standard single-mode fiber and
L = 20m. The phases of the MRR states are precompensated, so for
computing fidelities for them we use the uniform-phase version

∣Ψd

�
=

1ffiffiffi
d

p ∑
d

m= 1
∣m, mi: ð17Þ

In order to monitor convergence with T, we consider the
sequential fidelity, defined for a given T = 2n as

F n,n�1 = Tr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρðn�1Þ
B

q
ρðnÞ
B

ffiffiffiffiffiffiffiffiffiffiffiffi
ρðn�1Þ
B

qr !2

, ð18Þ

where we use the notation ρðnÞ
B to denote the Bayesian mean estimate

[Eq. (12)] for a chain of length ST = S × 2n. For a sufficiently large thin-
ning value F n,n�1 will converge to unity and remain for all subsequent
n. We note that this metric contains no reference to the ideal state
∣Ψd

�
, but checks for consistency between subsequent Bayesian

estimates only.
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Figure 6 plots these sequential fidelities as a function of thinning
(n = log2T) for all BFCs characterized in the main text. In all cases, we
consider the full measurement sets, R = 21 for the PPLN results and
R = 30 for the MRR findings, as these cases generally possess the
slowest MCMC convergence. As expected, the sequential fidelity
converges more rapidly with T for lower d; nonetheless, all examples
ultimately reach F n,n�1 > 0:99 at their respective maximum of n,
indicating high MCMC convergence for all reported ρB matrices.
Continuing to even larger values of T would certainly be desirable,
particularly for d = 7 and d = 8, yet we are currently limited by com-
putational power. For example, the d = 8 MCMC chain with T = 214

required almost a week to complete; with a total of 16,385 parameters
to infer (4d4 + 1), it is no surprise that we are pushing the limits of our
desktop computer. Indeed, to our knowledge the present results with
d2 = 64 represent a record-high Hilbert-space dimension for complete
Bayesian QST with a fully general (mixed state) prior, for any quantum
system, simultaneously implying the efficiency of our existing MCMC
algorithm as well as the importance of pursuing highly parallelizable
MCMC methods45 to reach even larger dimensions in the future.

Theoretical fidelities and ebits
In our quantum system, several sources of noise, such as multipair
emission and dark counts, are expected to be uniform across the BFC
bins. Accordingly, as a simple model, we theoretically anticipate a
ground truth quantum state of the form

ρλ = λ∣Ψd

�
Ψd

�
∣+

1� λ

d2 Id2 , ð19Þ

where ∣Ψd

�
is the idealmaximally entangled state [Eq. (16) or (17)], Id2 is

the d2 × d2 identity operator, and λ∈ [0, 1] determines the noise level.
In this section, we provide quantities of interest for ρλ in order to
compare against those found in Bayesian estimation, including CAR

CAR=
max
m

m, mh ∣ρλ∣m, mi
min
m,n

m, nh ∣ρλ∣m, ni = 1 +
dλ

ð1� λÞ , ð20Þ

fidelity Fd

F d = Ψd

�
∣ρλ∣Ψd

�
=
ðd2 � 1Þλ+ 1

d2 , ð21Þ

and log-negativity Ed (adapted from ref. 28)

Ed =
0 ;F d < 1=d

log2 dF d ;F d > 1=d

�
: ð22Þ

The fidelities and log-negativities reported for ρλ in the main text
are calculated using these equations. In general, both fidelity and Ed
deviate more strongly from their respective ideals as d increases for a
fixedCAR. The good agreement in themain text between the Bayesian-
estimated states and this simple white noise model suggests that our
understanding of noise processes in the system is well justified.

Theoretical analysis of measurement efficiency
In this section, we provide a basic theoretical analysis of the effec-
tiveness of our proposed tomographic method. We first consider a
highly simplified model that captures the key aspects of how phase
modulation and mode mixing enable tomographic reconstruction,
concentrating in this case on a single frequency-bin qudit occupying d
modes x∈ {1,…, d}. While the experiments in the main text examine
the joint state of two qudits instead, this simpler single-qudit case
reveals the basic principles of the tomography method with minimal
distractions. The only type of measurement considered is projection
onto the photon’s outputmode, reflecting the condition of frequency-
resolved detection; the probability of obtaining bin x is pð0Þ

x � ρxx , and
the qudit assumption ensures that ρxx =0 for x < 1 or x > d.

Consider the mode mixing operator Sk which weakly mixes each
mode x with modes x + k and x − k:

Sk ∣xi= � ϵ∣x � k
�
+ ∣xi+ ϵ∣x + k�: ð23Þ

For k = 1, this approximates the action of an EOM with small modula-
tion depth δ = 2ϵ and modulation frequency equal to the fundamental
mode spacing. More generally, for small ϵ, Sk is approximately unitary
and describes a weak, translation-invariant mode mixing opera-
tion (Fig. 7a).

Suppose we apply Sk to the photon and measure its bin. The
probability of observing bin x is

pðkÞ
x � xh ∣SkρS

y
k ∣xi: ð24Þ
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Fig. 6 | Convergence diagnostics. Sequential fidelity vs. thinning factor n= log2T for all dimensions for BFC states generated from a PPLN and b MRR.
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Using Syk ∣xi= ϵ∣x � k
�
+ ∣xi � ϵ∣x + k

�
and the fact that ρyx =ρ

*
xy we

obtain

pðkÞ
x = ϵ x � k

�
∣+ xh ∣� ϵ x + k

�
∣

� �
ρ ϵ∣x � k

�
+ ∣xi � ϵ∣x + k

�� �
= ρxx + ϵ ρx�k,x +ρx,x�k � ρx + k,x � ρx,x + k

� �
+Oðϵ2Þ

= ρxx +2ϵð<ρx�k,x �<ρx,x + kÞ+Oðϵ2Þ:
ð25Þ

Now, from the fact that ∣ρxy∣2≤ ρxxρyy and the fact that the photon
was initially restricted to modes {1,…, d} we have that the support of
ρx,x+k is x∈ {1,…, d − k} and the support of ρx−k,x is x∈ {k + 1,…, d}.
Considering just the outcomes in bins {1,…, d} yields the approximate
system of equations

�<ρ1,1 + k =
1
2ϵ

pðkÞ
1 � pð0Þ

1

� �
..
.

�<ρk,2k =
1
2ϵ

pðkÞ
k � pð0Þ

k

� �
<ρ1,k + 1 �<ρk + 1,2k + 1 =

1
2ϵ

pðkÞ
k + 1 � pð0Þ

k + 1

� �
..
.

<ρd�2k,d�k �<ρd�k,d =
1
2ϵ

pðkÞ
d�k � pð0Þ

d�k

� �
<ρd�2k + 1,d�k + 1 =

1
2ϵ

pðkÞ
d�k + 1 � pð0Þ

d�k + 1

� �
..
.

<ρd�k,d =
1
2ϵ

pðkÞ
d � pð0Þ

d

� �

ð26Þ

valid for k∈ {1,…, d − 1} and small ϵ. In principle, this (generally over-
determined) system of d equations enables one to determine the real
parts of ρ1,k+1,…, ρd−k,d, the nonzero part of the kth diagonal ofρ. (Note
that the −kth diagonal of ρ is just the conjugate of the kth diagonal.)

The elements on diagonals {−k,…, 0,…, k} will be collectively referred
to as the k-band.

To determine the imaginary parts of the kth diagonal, each pair of
components ρx,x and ρx+k,xmust bemixed with a relative phase of π/2.
Let Φk be the operation

Φk ∣xi=ϖx
k ∣xi ð27Þ

whereϖk = eiπ/2k is the kth principle root of i. Suppose we applyΦk and
then Sk to the photon and measure its mode. The probability of
observing bin x in this case is

pðkÞ0
x � xh ∣SkΦkρΦ

y
kS

y
k ∣xi

= xh ∣Skρ
0Syk ∣xi

ð28Þ

where ρ0 =ΦkρΦ
y
k . Using ρ0

xy =ϖ
x�y
k ρxy we have

pðkÞ0
x = ϵ∣x � k

�
+ xh ∣� ϵ x + k

�
∣

� �
ρ0 ϵ∣x � k

�
+ ∣xi � ϵ∣x + k

�� �
=ρ0

xx + ϵ ρ0
x�k,x +ρ

0
x,x�k � ρx + k,k � ρx,x + k

� �
+Oðϵ2Þ

=ρxx + ϵ ϖ�k
k ρx�k,x +ϖ

k
kρx,x�k � ϖk

kρx + k,k � ϖ�k
k ρx,x + k

� �
+Oðϵ2Þ:

ð29Þ

Since ϖ ± k
k = ± i we have

pðkÞ0
x =ρ0

xx + ϵ �iρx�k,x + iρx,x�k � iρx + k,k + iρx,x + k

� �
+Oðϵ2Þ

=ρxx +2ϵð=ρx�k,x �=ρx,x + kÞ+Oðϵ2Þ:
ð30Þ

Using the probabilities of bins 1 through dwe obtain a system of d
equations which, together with p(0), in principle enables determination
of the imaginary parts of the kth diagonal.

To summarize:p(0) determines thediagonal elements ofρ, thenp(k)

and pðkÞ0 (obtained by applying Sk and SkΦk, respectively) determine
the off-diagonal elements of ρ that lie k positions above and below the
diagonal. Thus, alld2 elements of the single-qudit densitymatrix canbe

Fig. 7 | Theoretical analysis of measurement approach. a Effect of the mode-
mixing operator Sk [Eq. (23)] on the density operator ρ. b Behavior of the Bessel
functions, which describe themodulation operators Tδ [Eq. (31)]. c Themodulation
operator Tδ with δ ≈ k probes a k-band of ρ, i.e., the elements at most k above or

below the diagonal. d Distribution of singular values for random measurement
matrices O for d = 8, δ 2 ½0δmax�, and R = 2d: δmax =4 (gold); δmax =8 (blue);
δmax = 16 (violet).
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probed by 1 + 2(d − 1) = 2d − 1 experimental settings with d
outcomes each.

To relate this to the experimental approach, wenote that the EOM
effects a mode mixing operation Tδ of the form [cf. Eqs. (5) and (6)]

Tδ ∣xi= ∑
1

k =�1
JkðδÞ∣x + k

�
ð31Þ

As shown in Fig. 7b, Jk(δ) is oscillatory in k with approximate support
k∈ { − ⌈δ⌉,…, ⌈δ⌉}. That is, Tδ is approximately a linear combination of
{S1,…, S⌈δ⌉}, mixing each x with multiple modes ranging from roughly
x − ⌈δ⌉ to x + ⌈δ⌉ and yielding information about the elements in the
⌈δ⌉-bandofρ (Fig. 7c). If the elements in the (⌈δ⌉ − 1)-bandhave already
been determined, Tδ provides new information primarily concerning
the ⌈δ⌉-band. In our specific experiments, we applied a set of random
phaseswith thepulse shaper in addition to themodulation, allowingus
to probe linear combinations of both the real and imaginary parts of
the k-band similar to the Sk andΦk operators in the discussion above.
In this way, a collection of measurements with modulation indices
uniformly distributed δ∈ [0, k] along with random phases is sufficient
to fully probe the k-band.And since the completed × ddensitymatrixρ
is encompassed within the (d − 1)-band, this model suggests
δmax ~ OðdÞ as an ideal design choice for efficient state tomography
with our method.

This intuitive picture reveals how an EOM-based mode mixer
can be designed to respond to all elements of the densitymatrix, yet
it does not quantify how well such measurements span the space of
hermitian operators; if the mixing weights are small or produce
excessive scattering into modes outside of the computational
space, the number of observations required to reach a desired
accuracy will be high, even if the measurements are tomo-
graphically complete. To address this question explicitly, we next
explore the specifics of the measurement operations through sin-
gular value decomposition. Suppose we have a set of R different
measurements M1,…,MR, each of which is described by a set of
positive operator-valued measures (POVM): Mi = fMi1, . . .Mimi

g
where mi is the number of possible outcomes of Mi (d in our case)
and each Mij is a positive semidefinite operator. To account for
photon scattering outside of the measured computational space,
the operators need not conserve probability. WhenMi is performed
on state ρ, the probability of outcome j is

pij =TrðMijρÞ: ð32Þ

This may be summarized as the linear system

p=Oy ρ! ð33Þ

where ρ
! is the vectorization of ρ and

O= M
!

11 � � � M
!

1m1
� � � M

!
R1 � � � M

!
RmR

h i
: ð34Þ

is a d2 ×m matrix where m =m1 +⋯ +mR. The measurement set
M= fM1, . . . ,MRg is called informationally complete if ρ is uniquely
determined by measured probabilities p. This occurs iff O is full
rank (i.e., rank d2), which requires at least d different measure-
ments (R ≥ d) with d outcomes each. Practically speaking, however,
more important than the attainment of informational complete-
ness is the actual distribution of singular values s1 ≥ � � � ≥ sd2 ofO. If
the singular values are all of order 1, then M determines all com-
ponents of ρ with comparable sensitivity. But any singular values
of O that are much smaller than 1 correspond to components of
ρ to which M is only weakly sensitive. The estimates of such
components will be susceptible to statistical fluctuations in the
experimental data.

As examples, we compute singular values for a variety of settings
at d = 8—the maximum single-qudit dimension characterized experi-
mentally.We considerR = 2d = 16 settings, whichwe found sufficient to
obtain robust and repeatable distributions. Each measurement con-
figuration involves a modulation index δ chosen uniformly at random
in the interval ½0, δmax�, preceded by a random phase vector ϕ

!2
½0, 2π�d applied by the pulse shaper. Figure 7d plots histograms of
singular values from 2,000 measurement matrices O each for
δmax 2 f4, 8, 16g, corresponding to d/2, d, and 2d at d = 8. A narrow
peak around log10s ≈ 0 indicates high and comparable sensitivity for
all elements in the density matrix; indeed, a complete set of mutually
unbiased bases—an ideal choice for tomography46—possesses d2 equal
singular values at s = 1. By this criterion, δmax =d =8 is seen to provide
the most efficient measurement distribution of the three examples.
For the smaller index of δmax = 4, the main peak is accompanied by a
strong tail indicating small sensitivity to an appreciable percentage of
the matrix elements. And for the larger index δmax = 16, the main peak
shifts to lower values, which reflects “over-modulating” of the quan-
tum state; taking δmax beyond d increases the probability of scattering
the input outside of the computational space (see Fig. 7c) without any
improvement to mixing within the space. Our numerical findings
therefore join the simple theory above in suggesting a maximum
modulation index of δmax≈d. Nevertheless, we note that all cases in
Fig. 7d sample the Hilbert space comprehensively, so that any
δmax ~ OðdÞ is likely to prove sufficient in a tomographic context.
Ultimately, we emphasize that the theory developed here is meant to
provide heuristic guidelines for implementing EOM-based frequency-
bin tomography, not to imply the optimality of our specific measure-
ments. For example, it is quite possible that alternative distributions
for δ—e.g., other than the uniform draw δ 2 ½0, δmax�—may showmore
favorable properties with further research. Nevertheless, our reliance
on Bayesian estimation ensures that these questions need not be
answered for useful inference.

Extending to the experimental task of two-qudit characterization,
our model thus indicates one should consider joint measurements of
the form Tδ1

� Tδ2
with δ1, δ2∈ [0, d]. Considering our experimental

values of δmax = 2:5 for the PPLN tests and 3.4 for theMRR, δmax falls in
the range of 0.425d and 1.7d for all qudit dimensions examined,
aligning well with the OðdÞ desideratum. Since the entire density
matrix of a d2-dimensional two-qudit state requires specification of
d4 − 1 realparameters andeach experimental pulse shaper/EOMsetting
r provides d2 outcomes, R ~Oðd2Þ would be expected to be required to
fully probe the two-qudit Hilbert space. Empirically, however, we were
able to attain low-error state reconstructionwith fewermeasurements:
e.g., R = 10 instead of 25 for the d = 5 PPLN BFC (Fig. 2a) and R = 30
instead of 64 for the d = 8MRR BFC (Fig. 4b). Several aspects are likely
responsible for this reduction. From a broad perspective, the positive
semidefiniteness of the density matrix imposes additional constraints
that are not reflected in a linear system analysis but automatically
accounted for in the Bayesian inference procedure. Thus, simply
comparing the number of measurements with the number of para-
meters generally yields an overly pessimistic assessment of the infor-
mation required for tomography.

Moreover, we suspect that specific features of our quantum
state also contribute to more efficient reconstruction. The highly
correlated nature revealed in the first JSI measurement implies that
only off-diagonal elements of the form ρ(xx)(x+k, x+k)—i.e., those
satisfying biphoton energy conservation—can be significantly dif-
ferent than zero. This reduces the number of appreciable elements
in our density matrix from Oðd4Þ to Oðd2Þ. Of course, the other off-
diagonal density matrix elements are not strictly zero in practice,
and the Bayesian model neither requires nor assumes such a sim-
plification. However, the strong frequency correlations do elim-
inate a large portion of the Hilbert space from consideration.
Consequently, future experiments with more general states may
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require more experimental settings for low-uncertainty estimation
than we have currently used.

Data availability
The datasets generated during and/or analyzed during the current
study are available from the corresponding author on reasonable
request.

Code availability
Analysis code used in this study is available from the corresponding
author on request.
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