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Abstract

Precise monitoring of specific biomarkers in biological fluids with accurate bio-

diagnostic sensors is critical for early diagnosis of diseases and subsequent treatment

planning. In this work, we demonstrated an innovative biodiagnostic sensor, portable

reusable accurate diagnostics with nanostar antennas (PRADA), for multiplexed bio-

marker detection in small volumes (~50 μl) enabled in a microfluidic platform. Here,

PRADA simultaneously detected two biomarkers of myocardial infarction, cardiac

troponin I (cTnI), which is well accepted for cardiac disorders, and neuropeptide Y

(NPY), which controls cardiac sympathetic drive. In PRADA immunoassay, magnetic

beads captured the biomarkers in human serum samples, and gold nanostars (GNSs)

“antennas” labeled with peptide biorecognition elements and Raman tags detected

the biomarkers via surface-enhanced Raman spectroscopy (SERS). The peptide-con-

jugated GNS-SERS barcodes were leveraged to achieve high sensitivity, with a limit

of detection (LOD) of 0.0055 ng/ml of cTnI, and a LOD of 0.12 ng/ml of NPY compa-

rable with commercially available test kits. The innovation of PRADA was also in the

regeneration and reuse of the same sensor chip for ~14 cycles. We validated PRADA

by testing cTnI in 11 de-identified cardiac patient samples of various demographics

within a 95% confidence interval and high precision profile. We envision low-cost

PRADA will have tremendous translational impact and be amenable to resource-

limited settings for accurate treatment planning in patients.

K E YWORD S

biodiagnostic, biosensor, cardiac troponin I, gold nanostars, multiplexing, neuropeptide Y,

reusable, surface enhanced Raman

1 | INTRODUCTION

Rapid and accurate detection of disease-specific biomarkers is impera-

tive for monitoring human health, planning treatment, and responding

posttreatment.1,2Enzyme-linked immunosorbent assays (ELISAs) and

mass spectrometry are the current clinical standards for detecting and

measuring biomarkers in clinical samples. Although these workhorses

of clinical laboratories yield accurate diagnostics, long sample prepara-

tion times, high operational costs, large sample volumes, and low rates

of analysis limit the utility of these techniques for early and rapid
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detection.3 The limitations of current techniques have motivated the

development of a broad array of biodiagnostic sensors based on color-

imetry, electrochemistry, surface plasmon resonance (SPR), Raman,

and fluorescence.4-9 For clinical applications, biodiagnostic devices

must rigorously meet the following functions: (a) multiplexed detec-

tion of biomarkers enabling accurate and quantitative bioanalysis at

clinically relevant levels; (b) straightforward sample preparation and

real-time readout times; (c) portability and low sample consumption

for translation to resource-limited settings; (d) prolonged reagent shelf

life and stability; and (e) reusable to lower diagnostic and analysis

costs.10,11

In this work, we have designed a new paradigm in diagnostic sen-

sor, PRADA, which synergistically integrates all of these functionalities

to allow multiplexed detection of biomarkers in human serum at clini-

cally relevant levels. Portable reusable accurate diagnostics with

nanostar antennas (PRADA), is a sandwich immunoassay using poly-

clonal antibodies (pAbs) functionalized magnetic beads to capture the

biomarkers (Scheme 1). Near-infrared resonant gold nanostars (GNSs)

“antennas” labeled with Raman tags and short peptide biorecognition

elements (BREs) detect the biomarkers via surface enhanced Raman

spectroscopy (SERS). The immunoassay is assembled in a microfluidic

device to allow low sample volumes, minimize the assay time, facili-

tate multiplexed detection, and enable reusability of PRADA. The

seamless integration of each of the components of PRADA into a sin-

gle functional platform allowing a portable and affordable multiplexed

biodiagnostic is unprecedented. SERS is a promising immunodetection

technique due to its exceptional sensitivity, specificity, and mul-

tiplexing ability with minimal spectral overlap between various

reporter molecules.12-16 The antenna-like behavior of GNSs is attrib-

utable to their unique geometry, where their core acts as an antenna

and absorbs near-infrared light and their branches behave as emitters

to localize the absorbed light at the tips to generate intense electric

fields.17-19 We have shown that the near-field electromagnetic radia-

tion generated at the protrusions of GNSs gives rise to a > 109

enhancement in SERS signal, resulting in ultrasensitive detection

in vitro, in vivo, and in biosensors.20-24

Here, we demonstrated multiplexed detection of two biomarkers

of myocardial infarction including cardiac troponin I (cTnI) and neuro-

peptide Y (NPY) with PRADA with high sensitivity and specificity in

patient sera. cTnI is a well-accepted serum biomarker of cardiac

arrest, stress, and ischemic stroke.25,26 cTnI is routinely assessed in

patient samples in clinical laboratories to detect myocardial damage,

with a clinical range for at-risk patients of >0.03 ng/ml.27 NPY is a

sympathetic cotransmitter and critical to cardiovascular homeostasis

including cardiac remodeling and angiogenesis.28,29 It has been corre-

lated to stress, anxiety, and posttraumatic stress disorder30,31 at a

clinically relevant level of ≤1.5 ng/ml.32 Our results showed that

PRADA achieved highly sensitive detection of both biomarkers of

acute myocardial infarction ideal for risk stratification. The high sensi-

tivity and specificity of PRADA were leveraged by the peptide BREs

conjugated to GNS-SERS barcodes. Short peptides represent an

attractive alternative to monoclonal antibodies (mAbs) due to their

low cost, long shelf life, and stability, and their small size enables high

sensitivity in PRADA.33,34 We also demonstrated that PRADA was

reusable where the microfluidic device can be regenerated for multi-

ple cycles. We envision that PRADA will be ultimately useful in

resource-limited settings, where a low-cost, reusable, and user-

friendly point-of-care is necessary for patient sample analysis given

that affordable portable Raman spectrometers are now readily

available.

SCHEME 1 Schematic representation of PRADA. Antibody-conjugated magnetic beads are incubated with the antigens in the human serum
to capture the biomarkers. Raman tags labeled GNSs “antenna” detection probes with peptide BREs then form a sandwich immunocomplex,
followed by excitation with 785 nm laser to enable SERS-based detection. BREs, biorecognition elements; GNSs, gold nanostars; PRADA,
portable reusable accurate diagnostics with nanostar antennas; SERS, surface enhanced Raman spectroscopy
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2 | RESULTS AND DISCUSSION

2.1 | Synthesis and characterization of PRADA

The design of PRADA (Scheme 1) includes pAbs functionalized mag-

netic beads that were assembled onto a passivated microfluidic device

via a magnet to form a uniform layer. These capture probes were then

incubated with human serum to capture the relevant biomarkers

through the antibody–antigen interactions. Next, GNSs labeled with

Raman tags (GNS-SERS barcodes) and small peptide BREs were intro-

duced which bound to different sites on the biomarkers, completing the

sandwich immunocomplex. This assay was followed by SERS measure-

ments with a Raman setup equipped with a 785 nm continuous-wave

laser and analyzed for quantification of the antigens present in serum.

Here, we first showed the individual detection of cTnI and NPY

followed by multiplexed detection of both biomarkers simultaneously.

The sensitivity and specificity of PRADA are governed by the con-

trolled synthesis of the capture and detection probes (Figure 1a). Here,

the capture probes were prepared by activating carboxylic acid-

functionalized magnetic beads via 1-ethyl-3-(3-dimethylaminopropyl)

carbodiimide (EDC) and N-hydroxysulfosuccnimide (NHS) coupling, and

subsequent functionalization with anti-cTnI or anti-NPY pAbs.

Functionalized capture probes were then incubated with human serum

spiked with cTnI or NPY antigens where biomarkers were captured via

antibody–antigen binding. The sandwich immunocomplex was com-

pleted with GNS-SERS barcodes covalently conjugated with peptide

BREs. The detection of cTnI was enabled with GNSs labeled with

5,5-dithio-bis-(2-nitrobenzoic acid) (DTNB) Raman tags and P2 peptides

(Figure 1b), and detection of NPY was facilitated with GNSs labeled

with para-mercaptobenzoic acid (pMBA) Raman tags and NP3 peptides

(Figure 1c). Here, GNSs with 50–70 nm tip-to-tip dimension (Figure 2a)

were synthesized with a biological buffer, 2-[4-(2-hydroxyethyl)

F IGURE 1 Fabrication of PRADA. (a) Schematic of the synthesis of capture and detection probes. (i) Magnetic beads functionalized with pAbs
as capture probes. (ii) GNSs conjugated with SERS barcodes and peptide BREs as detection probes. (iii) The representative complete
immunocomplex formed by capture probes, target antigens, and detection probes. (b, c) Normalized Raman spectra of GNSs functionalized with
DTNB (1,325 cm−1) and pMBA (1,580 cm−1) for cTnI and NPY detection, respectively; the signature peaks are highlighted. BREs, biorecognition
elements; GNSs, gold nanostars; pAbs, polyclonal antibodies; PRADA, portable reusable accurate diagnostics with nanostar antennas; SERS,
surface enhanced Raman spectroscopy
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piperazin-1-yl]ethanesulfonic acid (HEPES), as described in our previ-

ously published procedures.18-21 Further, DTNB and pMBA are ideal

Raman tags for this platform because they are covalently linked to the

GNS surfaces via a thiol group, enabling SERS signal amplification via

both electromagnetic and chemical enhancements. The dominant

Raman peaks at 1,325 cm−1 (symmetric stretching mode of the nitro

group of DTNB) and 1,580 cm−1 (ring stretching mode of pMBA) also

do not overlap enabling multiplexed detection of both biomarkers.

In our platform, the peptide BRE plays a critical role in the bio-

marker detection. The P2 peptides (-WQIAYNEHQWQGGGC-), com-

putationally evolved from a phage display peptide, had nanomolar

binding affinity to cTnI.35 The bioconjugation of P2 peptides to GNSs

was achieved via Au-S linkage by introducing a cysteine residue at the

C-terminus of the peptide. A tri-glycine spacer domain was inserted

between the C-terminal cysteine and the P2 peptide to extend the

binding domain away from the gold surface. The NPY binding peptide,

NP3 (-FPNWSLRPMNQMGGGC-), was also identified from a phage

display peptide library.36 The short peptides bind to different regions

of antigens without competing with the target sites of antibodies on

the capture probes. These dodecapeptides have an average size of

2–3 nm obtained by molecular modeling calculations; this size is the

molecular length of a linear, unconstrained, and extended dodecameric

peptide.37 The peptide functionalized and constrained on a

nanoparticle surface is likely to have a smaller size. The peptide size is

significantly smaller than mAbs (~10 nm) which facilitated high sensi-

tivity of PRADA by enabling the nanostars to maintain their orienta-

tion with respect to the antigen receptor with minimal steric

hindrance. Antibodies are typically attached to gold nanoparticle sur-

faces via long chain linkers, which often compromise their orientation

and consequently binding efficacy, lowering overall sensitivity.34 Of

note, we chose to use P2 peptide instead of anti-cTnI antibody as the

peptide was evolved to bind residues 114-141 of troponin with high

affinity whereas anti-cTnI antibody bound to the N-terminus region of

full-length troponin. The binding affinity of P2 peptide was confirmed

in our previous work by measuring the dissociation constants (KD) of

the P2 peptide or mAb in the presence of 114-141 troponin fragment

or full-length troponin.35 The KD of the peptide remained constant

independent of troponin target (fragment or full length), while the KD

of the antibody was 100-fold lowered using the troponin fragment

lacking the N-terminus binding region. These results confirmed that

the peptide and antibody binding domains were nonoverlapping. But

the binding affinity of the peptide and antibody for full length troponin

was very similar (0.27 vs. 0.12 nM), as measured by SPR.35,38

After biofunctionalization of GNSs with peptide BREs and SERS

barcodes, a ~ 18 nm red shift in the plasmon resonance (Figure 2b) was

observed attributed to an increase in hydrodynamic size and change in

F IGURE 2 Characterization of PRADA. (a) Transmission electron micrograph of GNSs showing their anisotropic morphology. (b) Extinction
spectra of bare GNSs and GNSs functionalized with SERS barcodes and peptide BREs. (c–e) SEM images of complete immunocomplexes at
various magnifications with magnetic beads capture probes and GNS-SERS barcodes detection probes. BREs, biorecognition elements; GNSs,
gold nanostars; PRADA, portable reusable accurate diagnostics with nanostar antennas; SEM, scanning electron micrograph; SERS, surface
enhanced Raman spectroscopy
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refractive index of the medium. Scanning electron micrograph (SEM)

images confirmed the successful synthesis of the complete immuno-

complex (Figures 2c–e and S1) where GNS-SERS barcodes retained

their morphology after complexing with functionalized magnetic beads.

Note: SERS measurements were only acquired from samples where the

magnetic beads formed a uniform monolayer aided with a magnet

(Figure S2a,b). Samples with multilayers of the complete immuno-

complex or aggregated GNSs were avoided to minimize hot-spot for-

mation and variability in the measurements (Figure S2c–f).

2.2 | Biomarker detection and reusability

We first demonstrated the feasibility of PRADA in detection of single

biomarkers in human serum in a microfluidic device. We chose a

simple and low-cost microfluidic design with an inlet and outlet, and a

sample chamber for incubation of samples, mixing, and evaluation of

biomarkers (Scheme 1). The magnetic bead capture probes, which are

uniformly distributed in the entire sample chamber (Figure S2a,b), also

aid in mixing with the peptide-coated GNS-SERS barcode detection

probes by placing the microfluidic devices on a stir plate. Therefore,

the design of microfluidic chips with multiple mixing channels is

unnecessary here as such complex devices are both time and labor

intensive, and cost prohibitive.39,40 We chose to measure the accu-

racy of PRADA in commercially available de-identified human patient

serum (Discovery Life Sciences Inc.) to recapitulate clinical diagnostics

where biomarkers of interest compete with other serum constituents

to be captured by the magnetic beads. Human serum contains ~4,000

metabolites,41,42 which would compete to bind to the targeted sites.

Here, different concentrations of cTnI or NPY were spiked into human

F IGURE 3 cTnI and NPY
detection with PRADA. (a) Raman
spectra of cTnI in human serum and
(b) SERS intensity at the
characteristic DTNB peak
(1,325 cm−1) as a function of cTnI
concentrations. The low region (gray
box) was where the concentrations
were below the detection limit;
quantification region (yellow box)
was used to determine LOD with a

4PL function fit; and saturated
region (pink box) was where high
density of analytes saturated
PRADA. (c) Linear fit of the DTNB
peak at low concentrations of cTnI
in the range of 0.02 to
1 ng/ml. (d) Raman spectra of NPY
in human serum by monitoring the
pMBA peak at 1580 cm−1. (e) SERS
intensity at the characteristic pMBA
peak as a function of NPY
concentrations. (f) Linear fit of the
pMBA peak at low concentrations
of NPY ranging from 0.3 to
100 ng/ml. Error bars indicate the
standard deviations from at least
five measurements. A base
10 logarithmic scale was used for x-
axis. 4PL, four-parameter logistic;
LOD, limit of detection; PRADA,
portable reusable accurate
diagnostics with nanostar antennas;
SERS, surface enhanced Raman
spectroscopy
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serum and followed by monitoring the change in intensity of the sig-

nature peaks of the GNS-SERS barcodes bound to cTnI or NPY anti-

gen via the peptide BREs. The cTnI baseline of the purchased serum

was 0.015 ng/ml, whereas the amount of NPY in the serum was not

provided by Discovery Life Science. However, a blank Raman signal of

the serum was obtained in the absence of antigens (with the capture

and detection probes). Minimal interference effects were observed

in the blank control, which suggested minimal NPY baseline. Each

sample was prepared with three replicates, and the sensitivity and

specificity of PRADA were quantitatively evaluated. At least

300 spectra obtained from different locations per replicate of sam-

ple were used for quantitative analysis. Spectra were background

subtracted, averaged, and smoothed using a Savitzky–Golay filter.43

The representative Raman spectra of immunocomplexes for various

concentrations of cTnI were shown in Figure 3a. The relative SERS

intensity of DTNB at 1325 cm−1 was used for quantitative evalua-

tion of cTnI concentrations. The corresponding sensitivity curve

obtained from the SERS measurements was fitted using the four-

parameter logistic (4PL) function (Table S1) showing that the Raman

intensity increased in a logarithmic manner with increasing concen-

trations of cTnI in the range of 0.02 to 5,000 ng/ml (Figure 3b). This

4PL function has been shown previously to have a robust fit to

plasmonic and SERS-based biosensors.5,44 However, the SERS inten-

sity at 1325 cm−1 was linear at low concentrations of cTnI in the

quantification region (Figure 3c). The LOD of cTnI was estimated to

be 0.0055 ng/ml from this fit; all parameters for LOD calculation are

provided in Table S2. Our assay is also clinically relevant because

patients diagnosed with myocardial infarction typically have a cTnI

concentration of >0.03 ng/ml.27 Of note, the low region indicated

the concentrations below the LOD of PRADA and the saturated

region represented where the sandwich immunocomplex was over-

saturated and unable to distinguish differences in such high

concentrations.45

We followed a similar approach in the utility of PRADA to detect

NPY spiked in de-identified human serum. The signature Raman peak

of pMBA at 1,580 cm−1 was monitored (Figure 3d). The quantification

region also showed a logarithmic increase with NPY concentrations

ranging from 0.3 to 5,000 ng/ml (Figure 3e), whereas a linear correla-

tion was found in the range of 0.3 to 100 ng/ml (Figure 3f). The LOD

of NPY was calculated to be 0.12 ng/ml (Table S2). The clinical level

of NPY of at-risk patients with high level of stress and anxiety is

≤1.5 ng/ml and lower concentrations are desired for risk prediction.32

These results demonstrated that PRADA is a versatile platform for

quantitative analysis of biomarkers in human biofluids with high sensi-

tivity and specificity.

Next, we demonstrated that microfluidics-based PRADA enabled

accurate multiplexed detection of biomarkers in serum. Multiplexed

bioanalysis in a single sample is of significant interest to predict the

complex phenotype of myocardial infarction, which often results in

false prognosis.46 Here, the narrow spectral features of SERS allowed

multiplexed detection offering high sensitivity and minimum overlap

between corresponding Raman tags. We simultaneously detected

cTnI and NPY (Figure 4a) by using a 1:1 mixture of magnetic beads

conjugated with either anti-cTnI pAbs or anti-NPY pAbs, which served

as the capture probes in a multiwell microfluidic device (Figure 4b). A

multiwell device is particularly relevant for field-use or in resource-

limited settings where several patient samples can be analyzed at the

same time to determine the status of multiple biomarkers. Afterwards,

serum samples with no antigens (control), 1:1 mixture of cTnI and

NPY at various concentrations (see Figure 4 caption) were incubated

with the capture probes. After removing unbound antigens with a

washing step, 1:1 mixture of detection probes targeting cTnI (GNS-

P2-DTNB) and NPY (GNS-NP3-pMBA) were incubated. Multiplexed

detection was achieved with PRADA where clear peaks of DTNB

(1,325 cm−1) and pMBA (1,580 cm−1) were observable with minimal

nonspecific binding for the no antigen control. Additionally, the

Raman signal of both biomarkers intensified with the increase in bio-

markers' concentration.

We then demonstrated that PRADA could be reused over multi-

ple cycles by simply washing and regenerating the microfluidic

devices. We used the same microfluidic device to detect 0.1 ng/ml of

cTnI for 14 cycles by repeated washing and reusing (Figure 4c). The

reusability of PRADA was leveraged with the magnetic beads, as

removal of the magnet allowed us to wash off the entire assay and

regenerate the microfluidic sensor chip. Our regeneration approach

has several merits. First, PRADA had minimal signal loss after multiple

cycles, which outperformed chemical regeneration approaches that

have been reported to have ~40% signal loss during each cycle.47 In

chemical regeneration, low pH glycine buffer or detergent solutions

are introduced to detach the antigens from antibodies, enabling reus-

ability of the sensor chip with the same set of antibodies between

samples.48 However, chemical regeneration is ineffective when using

patient biofluids due to the presence of proteases and bacteria that

can degrade these antibodies.49 Low signal loss after multiple cycles

emphasized the strength of PRADA and our magnetic regeneration

approach. Second, prior to regeneration, the microbead/antigen/

nanostar immunocomplex representing each patient sample can be

archived (by removing the magnet) for future analysis. Sample archival

is possible due to the high stability of the peptide-coated GNS-SERS

barcodes as they do not photobleach and are amenable to long-term

storage.24 These results demonstrated that PRADA is a robust multi-

use platform that allows diagnosis of multiple biomarkers of interest

within minutes and has the potential to analyze patient samples in

biofluids with high accuracy and specificity.

2.3 | Evaluation of PRADA for clinical samples

We then demonstrated the translational impact of PRADA by validat-

ing our approach in evaluating serum from 11 de-identified cardiac

patients with varying levels of cTnI. These serums were purchased

from the open biobank Discovery Life Sciences. The NPY values were

not provided for these samples. A three-well microfluidic device was

used to enable multiple patient sample analysis simultaneously. The

PRADA assay was performed similar to described above where cap-

ture probes for cTnI were introduced in microfluidic wells followed by
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F IGURE 4 Multiplexing and reusability with PRADA. (a) Multiplexed detection of both cTnI and NPY in a three-well microfluidic device. The
concentrations measured in ng/ml for cTnI/NPY are 3000/1500 (blue), 1000/600 (red), 400/200 (black), 200/100 (orange), 5/10 (light blue),
0.5/1 (green), 0.05/0.3 (purple), and control (gray). The inset is a schematic representation of multiplexed detection of both biomarkers. (b) Image
of a microfluidic device utilized in the experiments. (c) Demonstration of reusability of PRADA where the same microfluidic chip was reused
14 times after washing and regenerating. Here, 0.1 ng/ml of cTnI was detected at the DTNB Raman peak with minimal signal loss. Error bars
indicate the standard deviations from at least five measurements. PRADA, portable reusable accurate diagnostics with nanostar antennas

F IGURE 5 PRADA for cardiac patient sample analysis. (a) Demographics of 11 patient samples purchased from Discovery Life Sciences
including their gender, race, and age, and the cTnI levels. (b) Comparison of cTnI determined with PRADA and those obtained from Discovery Life
Sciences measured using the ABBOTT ARCHITECT chemiluminescence assay system. The standard errors in Discovery data were
<0.06 ng/ml. Error bars in SERS data indicate the standard deviations from at least five measurements. (c) Passing-Bablok regression analysis
between PRADA and Discovery Life Sciences to determine accuracy of PRADA. (d) %CV corresponding to mean cTnI concentrations for the
11 patient samples using PRADA where the 10% CV level is indicated with a dotted line achieving a LOQ of ~0.03 ng/ml. CV, coefficient
variation; LOQ, limit of quantification; PRADA, portable reusable accurate diagnostics with nanostar antennas; SERS, surface enhanced Raman
spectroscopy
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introducing the patient serum, and then followed by the peptide-

coated GNS-SERS barcodes. Multiple washing steps were executed to

ensure high accuracy of PRADA. Relevant patient information includ-

ing gender, race, and age is shown in Figure 5a. Our effort was to

demonstrate that PRADA is applicable to a wide range of patient

demographics including gender, ethnicity, and age. SERS spectra of

the patient samples were measured in triplicates (Figure S3) to deter-

mine the cTnI levels. PRADA levels were then compared with those

provided by Discovery Life Sciences measured using the ABBOTT

ARCHITECT chemiluminescence assay system (Figure 5b). The manu-

facturer provided the standard error in their data to be <0.06 ng/ml

where the level consistent with acute myocardial infarction was

≥0.5 ng/ml based on their samples. Our results showed regardless of

the cTnI concentration and patient demographics, PRADA achieved

high accuracy in serum analysis. Further, Passing-Bablok regression

analysis was performed to estimate the variation and systematic bias

between cTnI concentrations obtained with PRADA in patient sam-

ples and the values from Discovery Life Sciences (Figure 5c). Regres-

sion analysis indicated good conformity between the two assays as

the scattered points (purple) and associated regressions (blue) of the

data were within the 95% confidence intervals (CIs) which include the

intercept and slope of 0 and 1, respectively (Table S3). The results

showed that all values obtained with PRADA were clinically valid, and

within the acceptable range.

We calculated a precision profile, which determined the limit of

quantification (LOQ) of PRADA in analyzing patient samples and

ensuring that these results matched with our sensitivity curve shown

in Figure 3b,c. Here, the LOQ is defined as the lowest concentration

of cTnI that can be reliably detected with a coefficient variation

(CV) less than or equal to 10%.50 By definition LOQ can be equal to or

higher than the LOD but not lower, as LOD provides an estimate of

bias and imprecision at very low analyte concentrations. We obtained

the mean cTnI concentrations with PRADA for the 11 patient sera

(measured in triplicates) and calculated the %CV for each sample

(Figure 5d). A curve was fitted through the plot of %CV as a function

of cTnI concentration, and the LOQ of PRADA was determined to be

0.03 ng/ml corresponding to the 10% CV level of the curve. The data

suggest that PRADA will allow quantitative analysis of cTnI in patient

sera at ≥0.03 ng/ml with high accuracy (right of the gray region). Our

reported LOD and LOQ are lower than many troponin immunoassays

published in the literature, and comparable to commercial assays

(Table S4). Of note, multiplexing is not offered by many of these com-

mercial assays. However, our LOQ was limited by the availability of

patient samples from Discovery Life Sciences where the lowest con-

centration of cTnI that was available for purchase was

>0.01 ng/ml. We were also limited by the small patient population we

evaluated here (11); most commercially available assays examine

>1,000 patients to establish their quantification range27,51 where

patients with no risk of myocardial infarction have �0.01 ng/ml. We

expect the LOQ of PRADA will be significantly improved in a future

cohort study where more patients will be recruited to exemplify the

translational impact of this platform.

3 | CONCLUSIONS

In summary, this study presents an innovative biodiagnostic platform,

PRADA, demonstrating multiplexed detection of two biomarkers of

myocardial infarction, cTnI and NPY, in a simple microfluidic device.

We achieved a LOD of 0.0055 ng/ml for cTnI and a LOD of

0.12 ng/ml for NPY in patient serum. We showed that PRADA can be

regenerated and reused where the same microfluidic chip can be

recycled for multiple cycles with minimal signal loss between cycles.

Reusability of PRADA also allowed archiving samples for future

bioanalysis. Finally, we validated the clinical significance of PRADA by

evaluating cTnI in cardiac patient serum of various demographics and

achieved a LOQ of ≥0.03 ng/ml at 10% CV which is lower than many

troponin immunoassays published in the literature, and comparable to

commercial assays. Whereas in this proof-of-concept study, we dem-

onstrated the multiplexing of two biomarkers in human serum, our

future work focuses on the utility of PRADA to detect >10 biomarkers

in patient samples enabled by the narrow spectral features of SERS.

Further, PRADA can be translated to other biomarkers beyond those

probed here, as identification of peptides that exhibit high binding

affinities to various targets has already been pursued by many com-

mercial sources that routinely generate a number of different pep-

tides. Although this approach is limited by biomarker targets wherein

the antigen structure is known and the location of a binding site on

the target molecule can be predicted, we envision that PRADA will

ultimately enable a precise scoring system to determine patient out-

come. PRADA score can then be integrated with artificial intelligence

interfaces as well as smart phones for cost-effective health

monitoring.52,53

4 | MATERIALS AND METHODS

4.1 | Materials

Carboxylated magnetic beads, 1-ethyl-3-(3-dimethylaminopropyl)

carbodiimide (EDC), N-hydroxysulfosuccnimide (NHS),

2-(4-morpholino)ethane sulfonic acid (MES), tris(hydroxymethyl)

aminomethane (Tris base), acetone and microscope glass slides were

purchased from ThermoFisher Scientific. Gold (III) chloride trihydrate

(HAuCl4), (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid)

(HEPES), Sylgard 184, phosphate-buffered saline (PBS), ethanol, and

trichloro(phenyl)silane (TCPS) were purchased from Sigma-Aldrich.

The Milli-Q water (18 MΩ) was obtained from a Milli-Q Direct-Q

3UV system. Anti-cTnI (ab47003) and anti-NPY antibodies

(ab30914) were purchased from Abcam. Raman tags, 5,5-dithio-bis-

(2-nitrobenzoic acid) (DTNB) and para-mercaptobenzoic acid

(pMBA), were purchased from TCI America. P2

(-WQIAYNEHQWQGGGC-) and NP3 (-FPNWSLRPMNQMGGGC-)

peptides were purchased from Genscript. Methoxy poly(ethylene

glycol)-silane (mPEG-silane, MW 5000) was purchased from Laysan

Bio. Patient samples were purchased from Discovery Life Science.
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4.2 | Instrumentation

The plasmon resonance of bare and functionalized GNSs was mea-

sured with a Varian Cary 5,000 UV–Vis NIR spectrophotometer. The

size and shape of GNSs were visualized using an Osiris transmission

electron microscope (TEM) at 200 keV. The morphology of complete

immunocomplexes was visualized using a Zeiss Merlin scanning elec-

tron microscope (SEM). The Raman measurements were taken for 5 s

exposure time using a Renishaw inVia Raman microscope system with

a 785 nm laser that delivered ~30 mW of power. A ×50 objective lens

was used to focus a laser spot on the surface of microfluidic device.

An oxygen plasma cleaner was used to bind the patterned PDMS layer

onto a clean microscope glass slide.

4.3 | Preparation of antibody-conjugated magnetic
beads capture probes

To prepare the antibody-conjugated magnetic beads, 6.65 μl of car-

boxylated magnetic beads were separated by a magnet and washed

twice with 100 μl of 25 mM MES (pH 5) for 10 min on an inverter

(18 rpm). The surfaces of magnetic beads were active through the

reaction with 50 μl of 50 mg/ml EDC (dissolved in cold 25 mM MES)

and 50 μl of 50 mg/ml NHS (dissolved in cold 25 mM MES) on an

inverter (18 rpm) at room temperature for 30 min. Next, the magnetic

beads were separated by a magnet and washed twice with 10X PBS

(pH 7.4). Then, the magnetic beads were resuspended in 1 ml of

0.006 mg/ml anti-cTnI or 0.41 ml of 0.006 mg/ml anti-NPY antibodies

(in 1X PBS) with gentle mixing (4 rpm) at 4�C. Nonspecifically bound

antibodies were washed three times with 1X PBS (pH 7.4). Unreacted

carboxylic groups were deactivated with 50 mM Tris (pH 7.4) with

gentle mixing (4 rpm) at 4�C. The final magnetic beads were then

washed three times with 1X PBS and stored in 1X PBS (pH 7.4) at 4�C

for future use.

4.4 | Preparation of functionalized gold nanostars
detection probes

GNSs were synthesized through the one-step and seedless method,

as described in our previously published procedures.19 First, 18 ml of

Milli-Q water at 18 MΩ was mixed with 12 ml of 200 mM HEPES

(pH 7.4 ± 0.2) by gentle inversion. Next, 300 μl of 20 mM chloroauric

acid was added. The solution was mixed by gentle inversion and left

undisturbed at room temperature for 75 min. To conjugate Raman

tags to the GNS surfaces, 3 μl of 10 mM DTNB or pMBA (in 100%

ethanol) was added to 30 ml of GNSs and reacted for 15 min with

constant stirring at 4�C. The solution was then centrifuge at 6000 rpm

for 20 min to remove excess Raman tags. GNS-DTNB or GNS-pMBA

was resuspended with Milli-Q water (18 MΩ) at a concentration of

1.14 mg/ml. Afterwards, 25 μl of 1 mg/ml of P2 or 10 μl of 1 mg/ml

NP3 peptide was added to GNS-DTNB or GNS-pMBA, respectively,

and reacted for 1 hr with gentle mixing (4 rpm) at 4�C. Lastly, the fully

functionalized GNSs (GNS-DTNB-P2 or GNS-pMBA-NP3) were cen-

trifuged at 4000 rpm and resuspended in Milli-Q water (18 MΩ) at a

concentration of 5.72 mg/ml. The solution was stored at 4�C for

future use.

4.5 | Singleplexed biomarker detection

The prepared antibody-conjugated magnetic beads (50 μl) were added

to a well of the passivated microfluidic device through the inlet chan-

nel. Afterwards, 50 μl of cTnI or NPY at various concentrations spiked

with human serum was added into the well and allowed to mix with

magnetic beads for 1 hr at 4�C. The cTnI concentrations studied here

were 0.004, 0.007, 0.02, 0.05, 0.1, 0.5, 1, 10, 50, 200, 600, 1,000,

3,000, 5,000, 10,000, 16,000, and 28,000 ng/ml. The NPY concentra-

tions studied were 0.08, 0.12, 0.3, 0.5, 1, 10, 100, 200, 600, 800,

1,500, 3,000, 4,000, 5,000, and 9,000 ng/ml. The well was washed

three times with 1X PBS by flowing through the inlet channel and

then collecting the waste with a syringe from the outlet channel. Then

50 μl of prepared GNS-DTNB-P2 or GNS-pMBA-NP3 was added to

the well and allowed to mix for 1 hr at 4�C. The unbound GNSs were

suctioned out by a syringe as waste, and the well was washed three

times with Milli-Q water (18 MΩ). The microfluidic device was dried

for 10 min at room temperature and then imaged using a Renishaw

inVia Raman microscope system. A blank sample was prepared in the

absence of cTnI or NPY and was used as a control. Each sample was

prepared with three replicates. At least 300 Raman spectra from dif-

ferent locations were obtained per replicate of sample.

4.6 | Multiplexed biomarker detection

To assess the feasibility of multiplexed biomarker detection, 25 μl of

anti-cTnI-conjugated magnetic beads and 25 μl of anti-NPY-

conjugated magnetic beads were mixed and added to a well of the

passivated microfluidic device through the inlet channel. cTnI (25 μl)

and NPY (25 μl) at targeted concentrations spiked with human serum

were added into the well and allowed to mix for 1 hr at 4�C. The com-

binations of biomarker concentration tested here were 3,000 ng/ml

cTnI +1,500 ng/ml NPY, 1000 ng/ml cTnI +600 ng/ml NPY,

400 ng/ml cTnI +200 ng/ml NPY, 200 ng/ml cTnI +100 ng/ml NPY,

5 ng/ml cTnI +10 ng/ml NPY, 0.5 ng/ml cTnI +1 ng/ml NPY, and

0.05 ng/ml cTnI +0.3 ng/ml NPY. Note: these antigens were spiked

with human serum. The well was washed three times with 1X PBS by

flowing through the inlet channel and then collecting the waste with a

syringe from the outlet channel. Then 20 μl of GNS-DTNB-P2 and

40 μl of GNS-pMBA-NP3 were added into the well and allowed to

mix for 1 hr at 4�C. The unbound GNSs were suctioned out by a

syringe as waste, and the well was washed three times with Milli-Q

water (18 MΩ). The microfluidic device was dried for 10 min at room

temperature and then imaged using a Renishaw inVia Raman micro-

scope system. A blank sample was prepared in the absence of cTnI

and NPY and was used as a control. Each sample was prepared with
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three replicates. At least 300 Raman spectra were obtained per repli-

cate of sample.

4.7 | Reusability

The reusability of PRADA was leveraged with the magnetic beads, as

removal of the magnet allowed us to wash off the entire immunoassay

via gentle rinsing of the device. Note: the magnetic beads were not

covalently attached to the glass surface but held in place with the

magnet. The device was then cleaned with acetone followed by

Milli-Q water (18 MΩ). The Raman spectra for the cleaned device

were then measured to ensure that there were no residual signals

from the previous sample. The devices were also viewed in the micro-

scope to ensure all the magnetic beads were washed off. The entire

assay was repeated, 14 times with the same microfluidic device to

demonstrate reusability.

4.8 | Microfluidic device fabrication and
passivation

All steps regarding the fabrication of microchannel patterns was per-

formed using facilities within the cleanroom affiliated with the Van-

derbilt Institute of Nanoscale Science and Engineering (VINSE). To

make a microchannel mold, mr-DWL_40 resist was cast on a clean sili-

con wafer and spin-coated at 1000 rpm for 1 min, yielding a 60 μm-

thick resist layer. Then designed patterns were directly written into

the photoresist using a laser writer (Heidelberg, μPG 101). The wafer

with patterned resist was coated with a thin layer of TCPS to facilitate

subsequent removal. To make a microfluidic device, liquid pol-

ydimethylsiloxane (PDMS) (Sylgard 184) was mixed in a 1:10 ratio of

curing agent and PDMS resin, degassed in a desiccator and carefully

poured onto the resist mold placed in a petri dish. After curing in an

oven for 3 hr at 65�C, the PDMS layer was cut and peeled off the

resist mold. Holes were punched at the inlet and outlet of the micro-

channels using a 8.5 mm internal diameter punch. A clean microscope

glass slide was bonded to the patterned PDMS layer by exposing to

an oxygen plasma for 4 min. Each well of the microfluidic device was

then passivated with 150 μl of 20 mM mPEG-silane (dissolved in

100% acetone) for 1 hr at room temperature to avoid nonspecific

binding. The microfluidic device was cleaned with Milli-Q water

(18 MΩ) and dried with nitrogen. The passivated device was stored at

−20�C in glovebox for future use.

4.9 | Statistical analysis

The LOD for the assay was estimated as follows: LOD = LOB +1.645

(SDlowest concentration sample), where LOB (limit of blank) was obtained

by LOB = meanblank + 1.645(SDblank), in which the average signal of

the blank (the immunocomplex without antigen) is added to 5% false-

negative rate. All data are presented as mean ± standard deviation

(SD). The sensitivity curves of both cTnI and NPY were fitted with

four-parameter logistic function using the GraphPad Prism8 program.

Passing-Bablok regression analysis was performed on patient samples

using the MedCalc program. A custom MATLAB code was used to

perform smoothing and biological fluorescent background subtraction

of Raman spectra. Smoothing of the data were done by following the

Savitzsky and Golay method with fifth order and coefficient value of

33. Modified polynomial fit method was performed to subtract the

background fluorescence. A polynomial with seventh order was used

to fit the Raman spectra with threshold of 0.0001.
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