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ABSTRACT We present the performance of nanometer-range pulse electron paramagnetic resonance distance measure-
ments (pulsed electron-electron double resonance/double electron-electron resonance, PELDOR/DEER) on a transmembrane
WALP24 peptide labeled with the semirigid unnatural amino acid 4-(3,3,5,5-tetra-methyl-2,6-dioxo-4-oxylpiperazin-1-yl)-l-phe-
nylglycine (TOPP). Distances reported by the TOPP label are compared to the ones reported by the more standard MTSSL spin
label, commonly employed in protein studies. Using high-power pulse electron paramagnetic resonance spectroscopy at
Q-band frequencies (34 GHz), we show that in contrast to MTSSL, our label reports one-peak, sharp (Dr % 0.4 nm) intramo-
lecular distances. Orientational selectivity is not observed. When spin-labeled WALP24 was inserted in two representative lipid
bilayers with different bilayer thickness, i.e., DMPC and POPC, the intramolecular distance reported by TOPP did not change
with the bilayer environment. In contrast, the distance measured with MTSSL was strongly affected by the hydrophobic thick-
ness of the lipid. The results demonstrate that the TOPP label is well suited to study the intrinsic structure of peptides immersed
in lipids.
Understanding the functionality and organization of pep-
tides and proteins in biological membranes requires know-
ledge of their molecular structures and conformational
dynamics. Crystallization of membrane proteins or protein
complexes is still challenging and conformations found in
the crystallized state may not represent the biologically
active species. Therefore, development of other comple-
mentary spectroscopic methods like nuclear magnetic reso-
nance spectroscopy or electron paramagnetic resonance
techniques (EPR) becomes essential (1,2). Pulsed elec-
tron-electron double resonance (PELDOR) or double elec-
tron-electron resonance (DEER) is an EPR-based method
that emerged as a powerful tool to measure interspin dis-
tances and orientations in biomolecules in a range between
~2 and 10 nm (3–5). The method detects the magnetic
dipole-dipole interaction between two paramagnetic cen-
ters, usually nitroxide radicals that are site-selectively in-
serted in biomolecules either via mutagenesis or more
sophisticated methods such as ligation or synthetically
generated peptides, or via in vivo introduction of unnatural
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amino acids (6,7). In samples of peptides or proteins, inter-
molecular interactions can lead to high local concentrations
of spin labels, which in turn reduce transverse spin relaxa-
tion and the detectable signal (8). In this case, the sensitivity
of the PELDOR experiment becomes an issue. Performing
distance measurements at Q-band frequencies and fields
(34 GHz/1.2 T), a condition that is superior in terms of
sensitivity over X-band (0.34 T, 9 GHz), becomes an essen-
tial advantage (9). Moreover, in lipid bilayers, the flexibility
of standard labels such as MTSSL combined with nonhomo-
geneous distribution of peptides, leads to complex distance
distributions. To overcome this issue, nitroxide labels with
reduced mobility like RX and TOAC have been proposed
in Schreier et al. (10) and Fleissner et al. (11). Although
they have great potential, RX requires two cysteine mu-
tations per spin label and TOAC is an achiral Ca-bis
substituted amino acid with impact on the peptide secondary
structure. The latter is known to adopt helical torsion angle,
rendering it well suited for investigating b-bends and a-he-
lices while introduction into other structural motifs might
cause structural distortions (10,12,13). As a potential alter-
native, we have previously introduced a semirigid spin label
for peptide studies, called 4-(3,3,5,5-tetra-methyl-2,6-di-
oxo-4-oxylpiperazin-1-yl)-l-phenylglycine (TOPP) (Fig. 1,
inset), based on an unnatural amino acid, in which the
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FIGURE 1 (Top) The peptide sequence of WALP24 showing the

positions (X), at which the spin labels have been inserted. (Cen-

ter) Chemical structure of the TOPP (left) and MTSSL (right) spin

labels. Structures were modeled as explained in the Supporting

Material. (Bottom) PELDOR experiments on WALP24 in meth-

anol. Background-corrected PELDOR time traces (dots) and

fits using Tikhonov regularization (DeerAnalysis) (26) (lines)

for WALP24-TOPP (left) and WALP24-MTSSL (right). Experi-

mental and modeled distance distributions are shown in com-

parison (filled line and area). Original traces are displayed in

Fig. S3.
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position of the spin bearing NO-group is fixed in space (7).
We have reported the performance of TOPP in distance
measurements in solution and for measurements of relative
orientations with high-field EPR (14). Here we present
the performance of TOPP as compared to the standard
MTSSL label in reporting intramolecular distances in lipid
environment.

As a model system for a comparative study, we have em-
ployed a WALP model peptide, which is composed of a
hydrophobic stretch of alternating leucines and alanines
flanked at both ends by a pair of tryptophans (15). The latter
provide anchoring in the headgroup area of the membrane
and are expected to influence the orientation of the peptide
helix as a transmembrane segment. The rationale for the
choice of WALP were the recent reports on the stability
and good adaptation of WALP into lipid bilayers in conjunc-
tion with nitroxide spin labels and with more bulky labels
such as lanthanide chelates (16,17). Spin-labeled WALP24
peptides were synthesized by solid-phase peptide synthesis
as described in Supporting Material. The amino acid
sequence is shown in Fig. 1 (top) together with the labeling
positions within the transmembrane domain of the peptide.
While MTSSL was attached postsynthetically to a cysteine
mutation at the selected label position, the TOPP amino acid
was introduced by manual solid-phase peptide synthesis un-
2346 Biophysical Journal 111, 2345–2348, December 6, 2016
der conditions preventing racemization. Preservation of
an a-helical structure of spin-labeled peptides in all envi-
ronments used in the EPR experiments was confirmed by
circular dichroism spectroscopy (Fig. S2). All distance mea-
surements were performed using the standard four-pulse
PELDOR sequence at Q-band frequencies with a high-po-
wer 170 W TWT amplifier (Supporting Material). Samples
were of ~20–30 mM peptide bulk concentration in solvent
or deuterated lipids.

To evaluate the capability of the TOPP label to report on
intramolecular distances, we have first investigated a doubly
labeled WALP24 peptide dissolved in methanol. In Fig. 1,
typical PELDOR dipolar traces are shown that reflect the
dipolar interaction between the two labels and their interspin
distance. Dipolar oscillations arewell visible in the traces re-
corded with both types of labels. However, inspection of the
WALP24-MTSSL trace reveals the contribution ofmore than
one dipolar frequency. Fourier transformation confirms the
superposition of at least two Pake patterns in the latter case
(Fig. S3). Instead, the trace recorded on the TOPP-labeled
peptide shows one main frequency component. Analysis
reveals a single-peak distance distribution for TOPP as
compared to a more complex distribution with MTSSL.
The observed distances and distributions could be well ratio-
nalized by simple molecular modeling as explained in
Fig. S4 (18,19). The predicted peak distance for the TOPP-
labeled peptide (averaged among the O-O, N-O, and N-N
distances) of r ¼ 2.33 nm is in close agreement with the
peak distance (most probable distance) from the experiment
of r ¼ (2.45 5 0.05) nm and a distribution Dr (peak half-
width at half-height) of 0.2 nm. The small shift between
the modeled and experimental peak distance (D z 0.1 nm)
actually exceeds the estimated experimental error (Fig. S3)
and is likely due to simplicity of the structural modeling.
The modeling clearly predicts that rotamers of MTSSL are
responsible for the distance distribution with multiple peaks
(Fig. 1). The results indicate that detailed interpretation of
interspin distances using MTSSL labels becomes more
difficult if distances arising from different conformations
of the biomolecule might superimpose upon distances from
MTSSL rotamers. Because the TOPP label is quasirigid,
attention must be paid to whether the observed intramo-
lecular distances and distributions are affected by orientation
selection (14). To examine this, we have recorded the traces
under the conditions of Fig. 1 but changing the resonance
positions of detecting frequencies in the EPR line. A compar-
ison of the resulting traces (Figs. S5–S7) reveals that there is
no dependence of the dipolar frequency on the experimental
setup, thus no orientation selection is observed.

In a subsequent step, we have investigated the spin-
labeled WALP24 peptide in two different representative
lipids, DMPC and POPC. The hydrophobic length of
WALP24 matches well the hydrophobic thickness of
POPC (r z 2.7 nm) but does not match the hydrophobic
thickness of DMPC (r z 2.3 nm), as sketched in Fig. 2.
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Therefore, these two lipids appeared as suited model sys-
tems to compare the capability of the labels to report on
peptide structure in different lipid environments. To opti-
mize the sample preparation for lipid studies, first an exten-
sive study on WALP24-MTSSL in DMPC was performed.
Different peptide/lipid values from 1:250 up to 1:3000
were tested to qualitatively monitor possible aggregation
effects (Fig. S8). Aggregation of the spin-labeled peptide in-
creases the number of spins participating in the PELDOR
experiment, a fact that is manifested in an increasing mod-
ulation depth as well as in a faster spin-spin relaxation time
T2 (20,21). We have observed that for the ratio of 1:250 the
T2 relaxation time (Fig. S9) and the background decay of the
PELDOR signal (Fig. S8) were both drastically reduced. For
a peptide/lipid ratio of 1:1500, T2 was shorter (Fig. S9) and
the modulation depth increased (Fig. S8) as compared to the
solution state, suggesting the onset of some aggregation.
Therefore, to minimize intermolecular contributions, all dis-
tance measurements were performed at ratios at ~1:3000 or
even lower. Sample preparation was further optimized by
using deuterated lipids (D31-POPC, D54-DMPC; Fig. 2)
permitting us to prolong electron spin relaxation times.
Fig. 2 displays a comparison of PELDOR traces for
TOPP- and MTSSL-WALP24 in DMPC and POPC. As
the most significant result, we have found that the two
spin labels report significantly different distances. The
peak distance between the TOPP labels does not show
much dependence on the lipid environment within the
experimental error, except for a slightly larger distribution
up to Dr ¼ 5 0.4 nm in lipids as compared to methanol
solution.

The result indicates that the peptide maintains its confor-
mation in the two lipids and, at the same time, that TOPP is
capable to report on the intrinsic peptide conformation. In
contrast, the more flexible MTSSL label reports broad
distance distributions. It is striking that the peak distances
correspond to the hydrophobic thicknesses of the corre-
sponding lipid. It has been reported that, due to their hydro-
phobicity, nitroxide spin labels insert into lipids and have a
tendency to move to the interface region between the lipids
tails and headgroups (22,23). Thus, flexibility of MTSSL
allows for adapting to the membrane thickness resulting in
loss of information about the internal peptide structure. It
has been proposed that tryptophan anchors can influence
bilayer thickness (24), making the adaption of the bilayer
one reasonable mechanism to react on a mismatch condi-
tion. However, these results with WALP24-MTSSL instead
point to peptide tilting as an alternative adaptation mecha-
nism that would not alter the interspin distance (2). A rigid
label like TOPP will be ideally suited for the investigation of
FIGURE 2 (Top) Chemical structure and

schematic representation of the deuterated

phospholipids D54-DMPC (14:02-d54 PC)

and D31-POPC (16:0-d31-18:1 PC) used

in this study with their hydrophobic thick-

ness, as compared to the length of

WALP24. (Bottom) PELDOR experiments

of TOPP- (left) and MTSSL-labeled (right)

WALP24 in different environments. Com-

parison of dipolar traces after background

subtraction and distance distribution ob-

tained from fits using Tikhonov regu-

larization (DeerAnalysis). Differences in

modulation depth are due to labeling effi-

ciency. Original traces are displayed in

Fig. S10.
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the peptide tilt angles by PELDOR spectroscopy in an
aligned membrane (25). Overall, this study demonstrates
that the TOPP label is well suited for high-resolution
measurements of interspin distances in transmembrane
peptides.
SUPPORTING MATERIAL

Supporting Materials and Methods and ten figures are available at http://

www.biophysj.org/biophysj/supplemental/S0006-3495(16)30949-3.
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