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Modeling heterogeneity in the
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for improving the efficiency and
fidelity of stem cell differentiation
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Pluripotency can be considered a functional characteristic

of pluripotent stem cells (PSCs) populations and their

niches, rather than a property of individual cells. In this view,

individual cells within the population independently adopt a

varietyofdifferentexpressionstates,maintainedbydifferent

signaling, transcriptional, and epigenetics regulatory net-

works. In this review, we propose that generation of

integrative network models from single cell data will be

essential for getting a better understandingof the regulation

of self-renewal and differentiation. In particular, we suggest

that the identification of network stability determinants in

these integrativemodelswill provide important insights into

themechanismsmediating the transduction of signals from

the niche, and how these signals can trigger differentiation.

In this regard, the differential use of these stability

determinants insubpopulation-specificregulatorynetworks

would mediate differentiation into different cell fates. We

suggest that this approach could offer a promising avenue

for the development of novel strategies for increasing the

efficiency and fidelity of differentiation, which could have a

strong impact on regenerative medicine.
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Introduction

Experimental studies at the single cell level have revealed that
embryonic stem cells (ESCs), and more generally pluripotent
stem cells (PSCs), exhibit significant gene expression heteroge-
neity [1–5]. The heterogeneity of gene expression in the
pluripotent state has been studied in different model systems
including mouse, rat, primates, and human ESCs [2, 6–9].
Although there is a lot of debate on whether this heterogeneity
is an inherent feature of PSCs [2], the pluripotent space is
characterizedbyacontinuumofcellular subpopulations invitro
and in vivo, inwhichdifferent subpopulations express different
levels of pluripotency regulators, such as Nanog, Myc, Dppa3,
and Rex1 [2, 3, 5, 10]. Single cell studies have allowed gene
clustering, depending on the levels of heterogeneity in the
gene expression landscape in PSCs. In mouse ESCs genes exist
that are uniformly expressed in most cells and exhibiting a
unimodal distribution (Oct4, Rest, Tcf3, Sal4); other genes
exhibit bimodal expression and are expressed in some
populations but not in others (Nanog, Rex1, Tet1, Esrrb), and
yet another group of genes display sporadic expression
(Neurod1, Klf4, Otx2, Pax6) and are undetected in most cells
but highly expressed in some specific subpopulations [3, 5].
Similar results were obtained studying heterogeneity in human
ESCs and induced PSCs, in which pluripotency regulators
such as Nanog and Oct4, exhibit similar expression patterns
across different subpopulations to the expression patterns of
their orthologouscounterparts inmouse [2, 11]. Geneexpression
heterogeneity has also been studied in hematopoietic stem
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cells (HSCs), in which gene expression uni- and bimodality
have been observed for different genes in different hemato-
poietic progenitor cells [1, 12]. Interestingly, it has also been
demonstrated that genes exhibiting bimodal gene expression
tend to be co-expressed, and regulators such as Rex1, Nanog,
and Esrrb display strong correlations [3, 5], which is related to
the dynamics in the interplay among TFs for regulating
pluripotency genes in ESCs [13]. On the other hand, genes
displaying sporadic expression exhibit more complex correla-
tion patterns [5], suggesting that there exist no clear functional
relationships among genes expressed in burst in some specific
subpopulations.

The differential expression patterns of some pluripotency
regulators in different subpopulations have been linked to
fine tuning the balance between self-renewal and cell fate
commitment [7, 14–17]. The mechanisms underlying gene
expression heterogeneity in the pluripotent state are still
not well understood, and evidence suggests that gene
fluctuations could arise from stochastic noise in gene
expression regulatory mechanisms [18–21]. These fluctuations
in gene expression are possible due to a permissive chromatin
configuration across the genome of PSCs [22], allowing
stochastic expression of lineage-specific and differentiation-
promoting genes even before cell-fate commitment [3]. A
central challenge nowadays is to characterize the transcrip-
tional states of different phenotypic stem cell subpopulations,
and the mechanisms that control their stability and
promote transitions among them [5]. Molecular studies of
the regulatory mechanisms controlling pluripotency have
shed some light on the pluripotency gene regulatory networks
(PGRNs) [4, 23] formed by canonical pluripotency regulators
such as Nanog, Oct4, Sox2 among others. Since the
characterization of the initial PGRNs, more complex regula-
tory networks have been described including many other
transcription factors (TFs) (Sall4, Zscan10, and Dax1) as
key regulators of self-renewal and differentiation of ESCs
into different cell-fates [4, 24]. The chromatin landscape
and signaling pathways also play a key role in regulating
pluripotency and differentiation, although the cross talk
between these regulatory levels during lineage specification
has been much less studied [5, 25, 26].

Based on these considerations, it is feasible to view
pluripotency as a functional property of cell populations rather
than a well-defined characteristic of single-cells [27]. Recent
reportshighlight theneed forobtaining adeeperunderstanding
of the mechanisms through which the microenvironment
influences self-renewal or priming of different subpopulations
to differentiate into specific cell types [2–4]. This is necessary
in order to realize the biomedical potential of stem cells in
regenerative medicine [4]. In this regard, it will be essential
to develop computational formalisms for performing systems
level studies that go beyond the analysis of independent
genes or groups of genes, but take advantage of the wealth of
information generated by high throughput technologies.
Despite the novelty of this systems-level description of
pluripotency, it is important to further explore how this view
could help to address key questions in the field of cellular
differentiation. Namely, which are the gene regulatory and
signalingnetworks, and the epigeneticmechanisms controlling
self-renewal and cell-fate commitment; and which are the

mechanisms mediating the interaction of the niche with stem
cells. Here, we argue that the implementation of integrative
computationalmodels ofpluripotency is essential toget abetter
understanding of the regulation of self-renewal and differentia-
tion, especially taking advantage of recent developments in
single-cell technologies. We propose that the integration of
signaling, transcriptional, and epigenetics levels into network
models will be key to obtaining an accurate identification of
cell fate determinants and cellular mechanisms regulating
priming and self-renewal. Finally, we discuss the importance
of these systems-level studies, which in combination with
experimental approaches will be indispensable for designing
novel strategies for increasing fidelity and efficiency of cell fate
determination. These studies will have a strong impact on
regenerative medicine.

Single-cell profiling is key for studying
pluripotent state gene expression
heterogeneity

The groundbreaking developments of recent years for
profiling gene expression and epigenetics in individual cells
have significantly revolutionized molecular biology, making it
possible to elucidate the mechanisms of cell-to-cell variability,
and their implication in complex biological processes, such as
differentiation. This field has been propelled by remarkable
technological advances for efficiently isolating single cells [28,
29], and the reduction of the detection levels of protocols for
profiling gene expression [30, 31], histone marks [25, 26],
or chromatin accessibility [32, 33] in individual cells. These
techniques allow researchers to overcome the limitations of
population studies, in which averaging the measurements
over a heterogeneous population of cells masks the variability
at the epigenetics and transcriptional levels among cells
within a culture or tissue [26, 34, 35]. Moreover, the analysis of
large numbers of single cells provides statistical power for
predicting functional correlations among genes [36] in
different cells within a heterogeneous population, hence
facilitating the reconstruction of subpopulation-specific gene
regulatory networks that determine priming for commitment
to different cell fates.

Single-cell profiling has been extensively used for
studying multiple biological systems to try to understand
the underlying mechanisms regulating gene expression
heterogeneity in the pluripotent state. Recently, single-cell
studies have helped unravel lineage specifiers triggering
differentiation, pinpointing the genes taking part in lineage
commitment during hematopoiesis [1]. Other reports under-
score the role of cell-to-cell gene expression variability in cell
commitment in different hematopoietic progenitor cells,
resulting in the independent activation of regulator genes
in the absence of a coordinated lineage program [36, 37],
which suggests that cell fate commitment can occur through
multiple alternative pathways. Similar results have been
obtained in other systems, such as the study of murine lung
development, in which single cell transcriptomics data
revealed cell-type specific transcriptional regulators that
discriminate between different populations that define the

....Prospects & Overviews V. Espinosa Angarica and A. del Sol

759Bioessays 38: 758–768,� 2016 The Authors. BioEssays Published by WILEY Periodicals, Inc.

R
e
v
ie
w

e
s
s
a
y
s



cellular hierarchy of the distal mouse lung epithelium [38].
Single-cell studies of the sub-regions of the embryo, have also
provided key insights of the initial phases of multicellular
organisms development, allowing the identification of
regulators triggering segregation between cell populations
in early mouse embryos [39], and the delineation of gene
regulatory mechanisms underlying progressive development
of early mammalian embryos [40, 41]. Profiling of the
epigenetics landscape of individual cells has shown that
lineage-specific master regulators are associated with single-
cell epigenomic variability across several cell types, suggest-
ing that control of single-cell variance is a fundamental
characteristic of different biological states [32]. Moreover,
another study compiled a comprehensive catalog of en-
hancer histone marks at the single-cell level, and unveiled
that there exists significant de novo establishment of lineage-
specific enhancers during hematopoiesis [25]. Similarly,
based on single-cell profiling of histone modifications
dynamics in different tissue-resident macrophages popula-
tions, the same group showed that a combination of tissue-
and lineage-specific transcription factors form the regulatory
networks controlling chromatin specification in tissue-
resident macrophages [26].

Pluripotent state gene expression
heterogeneity is tightly regulated at
different regulatory levels

A deeper analysis of the functional categories of genes in
different expression groups in PSCs subpopulations shows
that genes expressed in a unimodal and bimodal fashion tend
to be enriched in housekeeping and metabolic functions [3].
On the other hand, genes expressed in bursts are highly
enriched in signaling proteins [2] and the Polycomb family of
epigenetic regulators, and some of these genes are expressed
at levels as high as known pluripotency regulators [3]. These
findings are supported by the results from another single-cell
study based on a recently developed experimental technique
(inDrop) [42]. This study shows that among the variable genes
in mESCs are included pluripotency factors previously
reported to fluctuate in pluripotent cells (Nanog, Rex1/
Zfp42, Dppa5a, Sox2, Esrrb), and more strikingly, the most
highly variable genes included known markers of Primitive
Endoderm fate (Col4a1/2, Lama1/b1, Sox17, Sparc), markers of
Epiblast fate (Krt8, Krt18, S100a6), and key epigenetic
regulators of the ESC state (Dnmt3b) [42]. The high variability
in the epigenetic landscape has recently been studied at the
single-cell level in HSCs [25], in which significant chromatin
reorganization in different subpopulations plays a key role
during cell-fate commitment. Similar observations have been
made in human ESCs, where the dynamics of histone
chromatin marks and DNA methylation is strongly associated
to the binding of specific TFs, such as Sox17, Otx2, and Gata6,
which defines and stabilizes the phenotypes corresponding
to different germ layers [13]. Moreover, the acquisition of a
poising state – i.e. H3K4 nucleosome monomethylation – at
enhancers in specific genes is essential for the ability of
endodermal intermediates to respond to inductive signals

during pancreatic and hepatic differentiation of human
ESCs [43]. In order to obtain a deeper understanding of the
mechanisms regulating heterogeneity in PSCs, different
studies have been performed based on the imposition of
different growth conditions – e.g. inhibitors of signaling
proteins, epigenetic regulators or gene knockout variants – to
heterogeneous PSCs populations [3–5, 44, 45]. Culturing PSCs
in 2i medium – i.e. with inhibitors of Erk and Gsk3 signaling –
significantly reduces expression variability in many genes,
either by eliminating bimodality or by increasing their burst
frequency [5], an effect also observed upon impairment of
microRNA production [3]. On the other hand, impairment of
PRC2 function through the loss of the Polycom-group protein
Eed results in greater population heterogeneity across most
genes. Furthermore, Dgcr8 and Dicer knockout mouse ESCs,
in which microRNA maturation is impaired, are assigned to
the ground or self-renewing state [3]. Among genes whose
expression levels changemore significantly inDgcr8 andDicer
knockout mESCs cultured in serumþLIF (leukemia inhibitory
factor), and wild-type mESCs in 2iþ LIF in comparison to
mESCs in other conditions, are Myc, and methyltransferases
Dnmt3b and Dnmt3l [3]. Their reduced expression may be
linked to the reduction of DNA methylation in PSCs [5]. ESCs
cultured in these conditions also exhibit significantly lower
levels of H3K27me3 at promoters [3]. Thus, these results
underscore the crosstalk between the transcriptional, micro-
RNA, and epigenetic levels in the regulation of heterogeneity
in PSCs.

The interaction between signaling, transcriptional, and
epigenetics levels plays a key role in regulating self-renewal
and cell-fate commitment. Hence, it is essential to get a better
understanding of the molecular mechanisms mediating the
integration of signals from the niche, and how these signals
modify chromatin and gene expression landscapes. The cross-
talk between signaling and transcriptional levels has been
widely studied in vitro in PSCs cultured in different
conditions. LIF cause the activation of the LIF/JAK/Stat3
signaling pathway, through the activation of some Janus
tyrosine kinases (JAK), triggering the phosphorylation of Stat3
and the activation of the expression of several genes required
for mESCs and hESCs self-renewal [46–49]. The combination
of inhibitors in 2i and 3i culture mediums, which act on some
specific genes from the Wnt/b-catenin signaling pathway,
promote pluripotency in mESCs through the stabilization
of b-catenin that override the inhibitory effect of Tcf3 on
some important pluripotency regulators, such as Oct4 and
Nanog [50, 51]. The TGF-b/SMAD signaling pathwaymaintains
self-renewal in mESC through the BMP/SMAD signalling
activation of Id family genes [52], while in hESCs is the Activin/
Nodal/SMAD2/3 cascade the one responsible for promoting
pluripotency [53]. Interestingly, several studies have demon-
strated that pluripotency regulators form intricate circuits at
the transcriptional level [13, 36, 53, 54], and many of the
TFs (Essrb, Klf4, Stat3, Tcf3) in these regulatory motifs are
downstream effectors of the signaling pathways regulating
self-renewal and differentiation. Although the complete
spectrum of signaling pathways regulating pluripotency has
not been fully described [55], these results demonstrate the
confluence of different environmental signals from the
microenvironment for the regulation of pluripotency. It has
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recently been shown that within the heterogeneous popula-
tion of Neural Stem Cells, there exist dormant subpopulations
of cells that are able to enter a primed-quiescent state before
activation, which is accompanied by down-regulation of
glycolytic metabolism, Notch and BMP signaling, and a
concomitant up-regulation of lineage-specific transcription
factors and protein synthesis [56]. There is also evidence of the
cross-talk between signaling and epigenetics layers mediated
by post-translational modifications. Some members of the JAK
tyrosine kinase family, activated under LIF conditions, control
histone H3Y41 phosphorylation at Nanog promoter, and also
have global effects on heterochromatin in ESCs [57]. The
activation of Erk signaling pathway triggers a cascade of post-
translational modifications that potentiate changes in Poly-
comb-2 complex occupancy and poising of RNA-polymerase
specifically on pluripotency regulators in ESCs [58]. Recently,
researchers have described the role of Activin–SMAD2/3
signaling pathway that cooperates with Nanog to recruit
histone modifiers onto key developmental genes, which
promote histone H3K4 trimethylation in pluripotency genes
(Nanog, Oct4, Wnt3). This process is key for regulating self-
renewal and differentiation in human ESCs [59]. In summary,
these observations highlight the repertoire of mechanisms by
which signals from the microenvironment are transmitted
through the signaling layer to coordinate changes in the
transcriptional and chromatin landscape in PSCs.

Subpopulation-specific gene regulatory
networks can be inferred from
differential network analysis

One of the key challenges in stem cell research is to try to
understand how different environmental cues are integrated
at the transcriptional level for controlling self-renewal and
differentiation in PSCs. It has been suggested that different
topologies of pluripotent gene regulatory networks maintain
the heterogeneous molecular states characteristic of individ-
ual PSCs [60]. Recently, different studies have addressed
this important question by integrating single cell expression
and perturbation data for identifying the underlying PGRNs
[4, 16, 22, 61], which are involved in the stabilization of the
pluripotent state and lineage commitment [62, 63]. In most of
these studies, topological analyses of PGRNs have identified
feed forward loops (FFLs) linked to regulation of the balance
between self-renewal and differentiation. These network
motifs, which combine positive and negative regulatory
interactions – i.e. activation and inhibition, respectively –
have great information processing potential, allowing the
generation of alternative output solutions. The feedback
structure of the PGRNs have been reported to be partially
destroyed, with main variations in the loop between Nanog
and other pluripotency factors, leading to a transient
activation of different motifs that trigger differentiation [16].
Incoherent FFLs have been inferred in mESCs subpopulations
linking Oct4 and Nanog with their gene targets, suggesting an
antagonistic interaction between these TFs for the regulation
of pluripotency and self-renewal [4]. Based on quantitative
modeling of these network motifs in the context of the PGRNs,

the authors propose that any stalling or block during
differentiation, cause a reversion of the primed cell back to
the ground pluripotent state. In this model, the authors
also found other important genes associated to pluripotency
(Tbx3, Klf4, Esrrb, and Sal4), which constitute checkpoints in
the PGRN, demarcating the transition toward differentiation
[4]. In another study [22], the authors analyze how PSCs filter
out stochastic gene expression fluctuations, arising in the
heterogeneous pluripotent state that include expression of
lineage-specific genes alongside pluripotency regulators [3].
A detailed quantitative analysis of the response of the
regulatory circuit formed between Nanog, Oct4, and Sox2 to
the fluctuations of Brn2, which determines Nanog expression
for triggering neural cell commitment [22], shows that
Nanog responds to the fluctuations in Brn2 expression in
different subpopulations of ESCs like a two-state switch. In
pluripotent cells expressing high levels of Nanog, fluctuations
below a 100-fold increase of Brn2 are considered as noise
and do not cause a response of the cells. However, Brn2
induction above this threshold disrupts the Oct4/Nanog/Sox2
pluripotency complex, which generates a sharp response
causing a significant silencing of Nanog, priming cells toward
differentiation [22]. It was also found that this circuit
integrates Brn2 fluctuations based upon both magnitude
and duration of the input, and the rapid response is highly
dependent on Nanog transcript lifetime [22]. An in-depth
analysis of the PGRNs derived from independently generated
stem cell data sets (iPSCs and hESCs) has shown that gene
expression variability is highest in network regions with
fewer connections, and conversely, highly connected network
regions exhibit the most stable, least variable expression
pattern [64]. These observations suggest that transition from
self-renewal to lineage commitment is accompanied by
changes in the underlying network structure, such that
genes become increasingly co-regulated as the population
become more sensitive to differentiation signals [64]. To-
gether, these results suggest that heterogeneity in PSCs plays
a key role promoting transitions between metastable self-
renewing and lineage-primed subpopulations, and in the
integration of signals of the microenvironment or gene
expression fluctuations to respond accordingly to environ-
mental cues during differentiation.

Classical approaches to infer cell type specific gene
regulatory networks rely on cell population data – i.e. gene
expression and ChiP-seq data – [65–67], and therefore, they
give little insights into differences in regulatory interactions
that underlie cellular heterogeneity in the pluripotent state.
Indeed, the application of differential network analysis to
study cellular differentiation is fundamental, since regulatory
interactions inferred using population studies might not
actually occur in individual cells, in which cell-fate decisions
take place [36, 68]. In contrast, single-cell based differential
network analysis should give insights into cellular heteroge-
neity and possible regulatory interactions likely to be crucial
for cell fate determination of individual progenitor cells.
Nevertheless, as previously discussed, cellular states are
characterized by different combinations of gene expression
profiles of individual cells present in the population [2–5].
Indeed, in recent years there has been an increasing interest in
dynamical differential network analysis approaches that are
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starting to replace static descriptions of biological networks
[67, 69–74]. These approaches have been mainly used to
infer and compare cell-type/condition specific networks; and
they rely on multiple considerations, such as combining
literature-based information with cell-type/condition specific
data – i.e. gene or protein expression, protein-protein/DNA
interactions, epigenetic states – [67, 70, 73]. In particular,
methods for differential gene regulatory network analysis
have focused not only on detecting differences in individual
regulatory interactions, but also in network motifs and
regulatory modules across different cell types or cellular
conditions [67, 75]. More recently, differential network
analysis methods, which rely on single-cell expression data,
have also been implemented. These methods have aimed at
studying stem/progenitor cell populations during differentia-
tion [12, 76], and at predicting lineage specifiers triggering
cell-fate commitment in different PSCs [74]. Nevertheless,
despite these attempts to follow a single-cell based differential
network approach to study the differentiation process in
heterogeneous PSCs populations, more sophisticated compu-
tational models are needed to address relevant questions in
the field, such as the identification of signalling pathways and
their downstream effects for the activation of master regulator
transcription factors and epigenetics mechanisms determin-
ing cell fate decisions in different PSC sub-populations; and
which are the perturbations that prime cell subpopulations for
differentiation into specific cell fates. Thesemodels should not
only consider static differences in network topologies between
different cell subpopulations, but also the dynamic nature of
regulatory interactions at different regulatory layers during
differentiation, defined by deterministic, as well as stochastic
events. In addition, they should explore in more detail the
bridge between network topology and dynamics to study
response in different cell subpopulations to fluctuating
environmental cues.

Specific gene regulatory network circuits
regulate the balance between
self-renewal and differentiation

As discussed previously, the pluripotent state can be viewed
as a functional cellular state formed by various combinations
of interchangeable gene expression patterns of different cells
within the population. Hence, combinations of interchange-
able GRNs are responsible for stabilizing different states that
characterize different cell subpopulations in PSCs. During
stem/progenitor cell differentiation, the dynamic expression
of key regulatory genes and their corresponding regulatory
interactions in these subpopulations govern their lineage
specification [77]. Furthermore, similar to cellular reprogram-
ming [78], during differentiation there seem to exist specific
primed subpopulations of cells that are able to differentiate to
specific cell types via pre-existing pathways defined by their
initial transcriptional and epigenetic states, as previously
suggested [68]. In addition, other cells outside of this primed
subpopulation can also potentially enter these pathways
as a result of stochastic events triggering transitions among
cell subpopulations [5, 79], and thus, over time, reach a

differentiated state. Consequently, a cell population shift can
occur from the pluripotent state to the differentiated state.

Computational models that rely on single cell data have
been implemented to study heterogeneity at the pluripotent
state, and to explore how this heterogeneity is linked to cell
fate commitment. For example, a data-driven approach has
been very useful for identifying switch-like changes in
expression of key regulatory factors, sequential waves of
gene regulation, and expression of regulators triggering
differentiation [80]. A similar method has been developed
for deriving single-cell latent variable models (scLVM),
which allows the identification of undetectable subpopula-
tions of cells that correspond to different stages during the
differentiation [81]. Moreover, modeling gene expression
changes in individual cells has proven to be effective for
distinguishing cell subpopulations close to fate commitment,
and for identifying putative regulators of commitment and
probabilistic rules of transition between subpopulations [82].
In general, these approaches rely on the identification of
changes in the expression trends of individual genes in cell
subpopulations profiled at the single cell level, thus they
cannot account for the coordinated contribution of genes
to trigger differentiation. In particular, these data-driven
approaches do not offer mechanistic insights into the
interactions among lineage specifiers for triggering cell fate
commitment, and cannot model the cross-talk of different
regulatory layers – i.e. transcriptional, epigenetics, signaling
– during differentiation. Hence, integrative network modeling
could constitute an interesting alternative approach for
overcoming these limitations, and derive more realistic and
comprehensive models of heterogeneity in the pluripotent
state. Differentiation of primed subpopulations seems to
be mediated by specific GRN motifs. For example, at the
population level it has been shown that transcription factor
cross-repression plays a key role in the regulation of cellular
differentiation. Indeed, a regulatory circuit composed of
two TFs that inhibit each other and activate themselves
constitutes a molecular mechanism – i.e. toggle switch –
(Fig. 1, blue box) that has been shown to determine cellular
commitment and provides stability to transcriptional pro-
grams mediating binary cell fate choices [83–87]. This has
been observed in other cellular systems, such as the common
myeloid progenitor (mutual inhibition of Gata1 and PU.1) [88]
and embryonic stem cells (mutual inhibition of Oct4 and
Cdx2) [89]. Therefore, toggle switches not only determine
binary decisions in the cell fate tree (Fig. 1, blue box), but they
seem to also play a key role in the stabilization of each
possible cell fate and the maintenance of the progenitor cell
state. More recently, a “seesaw model” has been proposed
for explaining mesendodermal and ectodermal specification
of ESCs. According to this model, the balanced expression of
Oct4 and Sox2 mutually activate each other for maintaining
the pluripotent state. Interestingly, pluripotency can be
achieved by simultaneous upregulation of Oct4 and Sox2 or
other lineage specifiers that are involved in mesendodermal
and ectodermal specification [90, 91]. On the other hand,
deviation from this balanced equilibrium induces differentia-
tion into mesodermal or ectodermal cell types. For example,
increased expression of Gata3 has been shown to up-regulate
mesendodermal genes in mouse ESCs, thus replacing Oct4 as
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Figure 1. Differential use of regulatory motifs in heterogenous PSCs subpopulations. Different subpopulations within the heterogeneous pluripotent
state (red, orange, and blue), exhibit characteristic signaling, transcriptional and epigenetic patterns, caused by gene expression fluctuations. These
different signaling, transcriptional, and epigenetics networks (green box), and the differential use of regulatory motifs (blue box), mediate different
responses to niche’s signals. Hence, due to different topologies of PGRNs, some specific subpopulations are insensitive to specific differentiation
signals, due to a lack of expression of the specific receptors, or because the corresponding signaling pathways are not activated. As there is
extensive cross-talk between signaling, transcriptional, and epigenetics regulatory layers, the differences observed in different PSCs subpopulations
determines dissimilar responses to the same environmental cue. This can be summarized by the use of different “Stability Determinants” with different
topologies and involving different number of genes. (blue box). In these circuits, genes belonging to the same regulatory “team” (nodes surronded by
circles of the same color) regulate the metastable equilibrium established in individual cells. Due to these different regulatory frameworks,
environmental cues trigger different responses in each cell subpopulation, and the overexpression of regulators from the same team leads to the
differentiation into one specific cell fate. However, cell fate commitment is not deterministic, and gene expression stochasticity could trigger
differentiation to an alternative cell fate (gray box). In this regard, cells from the orange subpopulation have a high likelihood of remaining in a na€ıve
pluripotent state, while the blue and red cell subpopulations are primed to differentiate to Astrocytes or Neurons, respectively. Due to the combination
of deterministic (maintained by the regulatory framework) and stochastic (caused by gene expression heterogeneity and genes that can be expressed
in bursts in some subpopulations) events, the propensity to commit to different cell fates can change depending on the environmental cues.
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a lineage specifier [92]. Hence, pluripotency seems to be a
functional state maintained by a balance between differentia-
tion forces exerted by antagonistic groups, or “teams,” of
lineage specifier transcription factors, whereas, the over-
expression of members of each group directs cell fate
commitment (Fig. 1, blue box). Transcription factors belong-
ing to each group cooperate among themselves and compete
with transcription factors of the other group (Fig. 1, blue box).
These two types of interactions (cooperation and competition)
are determined by the GRN topology. In fact, the previously
described toggle switch circuit constitutes a clear example
of this situation, where each interaction group is composed
of one gene (Fig. 1). However, in general, more complex
circuit architectures underlie this mechanism, especially
when antagonistic groups contain more than one gene
product. Positive feedback loops, known as positive circuits
[93], generalize the role of toggle switches in reprogramming
or differentiation, including several pluripotency regulators
[4, 16, 22], which regulate the balance between self-renewal
and cell fate commitment. The presence of positive circuits
in a gene regulatory network is a necessary condition for
the existence of multiple attractors – i.e. multistability – in the
Waddington’s landscape [93], including those corresponding
to the stem/progenitor and daughter cells. Hence, positive
circuits guarantee the stability of attractors, and their
perturbations can induce transitions among them.

Modeling heterogeneity in the pluripotent
state will be essential for devising novel
strategies to improve the efficiency and
fidelity of differentiation protocols

In heterogeneous stem/progenitor cell populations, distinct
interconverting subpopulations are characterized by different
gene regulatory networks, and therefore, positive circuits
(Fig. 1) [12, 36, 94]. We suggest that different subpopulations
employ distinct combinations of positive circuits to stabilize
the stem/progenitor state by maintaining the balance between
antagonist groups of lineage-specific regulators. Consequently,
differential use of positive circuits in distinct subpopulations
seems to determine their cell fate differentiation propensities
and efficiencies. Moreover, loss of the expression balance
betweentheseantagonisticgroupsdirectscell fatecommitment.
In this context, experimental results support the concept
that up-regulation of one of the lineage specifiers in PSCs
subpopulations – i.e. which might result from stochastic
fluctuations in the expression of some specific genes or in
response toenvironmental cues [2–5]–candisrupt thisbalance,
and prime cells for differentiation into specific cell types. For
example, up-regulation of Gata2 in HSCs subpopulations [1]
primes these cells for megakaryocytic and erythroid lineage
commitment, and over-expression of multiple genes involved
in cardiac differentiation in mesenchymal progenitor sub-
populationsprimes them for cardiomyocytedifferentiation [95].
It is worth noting that GRN dynamics, which are determined
by stochastic and deterministic events acting on the initial
epigenetic and transcriptional state, allows inter-conversion
betweendifferent subpopulations [5,96].Additionally,different

PSCs subpopulations could differentiate to a common cell fate
following separate differentiation paths. Alternatively, cells in
the same subpopulation, dependingon theperturbation sensed
from the microenvironment (Fig. 1), could differentiate into
multiple different fates.

Intense research in this field has allowed the construction
of PGRNs, and the identification of network motifs regulating
the transitions among different cell subpopulations in the
heterogeneous continuum expression landscape [4, 16, 22,
61–63]. So far, the identification of simple networkmotifs – i.e.
positive circuits – (Fig. 1) has been useful to explain the
mechanisms controlling self-renewal and differentiation
in different PSCs models [4, 22, 61, 63]. However, a systems
level understanding of heterogeneity in the pluripotent
state, that includes the involvement of more complete PGRNs
and more complex regulatory motifs associated with different
subpopulations, will be essential for identifying the check-
points and peripheral regulators – i.e. those not located at
the core of PGRNs motifs – fine-tuning the transitions
among them, modulating the response to differentiation
signals for exiting the ground state to commit to a specific
phenotype [4, 22]. Moreover, in order to direct cell fate
commitment, an appropriate strategy could rely on shifting
the cell population distribution toward the subpopulation
state primed for a specific cell fate. We propose that the
generation of integrative GRNs models [72, 97, 98], gathering
information at the epigenetics, transcriptional, and signaling
levels, will be essential for devising novel strategies for
increasing the efficiency and fidelity of differentiation.
Computational network-based approaches aiming at provid-
ing a mechanistic description of the regulation of heterogene-
ity in the pluripotent state, and cell fate commitment, have
recently been developed [74, 99–101]. However, these
methods are not only scarce, but they significantly differ in
the size of reconstructed networks, ranging from small
circuits [100, 101] to genome-wide networks [74, 99]. Recently
we have proposed a computational approach for the
identification of network stability determinants in GRNs,
mediating reprograming in different biological systems [73,
102, 103]. This network-based approach, which relies on
population-average gene expression data, allows the recon-
struction of genome-wide GRNs for different cellular pheno-
types [103, 104]. Differently to other network models, in which
the direction – i.e. source and target genes – and effect – i.e.
activation or inhibition – of the interactions are unknown or
inferred computationally, our approach includes experimen-
tally validated interactions obtained from MetacoreTM data-
base, which give us the opportunity to perform thorough
computational modeling in the reconstructed networks. From
this analysis, it is possible to identify the network stability
determinants, which correspond to interconnected positive
and negative circuits, stabilizing the phenotype-specific
gene expression pattern [73, 102, 103]. This network-based
approachwill significantly improve taking advantage of single
cell expression data, allowing the analysis of homogeneous
subpopulation-specific gene expression data, for deriving the
GRNs that determine fate commitment decisions in individual
cells. Recently, we have extended this rationale to predict
lineage specifiers performing a differential network analysis
on single-cell gene expression data in different biological
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systems [74]. In contrast to previous computational methods
for analyzing single cell data for identifying lineage specifiers
[80–82], which rely on the identification of trends in the
expression of individual genes in different subpopulations,
in this study we have demonstrated that information of
the interactions among genes in the subpopulation-specific
GRNs, is key for predicting the genes triggering differentiation
reportedexperimentally [74].Thesenetworkmodels [73,74, 102,
103] relyingsolelyontranscriptomicsdatacouldbesignificantly
improved by overlaying epigenetics data [25, 32, 33], for
contextualizing regulatory interactions at the transcriptional
level depending on the chromatin state – e.g. open/close
chromatin regions, and activating/inhibitory chromatin
marks patterns [25, 26, 32, 33]. Moreover, although it is not
yet possible to perform single cell measurements of signaling
pathways, the inclusion of phosphoproteomics data in these
network models will include another layer of information for
contextualizing network interactions in this layer, depending
on the post-translational modifications determining the
activity of signalling proteins [105, 106].

More realistic integrative network models will allow the
identification of the network stability determinants [4, 72, 75,
102, 103] sensing and transducing niche’s signals, and how
these signals trigger differentiation in specific PSCs sub-
populations (Fig. 1). Thus, this computational approach will
allow the identification of specific PSCs subpopulations, and
those genes that could be perturbed to rationally shift the
dynamic equilibrium in the pluripotent state, towards a
primed PSC sub-population for differentiation into a specific
cell fate. Evidence exists for the role of oscillatory expression
of multiple TFs (Ascl1, Olig2, and Hes1) for the regulation of
self-renewal in Neural Progenitor Cells [107], which is
mediated by oscillations in the Notch signaling pathway [108].
Moreover, it has been demonstrated that fluctuations of
pluripotency and developmental regulators (Nanog, Gata4,
Sox17, among others) during cell cycle are essential for
regulating pluripotency and triggering cell-fate commitment
in human ESCs [109]. However, the effect of spatiotemporal
oscillations of signaling pathways, and how these fluctuations
influence the epigenetics and transcriptional levels in
heterogeneous PSCs populations has not been studied in
detail. Interestingly, there are significant differences in the
efficiency of protocols for deriving differentiated cell types.
While dual SMAD inhibition is sufficient to induce rapid and
complete neural conversion of human ESCs and iPSCs [110],
there are limitations to efficiently differentiate PSCs to other
cell types, such as cardiomyocytes [111], kidney cells [112],
retinal pigment epithelium [113], or hepatocytes [114]. In
particular, the differentiated cells produced are largely
immature, and resemble the fetal stages of development [111,
114], which hampers their ability to engraft and function in
coordination with other cells of the tissue. In order to
overcome these problems and provide more insights into
cell-fate commitment, computational modeling of single-
cell data will be essential for uncovering the mechanisms
regulating self-renewal, and triggering differentiation from
a systems-level perspective. However, the analysis of great
quantities of data generated at the single cell level faces
many challenges. Single-cell measurements have a significant
inherent noise [115, 116], as well as experimental drawbacks

associated to batch effects and technical variability [117–119],
and the computational methodologies for accounting for
these statistical analysis limitations are still under develop-
ment. Moreover, the reconstruction of GRNs from single-
cell data performed in several studies has yielded rather
small networks, involving only a limited group of regulators
[12, 99, 120]. Despite the above-mentioned limitations and
the need for improvements in the statistical analysis of single-
cell data [118, 119], the generation of more comprehensive
and accurate measurements of heterogeneity in the pluripo-
tent state will allow the generation of integrative network
approaches, such as the one proposed here. These approaches
will be helpful for generating models for differentiation of
PSCs into specific cell types, pinpointing the signaling path-
ways, transcriptional factors, epigenetic regulators, and the
cross-talk among them, that could be targeted for improving
the efficiency of cell-type specific differentiation protocols.
In comparison to data-driven computational models [80–82],
integrative networks models will provide key mechanistic
insights of the regulation of heterogeneity in the pluripotent
state, and a systems-level picture of the interactions among
key regulators triggering differentiation to specific cell fates,
which will be essential for devising more effective differentia-
tion protocols.

Conclusions and outlook

In summary, heterogeneous PSCs populations comprise a
continuum of distinct cellular subpopulations, characterized
by different signaling, transcriptional, and epigenetics states,
which underline their corresponding gene regulatory net-
works. These subpopulation-specific networks display differ-
ent topological features, and therefore include distinct
combinations of network regulatory determinants involved
in cell fate determination (Fig. 1). A differential use of these
regulatory determinants can mediate differentiation to
distinct cell fates. Moreover, experimental results indicate
that PSCs may exit the pluripotent state via a continuum of
intermediate states, which ultimately become primed for
lineage specification [2, 79]. In this regard, there is compelling
evidence of the biological role of NSCs heterogeneity in vivo,
which are activated in the brain in response to ischemia
through interferon-g signalling activation of dormant NSCs
subpopulations, to enter a primed state [56]. Recent reports
have shown the translational potential of PSCs for in vitro or
ex vivo generation of differentiated cells that could be used
for repairing damaged tissues [121]. In this groundbreaking
study, the authors proved that pluripotent cells cultured
ex vivo can be successfully transplanted to form a corneal
epithelium that recovers function in an experimentally
induced animal model of corneal blindness. Thus, the study
of the gene regulatory networks, signaling and epigenetic
mechanisms controlling heterogeneity in the pluripotent
state, and the generation of integrative models from single
cell data will be key for getting a deeper understanding
of self-renewal and cell-fate commitment. These integrative
computational approaches will help devising novel strategies
for increasing the efficiency and fidelity of differentiation,
which will have a strong impact in regenerative medicine.
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