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Abstract 
Heart failure is a global health problem and the number of sufferers is increasing as the population grows and ages. Existing 
diagnostic techniques for heart failure have various limitations in the clinical setting and there is a need to develop a new diagnostic 
model to complement the existing diagnostic methods. In recent years, with the development and improvement of gene sequencing 
technology, more genes associated with heart failure have been identified. We screened for differentially expressed genes in heart 
failure using available gene expression data from the Gene Expression Omnibus database and identified 6 important genes by a 
random forest classifier (ASPN, MXRA5, LUM, GLUL, CNN1, and SERPINA3). And we have successfully constructed a new heart 
failure diagnostic model using an artificial neural network and validated its diagnostic efficacy in a public dataset. We calculated 
heart failure-related differentially expressed genes and obtained 24 candidate genes by random forest classification, and selected 
the top 6 genes as important genes for subsequent analysis. The prediction weights of the genes of interest were determined by 
the neural network model and the model scores were evaluated in 2 independent sample datasets (GSE16499 and GSE57338 
datasets). Since the weights of RNA-seq predictions for constructing neural network models were theoretically more suitable for 
disease classification of RNA-seq data, the GSE57338 dataset had the best performance in the validation results. The diagnostic 
model derived from our study can be of clinical value in determining the likelihood of HF occurring through cardiac biopsy. In the 
meantime, we need to further investigate the accuracy of the diagnostic model based on the results of our study.

Abbreviations: AUC = area under curve, DEGs = differentially expressed genes, ECM = extracellular matrix, GEO = Gene 
Expression Omnibus, GO = gene ontology, HF = heart failure, HFpEF = preserved ejection fraction, HFrEF = heart failure with 
reduced ejection fraction.
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1. Introduction

Heart failure (HF) is a clinical syndrome in which structural 
and functional defects of the myocardium lead to impaired ven-
tricular filling and/or ejection.[1] Depending on the functional 
status of the heart, HF is classified as heart failure with pre-
served ejection fraction (HFpEF) and heart failure with reduced 
ejection fraction (HFrEF). HF with mid-range ejection fraction 
is controversial due to its nature and was not included in our 
current study. And the mechanisms of development of these two 
types of HF are different. The prevalence of HFpEF accounts 
for over 50% of all HF cases and this figure is expected to rise 
further.[2] However, most of the available drug therapies focused 
on HFrEF have shown little effect in treating patients with 
HFpEF.[3] We therefore need new therapies that will help treat 

HFpEF and ultimately improve the quality of life and health 
status of these HF patients.

There are limitations to the diagnostic techniques commonly 
used in clinical practice for HF. For example, brain natriuretic 
peptide/N-terminal-proB-type natriuretic peptide levels may also 
be elevated in non-HF diseases such as pulmonary hypertension, 
acute or chronic renal failure, and cirrhotic ascites, but are nor-
mal in patients with HFpEF.[4,5] Echocardiography is a technical 
device commonly used in clinical practice to measure cardiac 
function, and relies mostly on individual operation proficiency 
and diagnostic experience of specialists, making the results less 
reproducible. In addition, it is difficult to determine patients 
with HFpEF by measuring the ejection fraction value.[6] Hence, 
there is a need to develop new diagnostic models to complement 
these existing methods. In recent years, the rapid development of 
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second-generation sequencing technologies has helped to identify 
a wide range of disease-associated marker genes, providing the 
technical basis for the development of new gene-related diagnos-
tic models for HF. In the present study, we screened differentially 
expressed genes (DEGs) between HF and normal myocardial 
samples according to the Gene Expression Omnibus database 
(GEO). On the basis of these DEG data, we used the random 
forest algorithm to identify the key genes expressed in HF. Next, 
we construct a genetic diagnostic model of HF by feeding these 
key genes into an artificial neural network (Fig. 1).

2. Materials and Methods

2.1. Data download and processing

GEO database[7] was used for downloading data to obtain 
the expression profile and clinical phenotype data of microar-
ray datasets GSE5406 and GSE76701 and RNA-seq datasets 
GSE16499 and GSE57338, and the information of the chip 
probes of the corresponding platforms. During the conversion 
of microarray probe IDs and gene symbols, multiple probes 
were found to correspond to 1 gene symbol. In this case, the 
average probe expression was used as the gene expression level. 
The Perl (version 5.30.2.1) was used to perform gene ID conver-
sion on the RNA-seq expression profile.

2.2. Differential expression and enrichment analysis

Normal and HF sample genes from the GSE5406 and GSE76701 
datasets were combined using the R packages “limma” and 
“sva,” and only one duplicate gene was taken and then con-
ducted differential analysis. The limma software package[8] uses 
the classic Bayesian data analysis to screen DEGs. The signifi-
cance criteria for DEGs were set at a P value of <.05 and log-
FoldChang (logFC) >1.0. The pheatmap software package was 
used to draw the heat map of DEGs, and the R package cluster-
Profiler[9] was used to perform GO function enrichment analysis 
on related genes to identify 3 types of significantly enriched GO 
terms (P < .05).

2.3. Random forest screening for important genes

The randomForest package[10] was used to construct a ran-
dom forest model of DEGs. First, the average model mis-
calculation rate of all genes based on out-of-band data was 
calculated. 500 was chosen as the best number of trees con-
tained in the random forest. Next, a random forest model 
was constructed and the genes with an importance value >2 
were chosen as the disease specific genes for the subsequent 
model construction. The software package pheatmap was 
used to reclassify the unsupervised hierarchical clusters of the 
important genes in the GSE5406 and GSE76701 dataset and 
draw a heat map.

2.4. Neural network to build disease classification model

Genes with importance scores >2 in the previous step were 
selected for neural network model training. After the data 
was normalized to the maximum and minimum values, the 
R software package neuralnet (version 1.44.2) was used to 
construct an artificial neural network model of the import-
ant variables. Five hidden layers were set as the model 
parameters to construct a classification model of HF dis-
eases through the obtained gene weight information. In this 
model, the sum of the product of the weight scores multiplied 
by the expression levels of the important genes was used 
as the disease classification score. The p receiver-operating 
characteristic software package[11] was used to calculate the 
verification results of area under curve (AUC) classification 
performance.

2.5. Additional data verification

The classification score model for the constructed HF diseases 
and the normal samples was tested for effectiveness verification 
on 2 independent datasets (GSE16499 and GSE57338). The 
pROC software package was used to draw the ROC curves for 
each dataset, and the area under the ROC curve was calculated 
to verify the classification efficiency.

Figure 1. Flowchart.
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3. Results

3.1. Differential expression analysis

Differential expression analysis was performed based on the 
chip datasets GSE5406 and GSE76701 to screen for DEGs. The 
GSE5406 dataset contained 210 samples, including 16 normal 
and 194 HF disease samples and the GSE76701 dataset con-
tained 8 samples, including 4 normal and 4 HF disease samples. 
Next, the sva package was used to merge the normal samples 
and the HF samples of the 2 datasets. Then, the limma package 
was used to identify DEGs between the HF samples of this chip 
dataset and the normal control samples through the Bayesian 
test. The results of the DEGs are shown in the volcano graph 
(Fig. 2A) and heatmap (Fig. 2B). Based on fold change values 

of > 1.0 and significance threshold of P < .05, we identified 24 
significant DEGs related to HF diseases by the screen.

3.2. GO enrichment analysis

Gene ontology (GO) enrichment analysis was performed on 
the 24 significant DEGs using the clusterProfiler package. The 
Benjamini–Hochberg correction method was used, with the 
thresholds set at a P value of < .05 and a Q value of < 0.05. 
Figure 3A shows the analysis results of 3 aspects of GO enrich-
ment, including biological processes, cellular components, and 
molecular function. Among the results, the related biological 
processes involved in HF include muscle contraction, muscle 
system process and cardiac muscle tissue development. The 

Figure 2. (A) Volcano plot of differential expression analysis results. The abscissa is logFC and the ordinate is -log10 P value. The upper right part has a P value 
<.05 and a fold change greater than 1.0, indicating significant DEGs with higher expression levels. The upper left part has a P value <.05 and a fold change 
<−1.0, indicating significant DEGs with reduced expression. The gray dots represent the remaining stable genes. (B) Heatmap of DEGs. The colors in the graph 
from dark orange to steel blue indicate high to low expression. On the upper part of the heatmap, the red band indicates the disease samples and the blue band 
indicates the normal samples. DEG = differentially expressed genes.
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cellular components involved include collagen-containing extra-
cellular matrix (ECM). The molecular functions included actin 
binding. Figure 3B and 3C show part of the GO enriched terms 
and the significant DEGs involved.

3.3. Random forest screening for DEGs

Next, we input the 24 DEGs into the random forest classifier. 
Finally, we chose 6 as the parameter of variable number. The 
number of variables was as small as possible, and the out-of-
band error was as low as possible. Referring to the relationship 
plot between the model error and the number of decision trees 
(Fig. 4A), we selected 500 trees as the parameter of the final 
model, which showed a stable error in the model. We then iden-
tified 6 DEGs with an importance >2 as the candidate genes for 
subsequent analysis. Figure 4B shows that among the 6 vari-
ables, ASPN and MXRA5 were the most important, followed 
by LUM, GLUL, CNN1, and SERPINA3. Based on these 6 
important variables, we performed k-means unsupervised clus-
tering of the merge of the GSE5406 and GSE76701 datasets. 
Figure 4C shows that the 6 genes could be used to distinguish 
between the disease and normal samples in 218 samples of the 
dataset. Among them, ASPN, MXRA5 and LUM genes are a 
cluster with low expression in the normal samples and high 
expression in the disease samples. On the other hand, GLUL, 
CNN1, and SERPINA3 belong to another cluster with high 
expression in the normal samples and low expression in the 
disease samples.

3.4. Construction of the artificial neural network model

Genes with importance scores >2 were selected to be trained as 
neural network models. The maximum and minimum data val-
ues were standardized and the number of hidden layers was set 
as 5. In the choice of parameters, there was no fixed rule on how 
many layers and neurons were to be used. The number of neu-
rons should be between the input layer size and the output layer 
size, usually two-thirds of the input size. Thus, the parameter 
of number of neurons was set as 6. The dataset was randomly 
divided into a training set and a verification set. The purpose 
of the training set was to determine the weights of candidate 
DEGs. The verification set was used to verify the classification 
efficiency of the model score constructed with gene expression 
and gene weight.

The results display the model classification performance 
using the ROC curve (Fig. 5A). The areas under the ROC curves 
(AUC) of the results were close to 1 (AUC = 0.976), which 
shows the robustness of the model. Therefore, we next used all 
the data to construct the neural network model (Fig. 5B).

3.5. Evaluation of AUC

Using the 3 independent verification datasets of GSE16499 and 
GSE57338, the 2 scores were calculated and their classification 
efficiency was evaluated, and the AUC were compared. Figure 6 
shows a comparison of the 3 scores of the 2 independent verifi-
cation datasets. In the GSE16499 dataset (Fig. 6A), the AUC was 
0.749. In the GSE57338 dataset (Fig. 6B), the AUC was 0.815.

Figure 3. Graph showing the enrichment analysis results. (A) Bubble plot of GO enrichment results. Biological processes are shown on the top, cellular compo-
nents are shown in the middle, and molecular function is shown on the down. A bubble represents a GO term, with the size of the bubble indicating the number 
of genes in the GO term. (B) Ring plot showing GO enrichment. The left side indicates the DEGs, the red gene band indicates upregulation, and blue indicates 
downregulation. The band on the right with different colors represents different GO terms. The connecting line indicates that the gene is included in the GO term. 
(C) Clustering diagram showing GO enrichment. The inside indicates the DEGs, the red gene band indicates upregulation, and blue indicates downregulation. 
The band outside with different colors represents different GO terms. DEG = differentially expressed genes.
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4. Discussion

In this study, we calculated HF-related DEGs and obtained 24 
candidate genes by random forest classification, and selected 
the top 6 genes as important genes for subsequent analysis. 

The prediction weights of the genes of interest were deter-
mined by the neural network model and the model scores 
were evaluated in 2 independent sample datasets. Since the 
weights of RNA-seq predictions for constructing neural net-
work models were theoretically more suitable for disease 

Figure 4. (A) The influence of the number of decision trees on the error rate. The x-axis represents the number of decision trees, and the y-axis indicates the 
error rate. When the number of decision trees is approximately 330, the error rate is relatively stable. (B) Results of the Gini coefficient method in random forest 
classifier. The x-axis indicates the genetic variable, and the y-axis represents the importance index. (C) Heatmap of unsupervised clustering showing the results 
of the hierarchical clustering produced by the 6 important genes generated by random forest in GSE5406 and GSE76701 datasets. Red color indicates genes 
with high expression in the samples, blue color indicates genes with low expression in the samples, the blue band on the upper side of the heatmap indicates 
normal samples, and the red band indicates HF disease samples. HF = heart failure.
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classification of RNA-seq data, the GSE57338 dataset had 
the best performance in the validation results. However, due 
to the lack of genetic data of HFpEF in the GEO database, 
the genetic characteristics of HFpEF were not included in the 
diagnostic model, thus affecting the diagnostic validity of the 
HFpEF model.

Asporin (ASPN) is a secreted matrix protein associated with 
cancer, osteoarthritis and periodontal membrane mineraliza-
tion. The transforming growth factor-β (TGF-β) superfamily 
plays multiple roles in cell differentiation, proliferation and 
fibrosis. Overexpression of TGF-β1 in the myocardium induces 
myocardial hypertrophy, which eventually progresses to HF.[12] 
In addition, TGF-β1 and its downstream typical Smad signal-
ing play an important role in the process of cardiac fibrosis.[13] 
ASPN promotes the migration and invasion of colorectal can-
cer cells through the TGF-β/Smad2/3 pathway and can be 
used as a potential prognostic biomarker for patients with col-
orectal cancer.[14] ASPN has been less studied in HF, but one 
study shows that ASPN expression is upregulated in cardiac 
fibroblasts from HF patients as well as HF mice, which was 

consistent with our analysis.[15] ASPN may be involved in HF 
by downregulating Bcl-2, upregulating TGF-1, Bax, type III col-
lagen, and fibronectin, and phosphorylating Smad2 and Smad3 
to increase apoptosis in H9C2 cardiomyocytes.[16] However, a 
recent study has shown that ASPN can prevent adverse cardiac 
remodeling and prevent excessive cardiac fibrosis and cardio-
myocyte death.[17] Although ASPN plays a cancer-promoting 
role as an oncogene, studies in HF are still limited, but this also 
provides us with a basis for better studies in the future. Matrix 
remodeling-associated protein 5 (MXRA5) belongs to the 
MXRA gene family, an adhesion protein with a leucine-rich 
repeat sequence and a nucleotide-associated (Adlican) immu-
noglobulin structural domain, expressed in primates but not 
in rats and mice, and plays an important role in cell adhesion 
and matrix remodeling.[18] The expression of MXRA5 mRNA 
has been observed to be upregulated in cardiac tissue in isch-
emic cardiomyopathy, and may play an important role in the 
development and progression of HF.[19] The MAPK pathway 
plays a key role in the regulation of cell proliferation, survival, 
differentiation and apoptosis, and its activation promotes 

Figure 5. (A) Verification of the ROC curve results. (B) Results of neural network visualization. ROC = receiver-operating characteristic.
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myocardial fibrosis and reduces cardiac function in HF rats.[20] 
It has been shown that MXRA5 is closely related to the MAPK 
pathway, and that MXRA5 promotes cell proliferation and 
apoptosis through the MAPK pathway.[21] Therefore, it is spec-
ulated that MXRA5 may play an important role in HF through 
the MAPK pathway. Furthermore, MXRA5 is a new ECM bio-
marker for calcified aortic valves, and its increased expression 
level leads to aortic stenosis, which in turn induces the devel-
opment of HF.[22] Lumican (LUM) is a proteoglycan secreted 
by the ECM that regulates collagen fibril formation and is 
highly expressed in HF patients and mice. NF-κB-mediated 
inflammation induces LUM production by cardiac fibroblasts, 
and increased LUM promotes raised levels of TGF-β1, exacer-
bates fibrosis in cardiac fibroblasts and promotes cell adhesion 
through the TGF-β2/Smad 2 signaling cascade promoting cell 
adhesion, which in turn exacerbates HF.[23,24] The osteopontin 
is an effector of extracellular signals that induces and main-
tains the growth and fibrosis of cardiomyocytes. Treatment 
with osteopontin inducers at the time of surgery blocks osteo-
pontin downstream signaling (PI3K and Akt phosphorylation), 
reduces LUM gene expression, prevents cardiomyocyte hyper-
trophy and cardiac fibrosis, and improves cardiac dysfunc-
tion.[25] Besides, LUM also plays a key role in innate immunity, 
which may have important implications for HF treatment.[26] 
Calponin 1 (CNN1) is an actin filament-associated regulatory 
protein that is specifically expressed in smooth muscle cells 
and functions to regulate contractile actin–myosin filaments 
and the noncontractile actin cytoskeleton in smooth muscle 
cells, and plays a role in fine-tuning smooth muscle contractil-
ity.[27] A study on gene expression fingerprinting in human HF 
shows that CNN1 expression is downregulated in hearts with 
HF,[28] which is generally consistent with the results of the pres-
ent study. The ERK1/2 signaling pathway is involved in angio-
tensin II-induced G protein signaling to induce activation of 
the CNN1 gene.[29] Activation of ERK1/2 has been shown to be 
cardioprotective against ischemia-reperfusion injury in vivo.[30] 
CNN1 improves the dilated cardiomyopathy phenotype in 
mice via the ERK1/2 pathway, suggesting that CNN1 may be 
a therapeutic target for controlling the development of dilated 
cardiomyopathy and HF.[31] The reduction of CNN1 levels 
caused by oxidative stress has also been shown to promote 

hypertrophic arterial remodeling, possibly contributing to the 
development of HF.[32] Glutamate-ammonia ligase (GLUL), 
also known as glutamine synthetase, is an enzyme that cata-
lyzes the synthesis of glutamine from glutamate and ammonia 
in an ATP-dependent reaction.[33] This protein plays a role in 
ammonia and glutamate detoxification, acid-base homeostasis, 
cell signaling, and cell proliferation.[34] Endothelial function 
plays an important role in HF, with endothelial cell metab-
olism controlling angiogenesis.[35] Gene deletion of GLUL in 
endothelial cells impairs angiogenesis, while pharmacological 
blockade of glutamine synthetase also inhibits angiogenesis in 
ocular and inflammatory skin diseases, and GLUL knockdown 
induces actin stress fibers and impedes endothelial cell motil-
ity.[36] GLUL may therefore have a regulatory role in endo-
thelial dysfunction in HF and could be used as a therapeutic 
target. SERPINA3 (Serpin peptidase inhibitor clade A member 
3), also known as a1-antichymotrypsin, is a serine protease 
inhibitor involved in a wide range of biological processes.[37] It 
is involved in the regulation of immune cells mainly through 
the regulation of cathepsin G and elastase.[38] Cathepsin G is 
found mainly in neutrophils and is released during inflamma-
tion and activates the body’s immune response.[39] However, 
prolonged activation of neutrophil accumulation leads to indi-
rect damage to the myocardium and therefore inhibition of 
neutrophil accumulation may reduce the incidence of HF.[40] 
A proteomic analysis shows that SERPINA3 expression levels 
are significantly increased in epicardial adipose tissue of HF 
patients and positively correlated with brain natriuretic pep-
tide levels.[41] Moreover, the heart tissue of HF patients can 
itself secrete SERPINA3, which induces the growth and car-
cinogenesis of colon cells.[42] Patients with new or worsening 
HF were more likely to die or be readmitted to the hospital 
with elevated SERPINA3 levels.[43] Therefore, SERPINA3 may 
become an important prognostic marker for HF patients in 
the future.

In summary, our current study only adds to the existing diag-
nostic and therapeutic approaches. However, the current diag-
nostic criteria and procedures are based on data from patients 
with HFrEF and their applicability to patients with HFpEF is 
unclear, and it is not possible to judge the severity of HFpEF. 
Therefore, the diagnostic model derived from our study can be 

Figure 6. Plot showing AUC verification results. (A) AUC verification results in the GSE16499 dataset. (B) AUC verification results in the GSE57338 dataset. The 
AUC value is the area under the ROC curve. AUC = area under the curve, ROC = receiver-operating characteristic.
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of clinical value in determining the likelihood of HF occurring 
through cardiac biopsy. In the meantime, we need to further 
investigate the accuracy of the diagnostic model based on the 
results of our study.
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