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Abstract

Background: A new framework for heart sound analysis is proposed. One of the
most difficult processes in heart sound analysis is segmentation, due to interference
form murmurs.

Method: Equal number of cardiac cycles were extracted from heart sounds with
different heart rates using information from envelopes of autocorrelation functions
without the need to label individual fundamental heart sounds (FHS). The complete
method consists of envelope detection, calculation of cardiac cycle lengths using
auto-correlation of envelope signals, features extraction using discrete wavelet
transform, principal component analysis, and classification using neural network
bagging predictors.

Result: The proposed method was tested on a set of heart sounds obtained from
several on-line databases and recorded with an electronic stethoscope. Geometric
mean was used as performance index. Average classification performance using ten-
fold cross-validation was 0.92 for noise free case, 0.90 under white noise with 10 dB
signal-to-noise ratio (SNR), and 0.90 under impulse noise up to 0.3 s duration.

Conclusion: The proposed method showed promising results and high noise
robustness to a wide range of heart sounds. However, more tests are needed to
address any bias that may have been introduced by different sources of heart
sounds in the current training set, and to concretely validate the method. Further
work include building a new training set recorded from actual patients, then further
evaluate the method based on this new training set.

1 Background

Heart disease is a major health problem and a leading cause of fatality throughout the
world. Treatment can be easier and cheaper if the condition is detected early. Cardiac
disorders that are valve related can be detected efficiently and cheaply using ausculta-
tion. Unfortunately, auscultation requires extensive training and experience to perform
effectively, and such training has been on the decline due to the availability of new car-
diac examination technologies [1]. Regardless, auscultation remains the most cost-
effective method for cardiac examination because it requires minimal equipment. This
makes auscultation the primary and often the only means of cardiac examination avail-
able for small primary health care clinics. In reality, however, medical personnel in
these clinics have little or no training in auscultation. The benefits of automatic auscul-
tation can be considerable.
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Auscultation consists of two phases: heart sound acquisition and heart sound analysis.
Heart sound acquisition involves placing a stethoscope at the appropriate location on a
patient’s chest with the right amount of force to capture heart sound. Heart sound ana-
lysis is used to determine whether or not the captured sound corresponds to a healthy
or diseased heart. This work is part of a larger study whose aim is to create a remote
auscultation system, a robotic device that can perform both heart sound acquisition and
analysis. Since acquisition is mostly a mechanical process, this work focuses only on the
analysis. The work focuses further on only detecting the presence of a disorder, but does
not attempt to identify it. That is, heart sounds are classified into two classes: “healthy”
or “diseased”. While this is a simpler problem than the multi-class problems (providing
diagnosis of the type of the disease) addressed by most studies on heart sound analysis,
it allows for a method that does not require heart sound segmentation and thus, is
robust to sounds that are difficult to segment due to significant signal corruption.

1.1 Heart Sounds and Cardiac Cycles

Heart sounds in healthy adults consist of two events: the first heart sound (S1) and the
second heart sound (S2). Together they are referred to as fundamental heart sound (FHS).
A cardiac cycle or a single heartbeat is defined as the interval between the beginning of S1
to the beginning of the next S1. The interval between the end of S1 to the beginning of
the same cycle’s S2 is called systole and the interval between the end of S2 to the begin-
ning of the next cycle’s S1 is called diastole. In, general systole is shorter than diastole,
which is the assumption that most heart sound segmentation methods are based on.
Figure 1 shows a cardiac cycle with the components separated by black vertical lines.

1.2 Abnormal Heart Sounds
Cardiac cycles of abnormal heart sounds contain components that are not one of the
FHS. These components can be grouped into two types: extra heart sounds and murmur

sounds. An example of the first type is the third heart sound (S3) shown in Figure 2.
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Figure 1 A normal cardiac cycle.

\




Yuenyong et al. BioMedical Engineering OnLine 2011, 10:13 Page 3 of 23
http://www.biomedical-engineering-online.com/content/10/1/13

8 - . :
5 S1 S1
S2
S3

o 4t
©
2
g ol
£
- 0
[0}
N
)
£
o
c 4}t

-6t

-8 s s s

0 2000 4000 6000 8000
samples
Figure 2 A cardiac cycle with third heart sound.
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The second type of abnormal heart sound is called a murmur. They are caused by turbu-
lence blood flow through a blocked (stenosis) valve, or backward flow through a leaking
(regurgitation) valve. These sounds can be heard both in systole or diastole, depending
on the underlying condition. The presence of murmur is a good indicator of valvular
(valve related) disorders. Figure 3 shows a cardiac cycle with a murmur called aortic
regurgitation caused by leakage of the aortic valve. It can be seen by comparing Figure 2
and 3 that murmurs are fundamentally different from normal heart sounds. Whereas S3
looks like an extra copy of FHS, murmurs alter the waveform of a cardiac cycle comple-
tely and the locations of FHS can no longer be marked precisely. This can cause pro-
blems for heart sound analysis in the segmentation state because most segmentation
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Figure 3 A cardiac cycle with aortic regurgitation.
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algorithms are based on determining the locations and types of FHS. It can be seen that
abnormal heart sounds are characterized by the presence of extra components in their
cardiac cycles that are not FHS. Thus one could formulate a heart sound analysis pro-
blem as detection of components other than FHS in cardiac cycles.

1.3 Overview of Heart Sound Analysis

Heart sound analysis can be broken into three generic steps: segmentation, feature
extraction, and classification. Segmentation is to determine the boundaries of cardiac
cycles from contiguous heart sound signals. Feature extraction is to calculate the iden-
tifying parameters from each cardiac cycle. classification is to make a decision on a
heart sound’s type based on those parameters.

There are two approaches to segmentation: envelope based and machine learning
based. Most existing algorithms use the envelope approach since it is not necessary to
label different components of cardiac cycles manually. On the other hand, if labelled
cardiac cycles are available, then a machine learning approach is preferred because
tedious envelope analysis can be avoided. The details of segmentation is discussed next.

1.4 Segmentation

Segmentation has been the subject of many studies because it is the first and perhaps the
most difficult step in heart sound analysis. The most popular approach to segmentation
can be called the “envelope analysis” approach. This approach calculates the envelope
signal of a heart sound, detects peaks of the envelope signal, establishes which peaks cor-
respond to S1 and which correspond to S2 and, then forms cardiac cycles using the S1-
S1 intervals. Examples of this approach include [2], using average normalized Shannon
energy, [3] using homomorphic filtering, [4] using complexity signatures, [5] using
energy of wavelet coefficients and [6] comparing various envelope detection methods.
All these studies fall under the envelope analysis approach since they are all based on
analysis of the envelope signals and are different only by envelope detection methods.
Due to its widespread use, the envelope analysis approach in general is discussed next.
1.4.1 Segmentation of Normal Heart Sounds

Figure 4 shows a plot of healthy heart sound and its envelope signal calculated using
the homomorphic filtering method. Peaks in the envelope signal correspond to the
FHS, which in healthy heart sound can all be easily detected by thresholding. The
threshold is indicated by the horizontal line. A peak is defined as a segment of signal
between two consecutive threshold crossings and its location is marked at the maxi-
mum sample in the segment. Any group of three consecutive peaks is then analysed.
The distance between the first and second peak (p1-p2 in Figure 4) is calculated and
compared with the distance between the second and third peak (p2-p3). Based on the
assumption that systole is shorter than diastole, it is easy to identify systole as the
shorter interval; thus, S1 must be the peak to the left of systole, or equivalently, S2
must be to the right. The identify of just one peak allows all other peaks to be identi-
fied by noting that S1 and S2 must alternate. Boundaries of cardiac cycles are then
formed by the S1-S1 intervals and segmentation is completed.

1.4.2 Segmentation of Abnormal Heart Sounds

This section illustrates problems that arise when an abnormal sound is segmented.
Figure 5 shows the envelope signal of a heart sound with S3. Suppose that the three
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Figure 4 Segmentation of normal heart sound.

leftmost peaks are analysed, which actually correspond to S1, S2, and S3, respectively.
The third peak is an extra peak such that it does not correspond to any FHS. Due to
the presence of this peak (marked as “extra peak” in Figure 5), the length of p2-p3
interval has changed. It is no longer the distance between the second and the fourth
peak, like it should be without the extra third peak, but the distance between the sec-
ond and third peak. This is shorter than the pl-p2 interval and leads to the false con-
clusion that the second peak is S1. Using this peak as a reference to label all other
peaks leads to wrong identification of all peaks in the envelope signal and ultimately
wrong segmentation results.

Segmentation is even more difficult in the case of heart sound with murmur. Figure 6
shows a cardiac cycle with aortic regurgitation murmur and its envelope signal. Aortic
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Figure 5 Segmentation of heart sound with S3. Note the error caused by the third peak.
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Figure 6 A cardiac cycle with aortic regurgitation and its envelope signal.
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regurgitation is characterized by diastolic murmur, in addition to diminished S1 sound
[7]. From the figure it can be seen that just one cardiac cycle contains 4 peaks, the lar-
gest of which corresponds to S2. However, there is no clear location of S1 as can be seen
from the top panel, where S1 appears to have been “squashed”. Therefore the envelope
signal has 3 peaks that can not be labelled because the location of S1 is uncertain. For
this reason, segmentation using the envelope analysis approach needs to eliminate extra
peaks while retaining the ones that correspond to FHS. This is called “peak condition-
ing”. In general, peak conditioning is based on “minimum peak interval”. That is, if an
interval between consecutive peaks fall below the minimum interval, it indicates that
one of them must be an extra peak; and a common procedure is to eliminate the one
with smaller magnitude. Peak conditioning can become a very tedious process due to

several reasons:

1. Depending on where and how hard the stethoscope is placed on the chest, the
FHS peaks may actually be smaller in magnitude than the extra peaks. Thus a
threshold could be too high, so that one or more FHS are missed. This means that
the missing FHS peaks must also be detected; if this is done by lowering the
threshold, more extra peaks could be detected.

2. In cases with severe murmur, one of the FHS may become very large and the
other may disappear from the envelope signal altogether.

3. The assumption that systole is shorter than diastole is not always true. The
length of diastole decreases with increasing heart rate; above a certain heart rate it
becomes roughly the same length as systole.

4. Some cardiac cycles may be incorrectly segmented and there is no way to auto-
matically distinguish correctly segmented cycles from incorrectly segmented ones.
Allowing incorrectly segmented cycles to enter feature extraction results in bad
training vectors for the classifier.
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Due to difficulties in the envelope analysis approach, segmentation methods based on
machine learning such as hidden Markov models (HMM) or time-delayed neural net-
work (TDNN) have been proposed [8,9]. Using these approaches, tedious envelope
analysis can be avoided at a cost of having to prepare training data for the HMM or
TDNN by manual segmentation. That is, a training set has to be hand-labelled by a
human expert. In practice however, cardiologists often use the carotid pulse which can
be felt in the neck artery during systole to aid in identifying the FHS. Therefore label-
ling a heart sound by visual inspection of the waveform alone can be challenging even
for an expert. It can be seen that segmentation is a difficult problem, but under the
method proposed in this work, it is not necessary to identify the FHS. The only infor-
mation needed is the auto-correlation of the envelope signal, which makes it applicable
even for heart sound waveforms that have been heavily corrupted by extra
components.

1.5 Feature Selection and Extraction

Feature sets found in the literature can roughly be grouped into two types. The first
employs medical knowledge about specific diseases and how they affect the genera-
tion of heart sounds. An example of a feature of this type is the split S2 interval.
Many cardiac disorders cause S2 to split into two separate sounds. Other types of
features are based on time-frequency signal representations. This type of representa-
tion is particularly suitable for heart sounds since they are non-stationary signals
whose frequency content changes with time. A particular time-frequency representa-
tion commonly used in heart sound analysis is the discrete wavelet transform
(DWT) [10]. Other types of time-frequency representations of heart sounds were
studied in [11] and it was shown that DWT is the most suitable representation.
DWT had been used repeatedly for features in heart sound analysis by dividing
detail level 2 (d2) coefficients into non-overlapping portions, then, calculating the
signal power of each to form elements of a feature vector [12-14]. DWT based fea-
tures offer two advantages over the first approach. They are well-studied in signal
processing and many software packages exist for their calculation. This makes them
easier to implement, compared to ad-hoc features extraction. Moreover, DWT coeffi-
cients are unaffected by the type of envelope detection method used, since they are
calculated directly from heart sound signals.

1.6 Using the DWT for Heart Sound Segmentation

The DWT had also been used for heart sound segmentation. This method is based on
decomposing the heart sound to be segmented and then reconstruct the signal using
using only some of the DWT coefficients such that murmur is removed from the
reconstructed signal. For example in [15,16], the heart sound signal was decomposed
using db6 wavelet with 5 levels then reconstructed using the a4, d5, d4 and d3 coeffi-
cients separately or some of their combinations. The reconstructed signal that had the
most murmur removed went on to envelope detection. The envelope calculated from
this signal clearly shows the location of the FHS, since murmur has been removed,
which allows for easy segmentation. Thus, by reconstructing the signal using only a
certain coefficient levels, murmur can be separated from FHS because they do not
overlap in frequency bands that correspond to the DWT coefficients used to



Yuenyong et al. BioMedical Engineering OnLine 2011, 10:13
http://www.biomedical-engineering-online.com/content/10/1/13

reconstruct the signal. However in this study it was found that this may not always be

the

case because:

1. Often murmur can be eliminated by DWT decomposition and reconstruction.
However, when a murmur is very loud, it overlaps with the FHS both in time and
in frequency, and hence cannot be eliminated by the DWT method. Figure 7 com-
pares the result of applying the DWT method described in [15] on a heart sound
with moderate murmur and that with a very loud murmur. It can be seen in the
left column that the murmur has been significantly removed. On the other hand,
in the right column, the murmur is still largely present.

2. The extra heart sounds S3 and S4 are very similar to S1 and S2 in terms of fre-
quency content. Therefore the DWT method cannot eliminate these sounds and
their presence could compromise subsequence segmentation.

3. Some types of cardiac disorders can make S1 or S2 disappear altogether, such as
severe aortic stenosis. Any segmentation algorithm based on locating the FHS

would not work in this case.

For these reasons, it can be seen that DWT may not always work for heart sound seg-

mentation in general. In fact, in the literature, there is no segmentation algorithm which

claims to work on all types and degree of severity of abnormal heart sounds. Thus in

this work we proposed a method that does not require segmentation altogether.

2 Method
The heart sound analysis framework proposed in this work is shown in Figure 8. The

main advantage of this approach is that it allows analysis to proceed without having to
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label each FHS. This is a big benefit for heart sounds with severe murmur whose FHSs
are so corrupted that it becomes impossible to segment such sound. Obviously, such
sound is abnormal, but in a traditional heart sound analysis approach that requires
segmentation, it cannot be analysed, or could be miss-classified because of incorrect
segmentation.

2.1 Preprocessing and Envelope Detection
Preprocessing consists of down-sampling and noise-removal of raw heart sound sig-
nals. In this work a sampling frequency of 4000 Hz was used. Each sound in the train-
ing set was either down-sampled or interpolated and re-sampled depending on its
original sampling frequency. De-noising is based on DWT thresholding [17], with
decomposition and thresholding parameters the same as that in [18].

Envelope signals were obtained from pre-processed heart sound signals by the fol-
lowing equations, where x denotes heart sound signals and E denotes envelope signals

[5]:

2

V() = 271 exp(Z5) expljo, k) M)
2a,,
N
Y(m, n) = Zwm(k - n)x(k) )
k=1
M
E(n)=2|Y(m, n)% m=12,..,N., 3)

m=1

where y,,(k) defines the mother wavelet of a Complex Morlet wavelet with scale
parameter a,,. Equation 2 defines a scalogram, a 2-dimensional representation of a sig-
nal where one variable is time and another is scale. Y is a matrix whose rows corre-
spond to scale and whose columns correspond to time. Equation 3 takes the
magnitude of each element in Y and sums each column to get the envelope signal E.

Page 9 of 23
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The scale parameters a,, were chosen such that they correspond to a frequency range
of 10 to 300 Hz, where the frequency bins are logarithmically spaced with 8 bins per
octave. This means that the frequency range between 10 and 20 Hz was divided into 8
bins, and the frequency range between 20 and 40 Hz was also divided into 8 bins. This
repeats until 300 Hz. The corresponding scales to these frequency bins were obtained

s=—c, (4)

where F is the frequency, F, is the center frequency of the mother wavelet, which is 5
rad/s for Complex Morlet wavelet, and A is the sampling period. This approach to
envelope detection has an advantage over other approaches such as those in [2,3].
Since the shape of Complex Morlet is very similar to that of an FHS, E will have high
peaks where FHS occur and will be attenuated everywhere else.

2.2 Determine Lengths of Cardiac Cycles
Envelope signals were used to determine lengths of cardiac cycles by employing their
autocorrelation [8,19],

N-m-1
E . x(n+m)x(n) m=0,
n=
R, .(-m) m<0

Ry (m) = (5)

where N is the signal length. Only positive values of m need to be considered since
heart sound signals are real. The length of a cardiac cycle was determined by seeking
for the first peak after the origin in the envelope of its autocorrelation function. Since
heart sounds are nearly periodic signals, auto-correlation of envelope signals will have
peaks where the shifted signal x(n + m) has been shifted by exactly one period and its
cardiac cycles are aligned with those of the unshifted x(n). Figure 9 shows a heart
sound signal in the top panel and the auto-correlation of its envelope signal in the bot-
tom panel. The waveform in the bottom panel was searched for a maximum within the
domain of 1000 to 5000 samples from the beginning of the signal. At f; = 4000 Hz this
domain corresponds to heart rates of 48 to 240 beats per minute (BPM), which
account for usual human heart rates. The BPM information also allows for identifica-
tion of abnormal heart rates. The peak marked by a circle is the maximum sample. It
can be seen that the distance (number of samples) from this sample to the start of the
signal is roughly the same as the length of the first cardiac cycle in the top panel. The
assumption is that heart rate remains constant throughout the entire signal.

The lengths of cardiac cycles were used to crop 5 cardiac cycles worth of signal from
both heart sounds and their envelopes. Cardiac cycle lengths allow for extraction of the
same amount of information from heart sounds with different heart rates. This is
necessary because during feature extraction some feature values are dependent on the
number of cardiac cycles extracted. Henceforth “heart sound/envelope segment” refers
to a segment of either heart sound or envelope with lengths equal to five cardiac
cycles. The choice of 5 cycles is to strike a balance between the nice averaging effect
of analysing multiple cycles, such that any local abnormality in any one cycle (impulse
noise for example) will not have much effect on feature vectors, and the amount of
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Figure 9 A heart sound signal and the auto-correlation of its envelope.

processing required. There is also a practical reason: short auscultation listening time
which decreases the time it takes to examine a patient.

2.3 Feature Extraction
The feature set used in this work consists of two parts: three features come from the
envelope segments and another 32 come from heart sound segments. Features were
obtained from heart sound segments using the same method as in [12] where d2
DWT coefficients decomposed for six levels using Daubechies-2 wavelet were parti-
tioned into 32 non-overlapping windows and the signal energy of each window was
used as a feature. This procedure is illustrated in Figure 10. It yields a 32-element fea-
ture vector for each heart sound segment. Another three features were obtained from
envelope segments. Figure 11 shows an envelope segment. Each peak is marked with a
circle and a peak interval and is shown by the arrows. The features derived from it
were: the number of peaks, the average distance (in samples) between consecutive
peaks, and the signal energy of the whole segment. The peak detection algorithm used
to obtain the first two of these features is an improvement over simple thresholding;
its pseudo code is shown below.
M = blank 1 by 2 matrix
x =1, 2, .., length(E) {E is envelope signal}
M, = -o0
mxpos = 0
for i = 1; length(E) do
t=1
if t >m, then
m, =1
Mypos = X(i)
end if
if t <m, - A then
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M
M= { x} {concatenate the row vector [, x| vertically with matrix M}

end if

end for

The difference between the above peak detection algorithm and simple thresholding
can be seen by considering Figure 12 which shows a heart sound segment with severe
aortic stenosis. If the threshold was set at around 0.25 as indicated by the black lines,
simple thresholding would detect the same number of peaks as the number of thresh-
old crossings divided by two; since there are many peaks above the threshold level, the
result would be wrong. However, the peak detection algorithm used in this work
would detect the correct number of peaks because in this case a peak is considered to
be a maxima whose value is higher than the two “valleys” on either sides, by a thresh-
old. That is, the threshold is compared from the top of a maxima, not from the x-axis.
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Figure 12 Comparison between envelope segment of a normal heart sound and one with murmur.
(top) Envelope segment of normal heart sound. (bottom) Envelope segment with aortic stenosis murmur.

Finally for the third feature, the sum of all samples in a segment were simply added.
The 3-element vectors and 32-element vectors were concatenated, forming 35-element
feature vectors.

2.4 Principal Component Analysis
Principal Component Analysis (PCA) is a linear transformation method. In this work

the following form was used:
A =QB, (6)

where A and B are matrices whose columns are feature vectors and Q is a matrix
whose rows are eigenvectors of the covariance matrix of the training set C, arranged in
decreasing order of magnitude of their eigenvalues from the top to bottom row. C is
defined as:

1

c=—Y (a,-a)(a;-3)", (7)

n-14=%
i=1

where 7 is the number of feature vectors, a; are the raw feature vectors, and a is the
mean vector. The use of PCA allows for a significant dimension reduction for the fea-
ture vectors. This is because only eigenvectors whose sums of eigenvalues make up
90% of the sum of all eigenvalues are included in Q (the ones with larger eigenvalues
were included first); and C usually has many eigenvectors with small eigenvalues and
few with large ones. The next pseudo code demonstrates the use of PCA on a raw fea-
ture vector set, where the vectors are arranged as columns of matrix X.

C= 38 by 38 matrix of zeros

N = number of columns of X
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fori=1—> Ndo
C=C+(x;-x)(x;-%)"
-_C
end forC = N1
calculate eigenvalues and eigenvectors of C

Let E=[v],..., vi;] where each row of E is an eigenvector and

Let D = [dy, ..., dy] their eigenvalues, where d; > d;,;
S = sum of D
k=Q=0
while Q < 0.9S do
Q= Q + D(k)
k=k+1
end while
E =Ek + 1, .., N) (drop the k + 1" till N rows of E)
fori=1—> Ndo
vi = Ex; (Each vy; is a new feature vector)
end for

2.5 Bootstrapping and Bagging Classifiers
Let the original set of feature vectors and their class labels be denoted as T = {x;, d;},
were X; is a feature vector and d; its class label. After PCA, T was transformed into

T ={x/,d;}, where X denotes feature vectors that have been transformed by PCA.
Bootstrapping is to randomly sample from 7” to generate N new training sets
Ty, T5,..., Ty » such that each is the same size as T'. The sets T; were training sets for

N individual neural networks (from here referred to as a network) which were trained
independently using their respective training sets. During training, some members

from each of the Ti' were reserved for testing, that is, were excluded from training.

Each network was trained, then, its performance was evaluated on the reserved test
set. Then it was retrained and evaluated again for 30 times. The network instance that
had the best performance was kept. This process was repeated N times for all of the
networks. Once all networks were trained they form “bagging classifiers”, which are
multiple classifiers working together to classify an input. An unknown feature vector
can be classified by taking the vote of the outputs of the networks by:

1 if v, >T
0 otherwise

Vie L,n; ={ (8)

. N N
oo 1 if ziﬂnizﬂoor(zJ ©)

0 otherwise

where L is a set of all networks, Y; the output of a network i, #; an intermediate vari-
able that counts the number of networks whose output is greater than or equal to
threshold T, N is the number of networks and c is the class label. It has been shown
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in [20] that the classification performance of bagging predictors is always equal to or
greater than that of a single classifier. Therefore, unless limited by computational
resources, bagging classifiers are preferred over a single classifier. An unknown heart
sound to be classified would pass through all steps in Figure 8, up to and including
PCA, using the transformation matrix Q derived from the original training set 7. The
output of which becomes the input of all the N neural networks, and the decision of
the heart sound type is made according to Equation 8 and 9.

In summary, the proposed heart sound analysis framework consists of:

1. Preprocessing that consists of down-sampling and noise-removal.

2. Envelope detection using Equation 1-3.

3. Calculate auto-correlation function of envelope signals.

4. Detect the location of the first peak in the domain of 1000 - 5000 samples after
the origin of auto-correlation functions to find lengths of cardiac cycles.

5. Crop segments of five cardiac cycles from the heart sounds and the envelope
signals.

6. Feature extraction from heart sound segments using DWT and from envelope
segments using the peak detection algorithm in Section 2.3 to form 35-element fea-
ture vectors.

7. Perform PCA on the feature vector set T using the second algorithm in Section
2.3.

8. Perform bootstrapping on 7” to generate N training sets.

9. Train each network with its training set.

10. The trained networks classify heart sounds using Equation 8 and 9.

3 Results and Discussion

The method proposed in this work was tested on a set of 57 individual heart sounds.
Some of these sounds were recorded with a Thinklabs Rhythm ds32a electronic stetho-
scope, while others were obtained from several online databases [21-24]. Table 1 lists
the types of sounds where the (m) indicates murmur. Two main experiments were car-
ried out. The first was conducted to determine the optimal parameter set for bagging
classifiers. These parameters are the number of hidden neurons of each network, and
the decision threshold above which a network’s output is considered positive (abnor-
mal sound). The second experiment was conducted using the optimal parameters
obtained from the first experiment to assess the classification performance, the robust-
ness under white noise, random-value impulse noise, and unseen abnormal sound type
of the proposed method. Since the main advantage of this work is robustness to differ-
ent types of heart sounds gained from not requiring segmentation, the system was
tested under different noise levels. Some points that have to be made about the train-
ing set are as follows. First, these sounds were recorded for instruction purposes and
so are likely to be of better quality than actual clinical recordings. However, at this
stage in the study, this issue was postponed for the purpose of preliminary evaluation
of the proposed method. Second, since the number of normal and abnormal samples
were imbalanced, the normal set was expanded by randomly replicating samples such
that its size is comparable to the abnormal set (oversampling). This was done so that
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Table 1 Heart Sound Types in the Training Set

Heart Sound Type Number of Files

N

Normal

Third Heart Sound
Fourth Heart Sound
Ejection Sound

Systolic Click
Summation Gallop
Opening Snap

Split 52

Aortic Regurgitation (m)
Aortic Stenosis (m)
Mitral Regurgitation (m)

U oY OOy N = NN WD

Mitral Stenosis (m)

N

Pulmonary Stenosis (m)

This table lists the type of heart sounds that were used in the experiment. The (m) indicate the heart sound is a
murmur.

the classifier will not be biased toward the majority class [25]. Finally, the sounds came
from different sources and thus were recorded with different equipment. This is a
potential source of bias since the frequency response for each equipment are different.
However this bias is potentially limited because there are more than two recording
instruments, but only two classes. Thus, judging by the high classification performance,
the classifier is not simply detecting the difference in frequency response. Such a sce-
nario would have resulted in a much lower performance. Moreover, features based on
envelope signal are insensitive to variations in frequency response, since frequency
information has mostly been discarded during the envelope detection process. In con-
clusion, due to these issues associated with the current training set, we would like to
emphasize that this study is an initial evaluation of the proposed method. More experi-
ments using real clinical sounds recorded with actual equipment, that will be used in
the final auscultation device, are needed. This will be addressed in further work.

3.1 Evaluation Criterion

Ten-fold cross validation that incorporates bagging classifiers was used as performance
evaluation; the flowchart of which is shown in Figure 13. It consists of dividing the data
into ten portions. Then, in each fold, one portion was reserved for testing while the
remaining nine became the training set, which was sampled according to the bootstrap-
ping procedure discussed in section 2.5. This generated N different training sets for each
of the N neural networks. The networks were trained and their performance was evalu-
ated on the test portion, which is the same for all networks since the test portion was
not sampled. Each network was trained 30 times and the instances that yielded the best
performance were kept. This procedure is illustrated in Figure 13 inside the bounding
boxes. Each box represents the training process of a single network. A network’s perfor-
mance was evaluated by the sum of absolute error (SAE), defined in Equation 10:

SAE=2|y,~—dl~ I (10)

Viet

where ¢ is set of all instances of the test portion, y; is an actual output of a network
and d; is the desired output (0 for normal and 1 for abnormal).
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|Divide data into 10 portionsl

pick test portion
Ibootstrap remaining portionsli

minSAE = 1000 minSAE = 1000
k=k+1
yes yes
save NN as bestNN
(N networks)
[compute SAE over test portion]  [yes no [compute SAE over test portion]  [yes no
SAE < minSAE? SAE < minSAE?
[compute outputs of bestNN over test portion | [compute outputs of bestNN over test portion |
[compare outputs with threshold (eq 8)| [compare outputs with threshold (eq 8)]

L >]vote each sample in test portion (eq 9)}«——

pick a new test portion
and repeat again

store the result

[all portions have been tested
yes

END

Figure 13 Cross-validation procedure where k is the number of repetitions that each NN is trained
in each fold. SAE is the sum of absolute error defined in Equation 10. The process inside each box is the
training for each network.

After the best N networks had been obtained, each of them classified the test por-
tion. The outputs that were higher than the threshold T were rounded to one, while
those that were not were rounded to zero. If the number of ones for a heart sound

were more than ﬂoor(%) where N is the number of networks, then that heart sound

was classified as abnormal. After all heart sounds in the test portion had been classi-
fied, a different portion was selected as test portion and the whole procedure was
repeated until all portions had been a test portion.

The reason why the networks had to be trained 30 times was because a network’s
performance depends on its initial random weights, which determined the starting
point on the error function. The error function of a neural network is generally not
convex. Thus, the steepest descent may get caught in a local minimum during the
training process and hence the need to repeat training many times and keep the best
performing network.

Cross-validation results can be quantified by 4 numbers: true positive (TP), false
positive (FP), true negative (TN), and false negative (FN),

« TP: the ratio between samples which are actually positive over the number of
samples classified as positive.
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« FP: the ratio between samples which are actually negative over the number of
samples classified as positive.
» TN: the ratio between samples which are actually negative over the number of
samples classified as negative.
+ FN: the ratio between samples which are actually positive over the number of
samples classified as negative.

where positive means diseased heart sounds and negative mean healthy heart sounds.
From these raw scores, 3 more indicators of performance can be calculated by:

TP + TN
accuracy = ———— (11)
N

TP
sensitivity = ——— 12
v TP + FN (12)

TN
specificity = ——— 13
p Y TN + FP 13)

where N is the number of samples in the training set. Finally, a single indicator of
classification performance combines both the sensitivity and specificity into a single
quantity called the geometric mean [25]. This quantity was used to assess performance

in all experiments.

g = \/sensitivity x specificity (14)

3.2 Experiment 1A - Determining the Optimal Number of Hidden Neurons

The purpose of experiment 1A was to determine the optimal parameters for the classi-
fier which can be used for later experiments. Only a single neural network was used,
with decision threshold T fixed at 0.5. Its classification performance was tested with
increasing number of hidden neurons until there is no increase in performance. This
was performed three times and the average was taken. The result is shown in Table 2.
There was only a slight performance increase when the number of hidden neurons was
increased from 5 to 10. Thus the experiment was stopped and 10 was chosen to be the
optimal number of hidden neurons, which was fixed for all later experiments. The
receiver operating characteristic (ROC) curve in Figure 14 was plotted to determine
the best value for the threshold 7', where the optimal point on the ROC curve is
marked with a circle. The corresponding threshold value was around 7 = 0.15 and this
value was used as the decision threshold for all later experiments. Also, from experi-
ment 2A onward, bagging predictors with five networks was used. In summary, the
optimal parameters determined by experiment 1A are 10 hidden neurons and 7" = 0.15.

3.3 Experiment 2A - Robustness to White Noise Test

The goal of experiment 2A was to test the robustness of the system against additive
noise. Gaussian white noise was added to all heart sounds at signal-to-noise-ratio
(SNR) of 15, 10 and 5 dB. At each SNR, cross validation was performed to check the
robustness of the system. The result is shown in Table 3. It can be seen that for an
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Table 2 Result of Experiment 1A

Hidden neurons trial 1 trial 2 trial average
1 0.89 0.86 0.89 0.88
5 091 0.90 0.92 091
10 0.92 0.94 091 092

Cross validation result using only a single neural network and varying the number of hidden neurons. All performance
values in this and all subsequence tables are given in the geometric mean defined in Equation 14.

SNR of 15 dB and 10 dB, there was little difference from the noise-free case. However,
at 5 dB the performance noticeably decreased. This test showed that the system has
some robustness to white noise, but in actual operation, loud background noise is
something to be careful of.

3.4 Experiment 2B - Robustness to Impulse Noise Test

In actual operation of the system in a hospital, it may encounter impulse-like noise. It
is likely that the patient may move during recording, causing impulse-like noise in the
recorded heart sound due to friction between the stethoscope’s chest-piece and the
patient’s chest. In this experiment the robustness of the system against impulse-like
noise was tested. A total of 16 sounds of both normal and abnormal type had impulse
noise of various duration (0.1, 0.2 and 0.3 s) added by replacing a segment of a signal

with random sequence with range {-max max} where max is the maximum value of

ROC

£
="

0.7

05+

True Positive Rate

0.4+

03

0.2+

U 1 1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1

False Positive Rate

Figure 14 ROC curve from cross-validation using a single network with 5 hidden neurons.

\
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Table 3 Result of Experiment 2A

SNR trial 1 trial 2 trial 3 average
15 dB 092 093 093 093
10 dB 0.88 091 091 0.90
5dB 0.86 0.81 0.82 0.83

Cross validation result where the training set had white noise added at different SNR's.

that signal. Cross-validation was performed with these sounds mixed in the training
set. The result is shown in Table 4. Impulse noise of all durations had little affect on
the system’s performance. In practice, impulse noises are generally less than 0.3 sec-
onds long so the system can be considered robust to impulse noise.

3.5 Experiment 2C - Robustness to Unseen Abnormal Heart Sound Types

In this experiment the goal was to assess the robustness of the system to abnormal
heart sound types that were not part of the training set. Different abnormal sound
types were left out of the training process and were used to test the system trained on
the remaining sounds. The result is shown in Table 5. It can be seen that in most
cases the left-out sounds have been correctly classified.

3.6 Discussion and Comparison with Other Works

The goal of this work is to provide a heart sound analysis algorithm for an automatic
auscultation device. Such device will be used mostly in rural clinics as an early and
cheap detection for heart disease, not as a main diagnosis device. This is the main rea-
son why we decided to restrict the problem to be two-classes, and focus on incorporat-
ing as many type of abnormal sounds as possible, and to be robust to noise.

From the experiments, it can be seen that the proposed method achieved average
performance of 0.92 (all performance numbers are geometric means unless stated
otherwise) for the noise-free case and 0.9 under additive white noise of 10 dB. This
provides quite a comfortable noise margin, especially in rural clinics that tend to be
noisy. In the extreme case where the noise level was increased to 5 dB, classification
performance was significantly decreased to 0.83. A separate examination area, with the
auscultation device placed as far away as space permits from any noise sources such as
air conditioning, should be able to provide an SNR level within the robust range.

In actual auscultation, a patient may move slightly during recording. Such movement
causes impulse noise which may affect the classification result. Experiment 2B showed
that impulse noise up to 0.3 second in duration may be tolerated with only slight
decrease in accuracy. Based on these results it can be concluded that if the SNR is
kept higher than 10 dB and long impulse noise is relatively rare; one could expect
around 0.90 classification performance from the proposed method.

The final experiment showed how the proposed method can be generalized to clas-
sify abnormal sound types that were not part of the training set. In practice such cases

Table 4 Result of Experiment 2B

Noise duration trial 1 trial 2 trial 3 average
0.1s 092 092 0.90 091
02s 0.90 0.89 092 0.90
03s 091 0.90 0.89 0.90

Impulse noise robustness test: some heart sounds in the training set had impulse noise of different duration added.
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Table 5 Result of Experiment 2C

Unseen type Accuracy
AR 4/5
AS 5/6
MR 5/5
MS 4/4
PS 3/3
S3 4/4
S4 3/3
Split S2 3/4
Ejection Sounds 2/2
Systolic Click 2/2
Opening Snap 2/2

Unseen abnormal heart sound types test, each trial a type of abnormal heart sound was left out of the training set. The
system was then tested on these unseen sound types.

should be rare since the system must be trained extensively before being fielded, but it
provides some confidence knowing that the algorithm is likely to generalize correctly if
such a case does occur. Even split S2, which is hard to detect, was mostly classified
correctly under ideal noise-free conditions.

It is difficult to make direct comparison between this work and others, because the goals
are different, and there is no standard test set upon which to compare. Therefore, we dis-
cuss some general comments on how the proposed method compares with other works in
this field. In terms of classification accuracy alone, this method was not the best. Several
studies reported over 98% classification accuracy. This makes our method seem inferior,
especially when the focus is only on two-class situations, while many studies are multi-
class, and identified the disease that a heart sound is showing. Our method however, has a
wide coverage. There were 12 different types of abnormal heart sound in the training set,
which is more than most other studies that often include only the four main types of mur-
mur: aortic regurgitation/stenosis and mital regurgitation/stenosis. A diverse training set
that includes abnormal sounds that are very similar to normal (split S2, small S3 and S4),
makes accurate classification quite difficult even for the two-class case. The training set
also included sounds such as that in Figures 3 and 7 that are very difficult to segment
automatically, due to very large murmur and/or diminished FHS. In such situations the
proposed method is highly advantageous since segmentation is not required, which is the
unique point of this algorithm. The only “segmentation” performed is cropping out seg-
ments of heart sound signals and their envelopes with lengths equal to 5 cardiac cycles of
each respective sound. These segments can begin and end anywhere within a cardiac
cycle, that is, the beginning of the segments do not have to align with the beginning of a
cardiac cycle. This means that classification accuracy will not be affected by erogenous fea-
ture vectors produced by miss-segmented cycles.

Robustness against noise is another main advantage of the proposed method, as indi-
cated by the result of experiment 2A and 2B. Extracting multiple cardiac cycles to
form a feature vector averages out the effect of any peculiarity in a particular cycle,
such as impulse noise. Focusing only on two classes and skipping segmentation make
the proposed method seem overly simple, but it allowed for high robustness and cover-
age while not compromising practical use. This is because even if a patient has been
diagnosed with a particular disease by heart sound analysis and referred to a hospital,
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then the patient will most likely be re-examined using techniques other than ausculta-
tion before the condition is confirmed. Thus the proposed method is suitable for its
intended use.

On the negative side, the training set used may have introduced bias, since sounds
came from different sources and the normal set was over-sampled. Moreover, most
sounds in the training set were recorded for instruction purpose so they are likely to
be of better quality than actual clinical recordings. These issues will be addressed in
further research by building a new training set using the same equipment, and
recorded in the same environment where the final automatic auscultation device will
be deployed. The method will be evaluated again using this new training set.

4 Conclusions

A new approach to heart sound analysis was proposed that does not require segmenta-
tion. The method is applicable to a wide range of heart sounds, from normal to those
containing severe murmurs where one of the FHS may disappear. The training set
incorporated 12 different types of abnormal heart sounds ranging from split S2 to
severe murmurs. Using geometric mean as index of performance and ten-fold cross
validation, experiments were conducted to verify the effectiveness of the proposed
method and to determine the optimal configuration for the classifier. Based on these
parameters, further tests were conducted to assess the robustness of the system to
white noise, impulse noise, and unseen heart sound types. The experiments showed
that the system can operate at 10 dB SNR, and with 0.3 s long impulse noise with
average performance of 0.9. In conclusion, the advantages of this work are:

1. It does not require segmentation.
2. It is applicable to a wide range of heart sounds.
3. It is robust to noise.

While the shortcomings of this work are:

1. It only classifies heart sounds as normal or abnormal.
2. The training set may have introduced bias due to different frequency response
and oversampling of the normal set.

4.1 Further Work

Further works include stand-alone software implementation and field testing in a hos-
pital using a new training set to concretely validate the proposed method. Also another
approach based on single-class classification (SCC) may be explored. In SCC the train-
ing data consists of samples from only a single class, which is usually the “normal”
class. Applying SCC to heart sound analysis reformulates the problem to be detection
of healthy heart sounds and the classifiers would be trained using only healthy samples.
This approach eliminates the need to collect abnormal samples and would make data

collection much easier.
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