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A B S T R A C T   

Background: Prostate cancer (PCa) ranks as the second most prevalent malignancy among males 
on a global scale. Accumulating evidence suggests that inflammation has an intricate relationship 
with tumorigenesis, tumor progression and tumor immune microenvironment. However, the 
overall impact of inflammation-related genes on the clinical prognosis and tumor immunity in 
PCa remains unclear. 
Methods: Machine learning methods were utilized to construct and validate a signature using The 
Cancer Genome Atlas (TCGA) for training, while the Memorial Sloan Kettering Cancer Center 
(MSKCC) and GSE70769 cohorts for independent validation. The efficacy of the signature in 
predicting outcomes and its clinical utility were assessed through a series of investigations 
encompassing in vitro experiments, survival analysis, and nomogram development. The associ-
ation between the signature and precision medicine was explored via tumor immunity, genomic 
heterogeneity, therapeutic response, and molecular docking analyses, using bulk and single-cell 
RNA-sequencing data. 
Results: We identified 7 inflammation-related genes with prognostic significance and developed 
an inflammation-related prognostic signature (IRPS) with 6 genes. Furthermore, we demonstrated 
that both the IRPS and a nomogram integrating risk score and pathologic T stage exhibited 
excellent predictive ability for the survival outcomes in PCa patients. Moreover, the IRPS was 
found to be significantly associated with the tumor immune, genomic heterogeneity, therapeutic 
response, and drug selection. 
Conclusion: IRPS can serve as a reliable predictor for PCa patients. The signature may provide 
clinicians with valuable information on the efficacy of therapy and help personalize treatment for 
PCa patients.  
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1. Introduction 

Prostate cancer (PCa), with a rising incidence in recent years, stands as the second most prevalent malignant tumor in males 
worldwide [1,2]. Despite improvements in comprehensive treatment strategies, 25 % of treated men experience biochemical recur-
rence (BCR) [3,4]. While clinical assessments like prostate-specific antigen (PSA), Gleason score, and clinical stage provide some 
insight into a patient’s prognosis, they are often limited, and patients with similar clinical conditions may have different prognoses [5]. 
Consequently, there is a pressing need to investigate novel prognostic indicators and develop more accurate prognostic models to 
predict the clinical outcomes and guide individualized treatment in PCa patients. 

Chronic inflammation, which produces cytokines that promote tumor proliferation and metastasis, disrupt adaptive immunity, and 
reduce the effectiveness of cancer treatment, has been linked to cancer occurrence and development [6,7]. In recent years, the function 
of cancer-related inflammation in carcinogenesis and tumor growth have become hot topics of research, and has been categorized as 
the eighth characteristic of cancer [8]. Inflammation has been identified as a key driver of the occurrence and progression of PCa [9]. 
Previous studies suggest that inflammatory damage may contribute to the tumorigenesis of PCa by inducing cellular stress and causing 
repeated genomic damage [10,11]. However, there is currently no reliable model in PCa patients for predicting biochemical 
recurrence-free survival (bRFS) specifically using inflammation-related genes (IRGs). 

The tumor microenvironment (TME), recognized as a complex multicellular setting for carcinogenesis, has been generally 
acknowledged to affect tumor growth and treatment outcomes [12]. Inflammation has been shown to influence the cellular compo-
sition of various components within the TME [13]. It can promote the development of PCa by driving androgen receptor signals and 
repairing DNA defects, with immune and senescent cells in the TME amplifying this process. Additionally, inflammation can contribute 
to tumor immune escape in PCa by selecting certain cells and components within the TME [14]. Moreover, immune cells in the innate 
and acquired immune systems, such as dendritic cells, natural killer cells, macrophages, and B cells, have been implicated in tumor 
growth and immunotherapeutic response [15]. A comprehensive understanding of immune infiltration components in the TME holds 
paramount importance in increasing the response rate and developing new cancer immunotherapies [16,17]. Fortunately, single-cell 
RNA-sequencing (scRNA-seq), a cutting-edge technique, not only enables simultaneous assessment of thousands of cells in a sample but 
also unveils intricate heterogeneity among tumor cells and the TME complexity [18]. In recent years, this methodology has gained 
widespread application in investigating the tumor characteristics and clinical treatment in PCa [19,20]. Hence, further exploration of 
PCa therapy biomarkers is imperative. 

In our study, our objective was to construct and verify an inflammation-related prognostic signature (IRPS) for predicting bRFS in 
patients with PCa through experiments, as well as bulk and scRNA-seq analysis. In addition, we conducted a comprehensive evaluation 
of the predictive and prognostic value, the link with the TME and genomic heterogeneity, and the importance of antineoplastic drug 
selection of the novel PCa model. The findings of this study may improve prediction accuracy and therapeutic effect in PCa patients. 

2. Materials and methods 

2.1. Public data sources and preprocessing 

Publicly available RNA-seq, copy number variation (CNV), mutation, and corresponding clinical data were collected from The 
Cancer Genome Atlas (TCGA) database (https://portal.gdc.cancer.gov/) [21] as a training cohort. Additionally, gene expression and 
clinical information of two independent validation cohorts were collected from the Memorial Sloan Kettering Cancer Center (MSKCC, 
https://www.mskcc.org/) [22] and GSE70769 (https://www.ncbi.nlm.nih.gov/bioproject/PRJNA289512) [23], respectively. All 
datasets were independent, and the batch effect was eliminated using the “LIMMA” and “SVA” packages. Meanwhile, the gene sets of 
IRGs, including 200 genes (Table S1), were extracted from the Molecular Signatures Database (https://www.gsea-msigdb.org/gsea/ 
msigdb/) [24]. 

2.2. Screening for differentially expressed and prognostic IRGs 

Differentially expressed genes (DEGs) related to inflammation between PCa samples and normal samples were identified in the 
TCGA cohort using the Wilcoxon rank-sum test in the R package of “LIMMA” (false discovery rate <0.05). Prognostic IRGs were further 
identified by the univariate Cox method. 

2.3. Construction and verification of the IRPS 

Firstly, the “VENN” package was used to obtain the intersection of DEGs related to inflammation and prognostic IRGs. Next, an 
interaction network was then constructed using data from the STRING database (https://string-db.org/) [25], and subsequently 
visualized in Cytoscape (version 3.8.2) [26]. Subsequently, a prognostic risk signature was developed by least absolute shrinkage and 
selection operator (LASSO)-Cox regression analysis using the R packages “GLMNET” and “SURVIVAL”. The risk score for each patient 
was computed by summing the product of expression level and corresponding coefficient for each gene within the model. Patients were 
categorized into two groups, distinguished by low or high risk scores, based on the median threshold. Furthermore, principal 
component analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE) were employed with the assistance of the “STATS” 
and “RTSNE” to detect internal relationships between risk groups. Receiver operator characteristic (ROC) and Kaplan-Meier survival 
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curves were generated through “TIMEROC”, “SURVMINER” and “SURVIVAL”. Signature accuracy and generalization were verified in 
the MSKCC and GSE70769 cohorts through the same methods. 

In order to further assess the validity of the IRPS in both the TCGA and MSKCC cohorts, a relationship analysis was conducted 
between clinicopathological features and risk score, as well as a survival study stratified by subgroup. 

2.4. Real-time quantitative PCR (RT-qPCR) 

A total of 40 fresh tissue samples, comprising 20 samples each of benign prostatic hyperplasia (BPH) and PCa specimens, were 
collected at the Third Affiliated Hospital of Sun Yat-sen University in Guangzhou, China, between 2021 and 2022. Sample acquisition 
followed informed consent procedures and received approval from the clinical ethics board. Using standard protocols [27], total RNA 
was extracted with TRIzol (Invitrogen) and subjected to reverse transcription using SuperScript™ III Reverse Transcriptase (Invi-
trogen). Subsequently, quantitative experiment was performed with SYBR Green qPCR reagent (GenStar) using GAPDH as an internal 
control. RT-qPCR primer sequences are listed in Table S2. 

2.5. Immunohistochemistry (IHC) analysis 

To validate differential protein expression of the model genes in PCa versus normal prostate samples, IHC data and images were 
obtained and assessed from the Human Protein Atlas (https://www.proteinatlas.org/) [28], a protein expression database. 

2.6. Construction and assessment of nomogram 

Harrell’s C-index was used to investigate the connection between clinical variables and risk score within both TCGA and MSKCC 
cohorts. Furthermore, a nomogram was constructed to predict 1 year, 3 years, and 5 years bRFS utilizing “RMS” package and Cox 
regression coefficients. Nomogram accuracy and discrimination were evaluated through calibration, ROC and decision curve analysis 
(DCA) curves. 

2.7. Functional analysis 

The DEGs between the low- and high-risk groups were determined by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) analyses, facilitated by the package of “CLUSTERPROFILER” in R [29]. P-values were adjusted using the 
Benjamini-Hochberg method. 

2.8. scRNA-seq analysis 

The scRNA-seq data of nine PCa samples were retrieved from GSE143791 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi? 
acc=GSE143791), and objects were constructed and poor-quality cells were eliminated during the typical data preprocessing steps 
using the “SEURAT” program. Filtering criteria were applied, which included removing genes detected in <3 cells, cells with <50 
detected genes, or cells with >5 % mitochondrial genes. Data were normalized by “LOGNORMALIZE”, and the top 1500 highly 
variable genes were identified and subjected to PCA. The top 15 PCA were clustered and visualized in t-SNE using the “FINDCLUS-
TERS” and “TSNE” functions. Finally, the grouping and distribution of cells were annotated and analyzed using the “SINGLER” 
method. 

2.9. Immune landscape analysis 

The immune infiltration scores between risk groups, based on the model genes, were computed using various algorithms including 
EPIC [30], XCell [31], MCPCOUNTER [32], QUANTISEQ [33], CIBERSORT-ABS, CIBERSORT [34], and TIMER [35]. In addition, 
infiltration scores of 29 immune pathways and cells were then computed by the ssGSEA algorithm, facilitated by the R package 
“GSVA”, and assessed with the Mann-Whitney test. Immune gene sets are listed in Table S3. Furthermore, we estimated and compared 
ESTIMATE score, immune score, stromal score, and tumor purity between risk groups, utilizing the package of “ESTIMATE” in R [36]. 
Finally, the score reflecting the 7 steps in the cancer-immunity cycle, derived from the IRPS, were assessed using Tracking Tumor 
Immunophenotype tool (https://biocc.hrbmu.edu.cn/TIP/), in accordance with a prior study [37]. 

2.10. Genomic heterogeneity analysis 

Somatic mutation data and tumor mutation burden (TMB) data between risk groups were analyzed using the R package “MAF-
TOOLS”. CNV data was calculated using GenePattern (https://www.genepattern.org/modules/docs/GISTIC_2.0) [38]. Associations 
between the IRPS-based risk score and markers of genomic heterogeneities, encompassing RNA-modified genes (Table S4), neo-
antigens, ploidy, loss of heterozygosity (LOH), mutant-allele tumor heterogeneity (MATH), microsatellite instability (MSI), and ho-
mologous recombination defect (HRD) from prior studies [39], were compared and examined. 
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2.11. Therapeutic efficacy analysis 

The relationship between risk score and 46 immune checkpoints, as collected from a prior study [39], was compared. Immuno-
phenoscore of PCa samples from TCGA was obtained through The Cancer Immunome Atlas (https://tcia.at/) [40] to compare PD1 and 
CTLA4 responses between risk groups. Anti-cancer drug sensitivity between risk groups was estimated using “PRROPHETIC” in R and 
IC50 values from the Genomics of Drug Sensitivity in Cancer (https://www.cancerrxgene.org/) [41]. In addition, pharmacological 
information regarding anti-cancer drug targets was obtained from DrugBank (https://go.drugbank.com/) database [42] and analyzed. 
The target genes of anti-tumor drugs are listed in Table S5. 

To evaluate binding energy and interactions, IRPS gene coordinates were retrieved from the Protein Data Bank (http://www.rcsb. 
org/pdb/home/home.do) [43] and drug structures were obtained from PubChem Compound (https://pubchem.ncbi.nlm.nih.gov/) 
[44]. Water molecules were removed and polar hydrogens added to protein and ligand files in Molecular Operating Environment 
(version 2019.0102). Finally, molecular docking and visualization were performed. 

2.12. Statistical analysis 

Statistical analyses and graphical visualizations in the study were conducted using R software (version 4.2.1). Quantitative vari-
ables with a normal distribution were subjected to analysis via the independent t-test, whereas non-normally distributed quantitative 
variables were assessed using the Wilcoxon test. Ordinal categorical variables were analyzed through one-way ANOVA, and non- 
ordinal categorical variables were evaluated using the Kruskal-Wallis test. Statistically significant results were denoted by P values 
< 0.05, with levels of significance indicated as follows: *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, while “ns” signified non- 
significance. 

3. Results 

The flowchart of our study is depicted in Fig. 1. Simultaneously, the main clinicopathological characteristics of PCa patients 
enrolled in this study are listed in Table 1. 

Fig. 1. The flow chart of the present study.  
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3.1. Identification of prognostic IRGs in the TCGA cohort 

A total of 18304 DEGs were obtained by comparing 496 tumor samples with 52 normal samples sourced from the TCGA database. 
Then, by intersecting these DEGs with IRGs, we obtained 102 DEGs associated with inflammation. Among these, 7 genes, namely 
CD55, CDKN1A, INHBA, KCNJ2, PIK3R5, PTGIR, and TNFSF10, were related to bRFS through a univariate Cox regression analysis 
(Fig. 2A–C). The interrelationships among these bRFS-related DEGs were visualized using Cytoscape (Fig. 2D). 

3.2. Construction and verification of the IRPS 

To further identify the genes with prognostic values from the 7 candidates, we employed the LASSO-Cox regression method to 
derive an optimal prognosis model. Then, 6 genes, namely CD55, CDKN1A, INHBA, KCNJ2, PTGIR, and TNFSF10, were screened out 
based on the penalty parameter (λ) determined via the minimum criteria (Fig. 3A). Through detection of mRNA expression levels of 6 

Table 1 
Clinicopathological characteristics of the PCa patients included in this study.  

Variables TCGA cohort MSKCC cohort GSE70769 cohort 

Age (years)    
≤65 247 113  
>65 99 21 – 

Gleason Score   – 
≤7 190 123  
>7 156 11 – 

Status   – 
BCR 37 31 45 
Non-BCR 309 103 47 

Pathologic T stage    
T1/T2 121 85 – 
T3/T4 225 49 – 

BCR, biochemical recurrence. 

Fig. 2. Determination of the prognostic IRGs in the TCGA cohort. (A) Venn diagram for the analysis of the bRFS-related IRGs. (B) Heatmap dis-
playing the expression changes and clustering relationship of 7 hub genes between PCa and normal samples (https://postimg.cc/WDcmYY3J). (C) 
Forest diagram displaying results of the univariate Cox regression analysis between 7 hub genes and bRFS. (D) Protein-protein interaction network 
indicating the correlation among prognostic IRGs. DEGs, differentially expressed genes; IRGs, inflammation-related genes; bRFS, biochemical 
recurrence-free survival. 
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genes by RT-qPCR, we determined that INHBA, PTGIR, and TNFSF10 had higher expression in PCa compared to BPH samples, whereas 
CD55, CDKN1A, and KCNJ2 had lower expression levels (Fig. 3B). The similar trends were observed in protein levels for CD55, 
CDKN1A, KCNJ2, and TNFSF10 by evaluating the Human Protein Atlas (Fig. 3C). Regrettably, there were no available IHC images for 
INHBA and PTGIR on the website. Finally, a prognostic signature based on 6-IRGs was constructed and dubbed IRPS. And the IRPS- 
based score was calculated by the following formula: risk score = (0.460 × CD55) + (− 0.458 × CDKN1A) + (0.136 × INHBA) +

Fig. 3. Establishment of a novel IRPS in the TCGA cohort. (A) Coefficient curve and partial likelihood deviance of different quantitative variables. 
(B) Detection of mRNA levels for the model genes using RT-qPCR. (C) Assessment of protein levels for the model genes using data from the Human 
Protein Atlas. (D) The association between the risk score and follow-up time, outcomes, and alterations in the expression of model genes in PCa 
samples (https://postimg.cc/w7FSpJJv). (E) PCA plot. (F) t-SNE plot. (G) Kaplan–Meier survival curves illustrating the probability of bRFS 
stratified by the IRPS-based risk score. (H) ROC curves evaluating predictive accuracy of IRPS for 1 year, 3 years, and 5 years bRFS. IRPS, 
inflammation-related prognostic signature; PCA, principal component analysis; t-SNE, t-distributed stochastic neighbor embedding; ROC, receiver 
operating characteristic; **P < 0.01, ***P < 0.001. 
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Fig. 4. Correlation between the IRPS and clinical characteristics in the TCGA cohort. (A–C) The proportion and the difference of age, Gleason score, 
and pathologic T stage in two groups. (D–F) Kaplan–Meier survival curves illustrating the probability of bRFS stratified by age, Gleason score, and 
pathologic T stage. (G) Nomogram combining risk score and pathologic T stage. (H) Calibration curves evaluating internal validation of nomogram 
for 1 year, 3 years, and 5 years bRFS. (I) ROC curves evaluating predictive accuracy of nomogram for 1 year, 3 years, and 5 years bRFS. (J) Decision 
curve analysis evaluating net benefit of nomogram for 1 year, 3 years, and 5 years bRFS. ****P < 0.0001. 

W. Zhu et al.                                                                                                                                                                                                            



Heliyon 9 (2023) e21174

8

(0.553 × KCNJ2) + (1.172 × PTGIR) + (− 0.334 × TNFSF10). 
Patients with PCa were classified into high- and low-risk groups based on the defined risk score cutoff. The risk score distribution 

and survival status indicated that the high-risk group exhibited a higher rate of BCR and a shorter bRFS time (Fig. 3D). PCA and t-SNE 
analysis revealed two tendencies in the distribution of samples in the two groups (Fig. 3E and F). Furthermore, Kaplan-Meier survival 
analysis demonstrated that patients in the low-risk group exhibited a more favorable survival prognosis (Fig. 3G). Consistently, the 
values of the areas under the curve (AUC) for 1-year, 3-year, and 5-year bRFS were 0.71, 0.71, and 0.75, respectively (Fig. 3H), 
indicating the excellent predictive power of the IRPS. 

To validate the robustness of the TCGA cohort signature, two other external validation cohorts (MSKCC and GSE70769) were 
similarly classified as low- and high-risk groups using the same formula as the TCGA cohort (Figs. S1A and B). For the MSKCC cohort, 
PCA and t-SNE analysis confirmed that high- and low-risk groups were distributed in discrete directions (Figs. S1C and D). Likewise, 
the high-risk group exhibited a higher BCR probability compared to the low-risk group (Fig. S1G). Meanwhile, the AUCs for IRPS were 
0.81 at 1 year, 0.68 at 3 years, and 0.72 at 5 years (Fig. S1I). For the GSE70769 cohort, same analyses were performed and similar 
findings were obtained (Figs. S1E, F, H and J). 

3.3. Associations between IRPS and clinicopathological characteristics 

To investigate the connection between clinicopathological factors and IRPS, we initially evaluated the disparity in IRPS between 
the two groups based on their clinicopathological characteristics. The scatter plots indicated that patients with advanced Gleason score 
and pathologic T stage exhibited higher risk score, whereas no significant age-related difference was observed in the TCGA cohort 
(Fig. 4A–C). In the MSKCC cohort, the same substantial difference in Gleason score was observed as in the TCGA cohort, but no 
difference among patients stratified by age and pathologic T stage (Figs. S2A–C). More interestingly, patients with advanced pathologic 
T stage in both the TCGA and MSKCC cohorts were consistently classified into the high-risk group (Fig. 4C and Fig. S2C). Through 
stratified survival analysis, we discovered that worse outcomes in patients with higher Gleason score (Fig. 4E and Fig. S2E) and 
pathologic T stage (Fig. 4F and Fig. S2F) in both the TCGA and MSKCC cohorts, despite no significant difference in age (Fig. 4D and 
Fig. S2D). 

Next, univariate and multivariate Cox regression analyses were performed to evaluate the independence of IRPS in conjunction 
with clinicopathological factors. In the univariate Cox regression analysis, the pathologic T stage, Gleason score, and the IRPS-based 
score exhibited significantly associated with bRFS in both the TCGA and MSKCC cohorts (TCGA cohort: HR = 4.069, P < 0.001; HR =
10.040, P < 0.05; HR = 3.240, P < 0.001, respectively; MSKCC cohort: HR = 4.159, P < 0.001; HR = 4.379, P < 0.001; HR = 259.591, 
P < 0.001, respectively). In the multivariable Cox regression analysis, both the risk score and pathologic T stage were still proved to be 
independent predictors of bRFS (TCGA cohort: HR = 5.310, P < 0.05; HR = 2.207, P < 0.001, respectively; MSKCC cohort: HR = 3.773, 
P < 0.001; HR = 75.156, P < 0.05, respectively) (Table 2). 

3.4. Construction and verification of the prognostic prediction nomogram 

To assess the clinical utility of the IRPS, we constructed a nomogram with risk score and pathologic T stage in both the TCGA and 
MSKCC cohorts (Fig. 4G and Fig. S2G). Moreover, the calibration plots consistently demonstrated outstanding predictive accuracy in 
both the TCGA and MSKCC cohorts (Fig. 4H and Fig. S2H). Correspondingly, the AUCs of the nomogram in both cohorts suggested that 
the nomogram was superior to the risk score or pathologic T stage alone for predicting bRFS (Fig. 4I and Fig. S2I), and the nomogram 
consistently exhibited a higher net benefit compared to other characteristics in both cohorts (Fig. 4J and Fig. S2J). 

3.5. Functional enrichment based on IRPS 

To gain insights into the potential biological functions influenced by IRPS in PCa, 126 DEGs between the two risk groups were 
identified in the TCGA cohort. As we expected, the results of the GO analysis revealed enrichment for biological processes and mo-
lecular functions related to inflammation, including antigen binding and CXCR chemokine receptor binding (Fig. 5A–C). Additionally, 

Table 2 
Univariate and multivariate Cox regression analysis of clinical factors and IRPS in the TCGA cohort and the MSKCC cohort.   

Variable 
TCGA cohort MSKCC cohort 

Univariate Multivariate Univariate Multivariate 

HR P HR P HR P HR P 

Age (years) 
≤65 vs > 65 

0.580 0.194 0.503 0.106 1.489 0.382 1.049 0.918 

Gleason score 
≤7 vs ＞7 

4.069 <0.001 2.005 0.094 4.159 <0.001 2.134 0.114 

Pathologic T stage 
1/2 vs 3/4 

10.040 <0.05 5.310 <0.05 4.379 <0.001 3.733 <0.001 

Risk score 
Low vs High 

3.240 <0.001 2.207 <0.001 259.591 <0.001 75.156 <0.05  

W. Zhu et al.                                                                                                                                                                                                            



Heliyon 9 (2023) e21174

9

KEGG pathway analysis also showed significant enrichment for cytokine-cytokine receptor interaction and primary immunodeficiency 
pathways (Fig. 5D). These data suggested that the difference in BCR-free survival across subgroups may be related to immunity. 

3.6. Immune landscape based on IRPS 

To delve deeper into the investigation and verify the association between the IRPS and the tumor immunity in PCa samples, we 
initially studied the distribution of IRPS-based genes in immune cells of PCa at the single-cell sequencing level. A total of 14 cell 
clusters composed of 15156 cells were finally identified, including T cells, monocytes, pre-B cell CD34− , granulocyte-monocyte 
progenitor, chondrocytes, endothelial cells, pre-B cell CD34+, tissue stem cells, common myeloid progenitor, epithelial cells, mega-
karyocyte erythroid progenitor, B cells, macrophage, and natural killer cells (Fig. 6A). Unlike CD55 and CDKN1A, which were highly 
expressed in a variety of immune cells, it was discovered that INHBA, KCNJ2, PTGIR, and TNFSF10 were expressed with some 
specificity in immune cells (Fig. 6B–D), suggesting that these genes may play a role in regulating specific immune cells and that IRPS 
has an immune predictive value at the single cell level. 

Subsequently, the heatmap and correlation coefficients were generated to visualize the associations between immune cell types and 
risk score calculated using 7 algorithms based on the IRPS (Fig. 7A and B). In addition, we discovered that patients in the high-risk 
subgroup exhibited significantly higher immune and stromal scores, while their tumor purity was lower compared to the low-risk 
subgroup (Fig. 7C), suggesting greater immune cell infiltration and immune molecule presence in PCa tissues from the high-risk 
IRPS subgroup. Notably, the high-risk group exhibited much higher scores for 12/16 immune cell types and 11/13 immune-related 
processes (Fig. 7D and E). Further analysis revealed differences between risk groups at certain steps of the cancer immune cycle 
(Fig. 7F). Together, these findings showed the distinctive tumor immunogram in PCa, providing new insights into the underlying 
mechanisms of IRPS. 

Fig. 5. Functional enrichment analysis of DEGs between risk groups in the TCGA cohort. (A–C) GO enrichment analysis for biological processes (A), 
cellular components (B), and molecular functions (C). (D) KEGG pathways enrichment analysis. GO, gene ontology; KEGG, kyoto encyclopedia of 
genes and genomes. 
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3.7. Genomic heterogeneity and immunotherapeutic responses based on IRPS 

Considering the substantial impact of tumor heterogeneity on the immune microenvironment [45], we conducted a comprehensive 
exploration of key tumor heterogeneity features based on the IRPS, including HDR, LOH, MATH, MSI, neoantigen, ploidy, TMB, CNV, 
and epigenetic modification. Our observations revealed a significantly higher frequency of CNV in the high-risk group compared to the 
low-risk group (Fig. 8A). Among IRPS-based genes, INHBA, TNFSF10, and CD55 exhibited comparatively high amplification, while 
KCNJ2, CDKN1A, and PTGIR primarily displayed deletion events (Fig. 8B and C). Interestingly, while TMB alone did not significantly 
affect survival, a combined effect of TMB and IRPS on BCR outcome was observed in patients with PCa, such that a high-risk score and a 
high TMB were associated with a shorter time to BCR (Fig. 8D–F). We also analyzed the mutation data to further understand the 
molecular factors of different subsets. The results indicated that PCa patients in the high-risk group exhibited a higher number of 
mutations than those in the low-risk group. Interestingly, missense mutations were the predominant mutation type in two risk groups, 
with mutation rates exceeding 10 % for TP53, TTN, and SPOP in both groups (Fig. 8G). Furthermore, 24/43 epigenetic modification 
genes significantly correlated with the IRPS (Fig. 8H). Additionally, we found that the risk score positively correlated with HRD (R =
0.27, P < 0.001), LOH (R = 0.25, P < 0.001), MSI (R = 0.14, P < 0.01), and ploidy (R = 0.16, P < 0.01) but not with MATH and 
neoantigen (Fig. 8I). These findings underscore the potential utility of IRPS in exploring the heterogeneity of PCa. 

Given the crucial influence of immune checkpoints on therapeutic outcomes and immune responses, we found that 37/46 immune 
checkpoints, including CTLA4 and PDCD1, exhibited a significant positive association with IRPS, while TNFSF9 displayed a notable 
negative correlation (P < 0.05) (Fig. S3A). Moreover, we performed a specific computation of the immunophenoscore for patients 
undergoing various treatments, indicating that individuals with a low risk score might demonstrate heightened sensitivity to 
immunotherapy targeting CTLA4 negative/PD1 negative pathways, potentially achieving more favorable therapeutic responses 
(Fig. S3B). 

3.8. Pharmaceutical analysis based on IRPS 

To investigate the potential utility of IRPS in the context of precise treatment of PCa, we analyzed the sensitivity of 6 commonly 
used anticancer drugs, including bicalutamide, cisplatin, docetaxel, gemcitabine, paclitaxel, and doxorubicin, between the two groups. 

Fig. 6. The role of the IRPS at the single-cell sequencing level. (A) t-SNE plot based on the manually annotated cell, with distinct colors denoting 
various cell groups. (B–D) t-SNE plots (B), bubble plots (C), and violin plots (D) displaying the distribution of the IRPS-based genes in immune cells. 
MEP, megakaryocyte erythroid progenitor; CMP, common myeloid progenitor; GMP, granulocyte-monocyte progenitor. 
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Drug sensitivity results demonstrated that bicalutamide and docetaxel were more likely to play a drug role in patients in the high-risk 
group, but low-risk patients were more sensitive to gemcitabine, cisplatin, and paclitaxel (Fig. 9A). On the basis of targeted phar-
macological therapy, we compared and assessed the expression of targeted genes downloaded from the DrugBank database in two 
groups (Fig. 9B). The preceding findings revealed that IRPS could assist doctors in making better tailored medicine selections and assist 
patients in making better treatment decisions. 

To evaluate the binding affinities between IRPS proteins and drugs, we docked the 5 drugs with IRPS-based proteins. The minimum 
binding energy for each interaction was calculated. 15/24 drug-gene pairs had minimum binding energies < − 6.0 kcal/mol, except 
cisplatin which could not be successfully docked (Fig. 9C), suggesting stable binding for most pairs. At the same time, we found that 
except for cisplatin could not be docked, the other 4 drugs (bicalutamide, docetaxel, gemcitabine, and paclitaxel) had a higher affinity 
with PTGIR (Fig. 9D–G), suggesting that these drugs were likely to play a certain biological effect on PTGIR. 

Fig. 7. Association between the IRPS and immune landscape in PCa. (A) Heatmap showing estimated tumor-infiltrating immune cells by seven 
algorithms in risk groups. (B) Lollipop plot depicting correlation coefficients between immune cell infiltration and risk score using seven algorithms. 
(C) Difference in the assessment indices of tumor microenvironment between risk groups. (D) Difference in the 16 cells about immunity between 
risk groups. (E) Difference in the 13 functions about immunity between risk groups. (F) Difference in activity scores for steps of the cancer-immunity 
cycle between risk groups; *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. ns, not significant. 
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Fig. 8. Genomic heterogeneity based on IRPS. (A) Comparison of CNV frequency between risk groups. (B) CNV frequency (%) of the 6 model genes. 
(C) Localization of CNV events within the model genes on the chromosome. (D) Comparative analysis of TMB between risk groups. (E and F) 
Kaplan–Meier survival curves illustrating the probability of bRFS stratified by TMB or IRPS-based risk score with TMB. (G) Waterfall plot of gene 
mutations in risk groups. (H and I) Relationship between risk score and several genomic features, including RNA-modified genes, HDR, LOH, 
MATH, MSI, Neoantigen, and Ploidy. CNV, copy number variation; TMB, tumor mutational burden; HRD, homologous recombination defect; LOH, 
loss of heterozygosity; MATH, mutant-allele tumor heterogeneity; MSI, microsatellite instability; *P < 0.05, ****P < 0.0001. 
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4. Discussion 

Evidence has accumulated that inflammation and cancer are tightly correlated, not only revealing inflammatory factors and im-
mune cells as predictive factors but also revealing their relationship with poor outcomes [46–48]. Cancer-associated inflammation, 
whether inherent to the cancer or induced by it, can create an immunosuppressive TME that promotes tumor development. In cases 
where an inflammatory TME has already been established, inflammatory factors may activate oncogenes and subsequently inactivate 
tumor suppressor genes, leading to increased cell proliferation and prolonged cell survival [49]. In addition, earlier research indicates 
that inflammatory response-related indicators are highly accurate at predicting the prognosis of some malignancies, including gastric 
cancer [50] and colon cancer [51]. Inflammation of the prostate is known to plays a role in the etiology and progression of PCa [52]. 
Therefore, the construction of IRPS is of great significance for predicting survival outcomes and exploring new therapeutic strategies 
for PCa patients. To the best of our knowledge, this represents the inaugural report on the IRPS for prognostication, tumor micro-
environment, and drug choices in PCa. 

In this study, we systematically investigated inflammation-related genes with predictive significance in PCa and their correlation 
with bRFS. In addition, using the LASSO-Cox regression approach, we established that IRPS was composed of 6 genes, including CD55, 
CDKN1A, INHBA, KCNJ2, PTGIR, and TNFSF10. Furthermore, we determined the expression levels of these genes in PCa using RT- 

Fig. 9. Assessment of drug therapy by the IRPS. (A) Drug sensitivity of bicalutamide, gemcitabine, doxorubicin, cisplatin, docetaxel, and paclitaxel 
between risk groups in PCa patients. (B) Discrepancy in expression of target genes in anticancer drugs between risk groups. (C) Heat map displaying 
lowest binding energy of molecular docking. (D–G) 2D (left images) or 3D (right images) binding modes of Bicalutamide-PTGIR (D), Docetaxel- 
PTGIR (E), Gemcitabine-PTGIR (F), and Paclitaxel-PTGIR (G). *P < 0.05, ***P < 0.001. 

W. Zhu et al.                                                                                                                                                                                                            



Heliyon 9 (2023) e21174

14

qPCR and IHC. Previous reports have indeed highlighted the pivotal roles of these six model genes in both inflammation and cancer 
[53–61]. Although these reports reported the relationship between a single inflammation-related gene and cancer, it is necessary to 
explore a comprehensive model with enhanced prognostic predictive capabilities. In both the training and validation cohorts of our 
study, both IRPS and the nomogram by pathologic T stage plus risk score based on IRPS performed well. 

Despite the fact that PCa, an immune-responsive illness, is regarded as an ideal tumor model for immunotherapy [62], the potential 
regulation between tumor immune and inflammation remains unknown. According to the GO and KEGG analysis, we unexpectedly 
observed that the results implicated numerous biological processes and pathways about immunity. Therefore, we boldly speculated 
that inflammation might be closely related to tumor immunity in PCa. Regrettably, the relationship between tumor inflammation and 
the tumor immune microenvironment in PCa has been relatively underexplored in detail. As we expected, we initially found differ-
ences in the distribution of IRPS-based genes in immune cell types through scRNA-seq analysis. There were also substantial variations 
in the infiltration patterns of immune-related cells and functions within the two distinct IRPS-based groups. Immunosuppressive cells, 
such as pCDs and Tregs, were associated with a higher risk score, which may indicate a bad prognosis for patients in the high-risk 
group. Meanwhile, our findings demonstrated that PCa patients with a higher TMB combined risk score had a poorer prognosis, 
which was similar to the previous findings [63]. High-TMB is widely regarded as a promising biomarker for predicting the response to 
immune checkpoint inhibition therapy for multiple cancers, however, McGrail demonstrates that TMB does not show satisfactory 
predictive accuracy for the response to ICI in PCa patients [64]. Given the above, it may explain why TMB did not show a significant 
difference in predicting the survival outcomes of PCa patients alone. 

CTLA4 and PD1 are the most common targets for immune checkpoint inhibition therapy [65], and we observed that PCa patients in 
the low-risk group had higher sensitivity to CTLA4 negative/PD1 negative immunotherapy. In addition, patients with varying risk 
score may respond differentially to antineoplastic drugs (bicalutamide, docetaxel, gemcitabine, cisplatin, and paclitaxel), and target 
genes, such as A2M, BCL2, MAP4, RRM1, and TYMS, also differed significantly among subgroups. More interestingly, PTGIR showed a 
strong affinity for a variety of antineoplastic drugs, which is worth thinking about whether it has the opportunity to become a marker 
for drug selection. As described above, these findings suggest that the risk score derived from the IRPS is of clinical significance in 
predicting the survival status of PCa patients. The signature will be a reliable model for evaluating the efficiency of chemotherapy and 
immunotherapy, and providing drug choices for clinical treatment. 

Notwithstanding the intriguing discoveries within this study, it is imperative to acknowledge several inherent limitations. Firstly, 
the samples were obtained from the public database, so prospective studies on a larger population of patients are crucial for the clinical 
application of IRPS in PCa patients. Secondly, although we have performed some of the basic experiments, such as RT-qPCR, it is 
undeniable that more comprehensive functional experiments are needed to confirm their effect on PCa. Finally, deeper clinical trials 
are necessary to validate the correlation between our prognostic signature and immune landscape as well as our response to antitumor 
drugs. 

5. Conclusions 

In summary, we have developed a novel IRPS that is of satisfactory accuracy in prognosticating the outcomes and therapeutic 
responses in PCa. Therefore, the signature will not only hold promise as a robust biomarker for predicting bRFS and immune profile 
characteristics, but also offer a promising avenue for redefining treatment strategies and drug selection in the management of PCa 
patients. 
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