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Abstract: Cutaneous melanoma is one of the most aggressive forms of skin cancer, and is correlated
with a large proportion of skin cancer-related deaths. Therapy for cutaneous melanoma has
advanced greatly through careful identification of therapeutic targets and the development of novel
immunotherapeutic approaches. The identification of BRAF as well as other driver mutations, have
allowed for a specialized approach to treatment. In addition, immune checkpoint inhibition has
dramatically changed the treatment landscape over the past 5–10 years. The successful targeting of
CTLA-4, as well as PD-1/PD-L1, has been translated into meaningful clinical benefit for patients,
with multiple other potential agents in development. Systemic therapy for cutaneous melanoma is
becoming more nuanced and often takes a multifaceted strategy. This review aims to discuss the
benefits and limitations of current therapies in systemic melanoma treatment as well as areas of
future development.
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1. Background

Melanoma has long been recognized as a potentially aggressive form of skin cancer. The incidence
of melanoma in the United States is projected to be approximately 73,870 new cases in 2015 [1].
Although melanoma is much less common than other cutaneous malignancies, such as basal cell and
squamous cell carcinoma, it accounts for the majority of skin cancer related deaths [2]. There is a
large variance in survival rates depending on the extent of disease, with early stage melanoma often
being cured by surgery alone, while the historic five-year survival rate for metastatic disease is only
16.6% [2]. Fortunately, the previously dismal prognosis of this disease is evolving with recent advances
in systemic therapy.

The identification of BRAF as well as other driver mutations such as KIT, have allowed for a
different approach to systemic therapy in a selected subset of patients. Targeted therapies, including
selective BRAF and MEK inhibitors, have improved rates of progression-free and overall survival in
patients whose melanoma harbors a BRAF V600 mutation [3–6]. The landscape of therapeutics for
melanoma was also revolutionized with the discovery of a new class of immune modulators, first with
the immune checkpoint inhibitor ipilimumab, and more recently with anti PD-1 antibodies, which have
shown increased overall survival in recent trials [7–9]. Other strategies including novel combinations,
in addition to adoptive cell therapy and viral therapy continue to be studied.

Overall, these advancements have lead to growing optimism within the field and have
transformed the way this disease is treated clinically. This review focuses on the benefits and limitations
of current therapies in the management of advanced melanoma as well as areas of future development.
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A Historical Perspective

Before 2010, systemic treatment for locally advanced melanoma outside of clinical trials
was largely limited to cytotoxic chemotherapy and more traditional forms of immunotherapy.
While small subsets of patients benefited from agents such as dacarbazine and temozolomide, the
responses were often brief and a clear benefit had not been demonstrated in phase III trials [10,11].
High-dose interleukin-2 (IL-2) was approved for the treatment of metastatic melanoma based on data
demonstrating sustained remissions in approximately 5%–10% of patients [12]. Many patients are not
candidates for this type therapy given the substantial toxicity profile and the need to be administered
at specialized centers. However, with the potential for a durable response that can last for decades,
IL-2 remains an option for a selected subset of patients [13].

2. Targeted Therapy in Melanoma

2.1. BRAF

A major breakthrough in the understanding of the pathogenesis of melanoma came with the
discovery that a large number of melanomas harbor activating mutations in BRAF [14–16]. The most
common mutation is in the amino acid position 600 of the BRAF gene (V600) [17]. While V600E
appears to be the most common in melanoma, other variants, including V600K are also seen. These
somatic missense mutations have been identified in up to 66% of malignant melanomas. As part of the
RAS-RAF-MEK-ERK pathway, which normally serves to transmit signals from extracellular ligands
to specific intracellular effectors, mutated BRAF results in a constitutively-active kinase leading to
unregulated growth and proliferation (Figure 1).
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Figure 1. Mitogen Activated Protein Kinase (MAPK) pathway signaling. The RAS-RAF-MEK-ERK
pathway transmits signals from extracellular ligands to specific intracellular effectors. Mutations in
BRAF results in a constitutively active kinase leading to unregulated growth and proliferation.

Testing for the presence of a BRAF mutation should be considered in all patients with metastatic
disease. Several methodologies have been used, with the most common being the usage of
polymerase chain reaction (PCR) based assays, although recent data has demonstrated the feasibility
of immunohistochemistry (IHC) as well. PCR-based companion diagnostics were approved in
conjunction with vemurafenib and dabrafenib/trametinib in the United States, which include the
cobas 4800 BRAF V600 (Roche Molecular Systems, Inc., Pleasanton, CA, USA, accessed 19 August
2015) and THxID™ BRAF (bioMérieux Inc., Marcy-l'Etoile, France, accessed 19 August 2015) tests,
respectively [18,19]. Both assays appear to have a high level of agreement for detecting the presence of
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V600E mutations, with somewhat less sensitivity and specificity for other variants, including V600K.
One potential disadvantage, however, is the length of time that may be needed to obtain a result from
DNA based assays. IHC has also been evaluated as an alternative, and several studies evaluated a
BRAFV600E specific antibody, VE1 [20–22]. IHC was shown to be feasible, and demonstrated high
sensitivity and specificity for the BRAFV600E mutation. It should be noted, however, that other
BRAFV600 variants were not detected with this antibody.

Clinically, the development of vemurafenib and dabrafenib, highly selective BRAFV600 inhibitors,
represented a major breakthrough in the treatment of metastatic melanoma. Promising clinical activity
was seen in a phase I trial of vemurafenib, which demonstrated a response rate (RR) of 81% in the
extension cohort of 32 melanoma patients [23]. Confirmation of this benefit was subsequently seen
in phase II and phase III trials. In 675 patients that were randomly assigned to receive vemurafenib
versus dacarbazine, the RR in the vemurafenib arm was 48%, compared with 5% for those that received
dacarbazine [3]. In an updated analysis that included extended follow up, a median overall survival
(OS) of 13.6 months was seen in the vemurafenib group compared to 9.7 months in those in the
dacarbazine arm [24]. Dabrafenib has also shown similarly promising results and was subsequently
approved by the FDA in 2013. In a randomized phase III trial that included patients with previously
untreated BRAFV600 stage IV melanoma, patients in the dabrafenib arm had an improved progression
free survival (PFS) of 5.1 months compared to 2.7 months for dacarbazine [25]. In a more recent update,
median OS in the dabrafenib group was 20 months, compared to 15.6 months in the dacarbazine arm,
though survival analyses are confounded by the large percentage of patients who crossed over to the
dabrafenib arm [26,27]. Despite the success of BRAF directed therapy, the development of resistance
remains a major issue in most patients. While the mechanisms are likely multifactorial, MAPK pathway
reactivation appears to play a major role and continues to fuel the need for the development of novel
therapies [28,29].

2.2. MEK

Early attempts at targeting MEK were largely limited by toxicity, as well as limited antitumor
activity [30]. Newer generation MEK inhibitors such as selumetinib, trametinib, cobimetinib, and
binimetinib (MEK162) have shown promise, and have primarily been developed as part of a
combination strategy along with BRAF inhibitors. As monotherapy, trametinib demonstrated a
survival advantage compared with conventional chemotherapy [31]. When trametinib was compared
with chemotherapy (DTIC or paclitaxel) in 322 patients with BRAF-mutated melanoma, median
PFS and 6 month OS rates were greater in the trametinib group, at 4.8 months and 81%, versus
1.5 months and 67% in the chemotherapy group [31]. Binimetinib has also shown similar clinical
efficacy in BRAF-mutant melanoma in a phase II study, as well as evidence of activity in NRAS mutated
disease [32]. Selumetinib has demonstrated modest clinical activity in patients with metastatic uveal
melanoma, with an improvement in PFS when compared to chemotherapy [33]. However, with overall
response rates that are lower than BRAF targeted therapies, the major focus of MEK targeted therapy
continues to be as an integral part of a combination strategy in BRAF mutated disease.

2.3. KIT

In recent years, KIT has also been a target of interest in advanced melanoma, as certain subsets
of patients appear to harbor activating mutations, predominantly acral and mucosal subtypes [34].
The most common mutations are KITL576P on exon 11 and KITK642E on exon 13, although others have
been reported in case series [35]. A few phase II trials have investigated the efficacy of imatinib for
melanomas with an alteration in KIT. In one study, patients were included if their tumors carried a
mutation or amplification in KIT and of the 43 patients enrolled, 16 patients had single mutations in
exon 11 and six patients had a single mutation in exon 13. 14 patients showed mutations in other exons
and five patients had multiple KIT mutations. For the entire population of 43 patients, 23.3% had a
partial response (PR), stable disease (SD) was observed in 30.2% and progressive disease was seen in
46.5% of patients [36]. Notably, nine of the 10 PRs were seen in patients with an exon 11 or 13 mutation,
suggesting these mutations are a more reliable predictor of response. A study of 28 patients treated
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with imatinib demonstrated an overall RR of 16%, which was defined as responses lasting more than
one year [37]. Again, in this study clinical benefit appeared to be largely confined to patients whose
disease harbored a mutation in exon 11 or 13. Another study in this patient population confirmed this
pattern of potential benefit in selected KIT mutations [38]. Additionally, a more recent study has also
demonstrated potential clinical activity with nilotinib. In this study, patients who were intolerant or
whose disease had progressed after imatinib therapy (cohort A), as well as those with brain metastases
(cohort B) were treated with nilotinib 400 mg twice daily [39]. A total of 11 patients were treated in
cohort A, and two had a PR, while no responses were seen in the eight patients treated in cohort B. For
the total study population, the median time to progression was 3.3 months, and OS was 9.1 months.
While predictors of response to KIT targeted therapy continue to be refined, these agents represent a
potential treatment option for selected subsets of patients.

3. Immune Checkpoint Inhibition

3.1. CTLA-4

In addition to the development of BRAF and MEK inhibitors, breakthroughs in the field of
immunotherapy have also dramatically impacted the treatment landscape for advanced melanoma.
Ipilimumab is a fully human IgG1 monoclonal antibody that blocks cytotoxic lymphocyte associated
antigen-4 (CTLA-4), a coinhibitory receptor that regulates T-cell activation and the function of
T-regulatory cells (Figure 2). It was the first agent to demonstrate an improvement in overall survival
in a randomized phase III trial in advanced melanoma [7]. In this landmark study, previously treated
patients with advanced melanoma were randomized to receive ipilimumab either with or without a
peptide vaccine. Interestingly, a cohort of patients receiving ipilimumab appeared to derive long-term
benefit and demonstrated a prolonged treatment response. The potential for durable benefit was
also seen in another study, in which previously untreated patients received ipilimumab with or
without dacarbazine. In this trial, patients who received ipilimumab demonstrated higher rates of
survival at one, two, and three years [40]. A recent follow up analysis of this study demonstrated a
five-year survival rate of 18.2% in the ipilimumab plus dacarbazine arm versus 8.8% in the placebo
plus dacarbazine group (p = 0.002) [41]. Additionally, another analysis of 1861 melanoma patients
treated with ipilimumab across multiple studies showed a three-year OS rate of approximately 20%,
with very few recurrences after that time [42]. These collective data demonstrate the potential for a
durable survival benefit in a subset of advanced melanoma patients treated with ipilimumab.

Cancers 2016, 8, 17 

3 

mutation, suggesting these mutations are a more reliable predictor of response. A study of 28 patients 

treated with imatinib demonstrated an overall RR of 16%, which was defined as responses lasting 

more than one year [37]. Again, in this study clinical benefit appeared to be largely confined to 

patients whose disease harbored a mutation in exon 11 or 13. Another study in this patient population 

confirmed this pattern of potential benefit in selected KIT mutations [38]. Additionally, a more recent 

study has also demonstrated potential clinical activity with nilotinib. In this study, patients who were 

intolerant or whose disease had progressed after imatinib therapy (cohort A), as well as those with 

brain metastases (cohort B) were treated with nilotinib 400 mg twice daily [39]. A total of 11 patients 

were treated in cohort A, and two had a PR, while no responses were seen in the eight patients treated 

in cohort B. For the total study population, the median time to progression was 3.3 months, and OS 

was 9.1 months. While predictors of response to KIT targeted therapy continue to be refined, these 

agents represent a potential treatment option for selected subsets of patients. 

3. Immune Checkpoint Inhibition 

3.1. CTLA-4 

In addition to the development of BRAF and MEK inhibitors, breakthroughs in the field of 

immunotherapy have also dramatically impacted the treatment landscape for advanced melanoma. 

Ipilimumab is a fully human IgG1 monoclonal antibody that blocks cytotoxic lymphocyte associated 

antigen-4 (CTLA-4), a coinhibitory receptor that regulates T-cell activation and the function of  

T-regulatory cells (Figure 2). It was the first agent to demonstrate an improvement in overall survival 

in a randomized phase III trial in advanced melanoma [7]. In this landmark study, previously treated 

patients with advanced melanoma were randomized to receive ipilimumab either with or without a 

peptide vaccine. Interestingly, a cohort of patients receiving ipilimumab appeared to derive long-

term benefit and demonstrated a prolonged treatment response. The potential for durable benefit was 

also seen in another study, in which previously untreated patients received ipilimumab with or 

without dacarbazine. In this trial, patients who received ipilimumab demonstrated higher rates of 

survival at one, two, and three years [40]. A recent follow up analysis of this study demonstrated a 

five-year survival rate of 18.2% in the ipilimumab plus dacarbazine arm versus 8.8% in the placebo 

plus dacarbazine group (p = 0.002) [41]. Additionally, another analysis of 1861 melanoma patients 

treated with ipilimumab across multiple studies showed a three-year OS rate of approximately 20%, 

with very few recurrences after that time [42]. These collective data demonstrate the potential for a 

durable survival benefit in a subset of advanced melanoma patients treated with ipilimumab. 

 

Figure 2. Immune checkpoints in melanoma therapy. Blockade of CTLA-4 or PD-1/PD-L1 results in 

the activation of T cells with specificity for cancer cells. Figure 2. Immune checkpoints in melanoma therapy. Blockade of CTLA-4 or PD-1/PD-L1 results in
the activation of T cells with specificity for cancer cells.

3.2. PD-1

The programmed death 1 (PD-1) pathway is involved in immune regulation, mediated by
binding of PD-1 and its ligands PD-L1/PD-L2 (Figure 2) [43]. The development of PD-1 blocking
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antibodies has now shown clinical benefit in melanoma as well a wide variety of tumor types [44].
Most recently, pembrolizumab and nivolumab received regulatory approval for the treatment of
ipilimumab-refractory melanoma, though a number of agents targeting this pathway are at various
phases of clinical development. In a phase I study of nivolumab, a fully human IgG4 antibody,
conducted in 296 patients, the cumulative RR was 28% among patients with melanoma [44]. Overall,
nivolumab appeared to be very well tolerated, and common immune-related adverse events were
generally mild and included rash, diarrhea, and pruritus. In a cohort expansion that included
107 patients with melanoma, median OS was 16.8 months, and one- and two-year survival rates
were 62% and 43%, respectively [45]. Confirmation of this benefit was seen in a randomized phase III
study, in which nivolumab was associated with an improvement in OS compared with dacarbazine
in patients with previously untreated melanoma [46]. The RR was 40% with nivolumab compared
with 13.9% in the dacarbazine group. Nivolumab has also demonstrated a benefit in patients who
have progressed on prior ipilumumab. In a randomized phase III study comparing nivolumab to
chemotherapy, the RR was 32% in the nivolumab arm, versus 6% in the chemotherapy arm [9]. The
safety profile was consistent with prior studies, with a relatively low rate of grade 3-4 adverse events.

Pembrolizumab is a humanized anti-PD-1 IgG4 antibody that has also demonstrated a clinical
benefit in patients with advanced melanoma, as well as other malignancies. An initial dose escalation
study in 135 patients with metastatic melanoma that included both ipilimumab-naive patients and
those with progression on prior treatment with ipilimumab, demonstrated a RR of 38% across all
cohorts, with patients on the highest dose of pembrolizumab (10 mg/kg every two weeks) showing a
RR of 52% [47]. Overall, pembrolizumab appeared to be well tolerated; grade 3/4 drug-related adverse
events occurred in only 13% of patients, with the highest rate seen in the cohort that received 10 mg/kg
every two weeks. To further investigate the optimal dosing of pembrolizumab in this phase I study,
a cohort of ipilimumab refractory melanoma patients were randomized to receive pembrolizumab at
2 mg/kg or 10 mg/kg every three weeks [48]. A total of 173 patients were treated, and the RR was
26% in both arms. Consistent with prior data, pembrolizumab appeared to be well tolerated, with
comparable safety profiles irrespective of dose. In the first line setting, randomized phase III data has
also confirmed the benefit of pembrolizumab in advanced melanoma [49]. In this study of 834 patients,
subjects were assigned to receive pembrolizumab 10 mg/kg every two or three weeks or ipilimumab
at 3 mg/kg for four doses. Response rates in both pembrolizumab arms were 33.7% and 32.9%, which
corresponded with every two and three weeks, respectively. This was significantly increased when
compared with ipilimumab, which had a RR of 11.9%. The study also demonstrated an improvement
in six-month PFS rates, with 47.3% for pembrolizumab every two weeks, 46.4% for pembrolizumab
every three weeks, versus 26.5% for ipilimumab. Additionally, less severe treatment related adverse
events were seen in the pembrolizumab arms. Importantly, an updated analysis of the initial phase I
study highlighting the potential for durable clinical benefit was recently presented [50]. In the total
study population, consisting of 655 patients across multiple cohorts, the overall RR was 33%, with a
median duration of response of 28 months, further confirming the potential for durable benefit.

A number of other agents targeting the PD-1/PD-L1 pathway are at various phases of clinical
development. Pidilizumab (CT-011), a humanized anti-PD-1 IgG1 antibody, was studied in a phase I
dose escalation study of 17 patients with hematologic malignancies [51]. One patient with follicular
lymphoma had a complete response, and another four patients demonstrated stabilization of disease
for several months. However, in another study of 103 patients with metastatic melanoma who were
randomized to receive two different doses of pidilizumab, the RR was low and the OS rate at 12 months
was 64.5% [52].

Antibodies targeted against PD-L1 are also being pursued in melanoma and other tumor types,
including BMS-936559, MPDL3280A (atezolizumab), MEDI4736 (durvalumab), and MSB0010718c
(avelumab) [53,54]. In the initial phase I study of BMS-936559, a high-affinity human antibody, that
included 52 patients with melanoma, nine patients demonstrated a response, including three with a
complete response [55]. In this population, 14 of the 52 patients experienced stabilization of disease
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for greater than 24 weeks. MPDL3280A, an engineered anti PD-L1 antibody, has also demonstrated
activity in patients with metastatic melanoma. In a phase I study that included an expansion cohort
of 45 melanoma patients, the overall RR was 28% [56]. The activity of durvalumab, a fully human
anti-PD-L1 IgG1 antibody, has also been explored in early phase studies that have included small
cohorts of melanoma patients. Overall, the agent appears to be well tolerated with preliminary
evidence of clinical benefit [55,57,58]. Lastly, avelumab, fully human anti-PD-L1 IgG1 antibody, is
being developed across multiple tumor types, primarily outside of melanoma, including a planned
trial for advanced Merkel cell carcinoma (NCT02155647).

4. Adoptive Cell Immunotherapy

Adoptive cell therapy (ACT) refers to the process of administering autologous or allogeneic
tumor-reactive T or NK cells to patients with the intent of achieving tumor regression. This process
occurs through the isolation of lymphocytes with high affinity for tumor antigens, which can be
selected ex vivo, stimulated, expanded, and infused back into the patient and represents an area of
great promise in the treatment of metastatic melanoma [59]. In melanoma, it has been shown that
from an excised tumor, numerous tumor antigen-specific T cells can be isolated [60]. In one study,
cell therapy with tumor infiltrating lymphocytes (TIL) was reported to result in an objective response
rate of around 49% with twenty of the 93 patients (22%) achieving complete tumor regression [61].
Of note, TIL together with high-dose IL-2 has consistently demonstrated durable clinical response
rates near 50% or more in multiple clinical trials [62–64]. Limitations of this approach is the potential
logistical and technical hurdles from patient selection, tumor resection, and expansion of adequate
numbers of viable TILs culture [65]. To address some of these, novel strategies, such as genetically
modified T cells are being developed. Some tumor-associated antigens have been identified, including
melanoma antigen recognized by T cells 1 (MART-1) and cancer testis antigen (NY-ESO-1) [66,67].
In a broader cohort of patients with metastatic cancer, not specifically melanoma alone, 5 of nine
patients demonstrated cancer regression using RECIST criteria following infusion of anti-MAGE-A3
TCR gene-engineered T cells [68,69]. These studies have shown the promise of TIL in the management
of metastatic melanoma.

5. Combination Therapy

Combination approaches to therapy provide a rational strategy to potentially overcome resistance,
and have shown a great deal of promise in melanoma. While toxicity remains a concern in some
instances, the field continues to rapidly evolve and it is likely to become a mainstay of future
therapeutic approaches.

5.1. Targeted Therapies

One key strategy has been the simultaneous inhibition of both BRAF and MEK, as summarized
in Table 1, which is based on data from preclinical studies that have shown that dual BRAF and
MEK inhibition increases apoptosis and delays the onset of resistance compared to BRAF inhibitors
alone [70,71]. Furthermore, a common mechanism of resistance to BRAF inhibitors is reactivation
of the MAPK pathway. For this reason, it was hypothesized that BRAF inhibitors combined with
MEK inhibitors would potentially overcome such resistance [72]. Several studies have assessed the
efficacy and toxicity of concurrent administration of BRAF and MEK inhibitors, including a number
of randomized phase III trials. One of the earliest studies proved the combination of dabrafenib and
trametinib to be feasible, and a subsequent randomized phase II trial compared the use of dabrafenib
plus trametinib (at either 1 or 2 mg) with dabrafenib alone [70]. In this study of 162 patients with
BRAF V600 mutated metastatic melanoma, the combination of dabrafenib and trametinib at 2 mg had
an improved median PFS at 9.4 months, compared with 5.8 months in the dabrafenib monotherapy
group. Clinically, while the rate of pyrexia was increased with combination therapy, there appeared
to be a reduction in the rate of BRAF inhibitor-related hyper proliferative skin lesions, consistent
with the observation that these result from paradoxical activation of the MAPK pathway in BRAF
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wild type cells [73]. Two additional randomized phase III studies also demonstrated clinical benefit
of the combination when compared to a single agent dabrafenib or vemurafenib [5,6]. A recently
updated analysis of the comparison of dabrafenib plus trametinib versus dabrafenib alone confirmed
these findings, with an improvement in median OS in the combination arm (25.1 months versus
18.7 months) [74]. Recently presented data also demonstrated that the addition of cobimetinib to
vemurafenib was associated with a significant improvement in PFS among patients with BRAF V600
mutated metastatic melanoma. In this randomized trial of 495 patients with locally advanced or
metastatic disease, those who received vemurafenib plus cobimetinib had an improved PFS, with
9.9 months in the combination arm versus 6.2 months in the vemurafenib alone arm. Overall survival
at nine months was also improved with dual BRAF/MEK therapy, at 81% compared to 73% in the
control group [4]. In an updated analysis, median PFS in the combination arm was 12.3 months versus
7.2 months in the vemurafenib plus placebo group [75]. Interestingly, correlative analyses from this trial
suggested that a subset of patients may have additional oncogenic mutations, including those in the
RAS/RAF pathway, highlighting the potential for additional combination strategies. The combination
of the BRAF inhibitor encorafenib with the MEK inhibitor binimetinib has also shown promise. Data
from a phase I/II study demonstrated high overall response rates consistent with prior experience, and
a potentially favorable toxicity profile with lower rates of pyrexia and photosensitivity than reported
with other combinations [76]. Taken collectively, the body of data demonstrating improved response
rates, meaningful improvements in PFS and OS, along with a manageable toxicity profile, establishes
dual BRAF/MEK inhibition as a standard of care option for melanoma patients whose tumors harbor
a BRAF V600 mutation. Efficacy amongst targeted therapy combinations appears similar, though no
prospective trials have been conducted directly comparing different agents. A number of toxicities
appear to be a class effect, though there are some potential differences that are notable and more
common with certain agents. Among these include higher rates of febrile reactions with dabrafenib
and trametinib, and photosensitivity with vemurafenib. Interestingly, the combination of binimetinib
and encorafenib appeared to have lower rates of both pyrexia and photosensitivity, though larger
studies are ongoing.

Table 1. BRAF + MEK combination studies.

Study Trial Design Agents Studied N RR (%) Median PFS
(Months) OS (%)

Dabrafenib + trametinib studies

Robert et al. [5] Randomized,
phase III Dabrafenib + trametinib 352 64 11.4 72 (12 months)

Vemurafenib 352 51 7.3 65 (12 months)

Long et al. [6,74] Randomized,
phase III Dabrafenib + trametinib 211 67 11 93 (9 months)

Dabrafenib + placebo 212 51 8.8 85 (9 months)

Daud et al. [77] Randomized,
phase I—II

Dabrafenib + trametinib
(150/2) 54 76 9.4 51 (24 months)Flaherty et al. [70]

Dabrafenib + trametinib
(150/1) 54 50 NR a NR

Dabrafenib (150) 54 54 5.8 44 (24 months)

Vemurafenib + cobimetinib studies

Larkin et al. [4,75] Randomized,
phase III

Vemurafenib + cobimetinib
(960/60) 247 70 12.3 81 (9 months)

Vemurafenib (960) + placebo 248 50 7.2 73 (9 months)

Encorafenib + binimetinib studies

Sullivan et al. [76]
Randomized,

phase II
Encorafenib + binimetinib

(600/45) 38 72
11.3

NR(all doses combined)

Encorafenib + binimetinib
(400/45) 4 78 NR

a NR: not reported.
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5.2. Immunotherapy Combinations

Clinically, both CTLA-4 and PD-1 directed monotherapy have proven benefit in advanced
melanoma. Additionally, in preclinical mouse models, the combination of CTLA-4 and PD-1 blockade
appeared to be synergistic, leading to the clinical development of this combination [78]. .Correlative
analyses in patients treated with dual immune checkpoint blockade suggests that CTLA-4 and
PD-1 blockade have distinct, non overlapping immunomodulatory effects, further supporting this
combination strategy [79]. In a phase I study which included a cohort of 53 patients treated with
ipilimumab and nivolumab, substantial clinical activity was seen [80]. Forty percent of the patients
had an objective RR, with 16 patients experiencing a reduction of 80% or more in tumor volume. In a
subsequent randomized phase II study of 142 previously untreated patients comparing concurrent
therapy versus ipilimumab alone, those in the combination arm had an objective response rate of 59%
versus 11% in the group that received ipilimumab [81]. Recently reported results from a three-arm
phase III study of 945 previously untreated patients with advanced melanoma confirmed these results.
In this study, patients were randomized to receive nivolumab alone, nivolumab plus ipilimumab, or
ipilimumab alone. Response rates were similar to those reported in other studies, with a RR of 44%
and 19% for nivolumab and ipilimumab monotherapy, respectively. The combination resulted in an
improvement in response, (58%) as well as an improvement in progression free survival compared
to the monotherapy arms, with a median PFS of 11.5 months versus 6.9 months with nivolumab and
2.9 months with ipilimumab [82]. Subgroup analyses suggested that the cohort of patients with PD-L1
negative tumors potentially derived the most benefit from combination blockade, though additional
follow up is warranted. There was an increase in the rate of toxicities seen with this combination, with
up to 50% grade 3/4 adverse events, although most appear to be treatable and reversible with prompt
intervention. Key results from these studies are summarized in Table 2.

Table 2. Selected PD-1 combinations.

Study Trial Design Agents Studied N RR (%) PFS
(Months) OS (%)

Wolchok et al. [83] Phase I Nivolumab + ipilimumab 314 57.6 11.5 75 (2 years)
Sznol et al. [84] multiple cohort

Nivolumab 316 43.7 6.9 NC a

Ipilimumab 315 19 2.9 NC

Hodi et al. [85], Randomized,
phase II

Ipilimumab + nivolumab 72 * 60 8.9 NR b
Postow et al. [81]

Ipilimumab + placebo 37 * 11 4.7 NR

Larkin et al. [82] Randomized,
phase III Ipilimumab + nivolumab 314 57.6 11.5 NR

Ipilimumab monotherapy 315 19 2.9 NR

Nivolumab monotherapy 316 43.7 6.9 NR
a NC: not calculated, b NR: not reported, * BRAF wild type patients.

5.3. Future Opportunities for Combination Therapy

Recent years have seen dramatic advances in systemic therapy for advanced melanoma and future
approaches will likely focus on minimizing toxicity while maximizing clinical benefit. In addition to
novel immunomodulatory targets, such as LAG-3, in which the monoclonal antibody BMS-986016
is currently being tested in combination with nivolumab (NCT01968109), as well as CD40, in which
CP-870,893 recently showed some activity in combination with tremelimumab, other strategies are
also being pursued [86]. Talimogene laherparepvec (T-VEC), a herpes simplex virus-1 (HSV) oncolytic
vaccine, has demonstrated potential for durable responses in patients with unresectable melanoma,
particularly in patients with soft tissue or nodal disease. Overall T-VEC appears to be fairly well
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tolerated, with low rates of grade 3/4 adverse events [87]. Data from a combination study with
ipilimumab in 18 patients with unresectable melanoma showed that the combination of ipilimumab
plus T-VEC appeared to be safe. Clinical activity was encouraging, with a RR of 56%, many of
which appeared to be durable [88]. A trial is currently ongoing comparing the combination of T-VEC
plus pembrolizumab versus pembrolizumab alone (NCT02263508). Additionally, the combination of
targeted therapies plus immunotherapies may hold promise as new agents continue to be developed.
A body of preclinical and correlative data suggests that selective inhibition of BRAF may have a
number of immunomodulatory effects, including in enhanced T cell recognition and melanoma
antigen expression, as well as increased T cell infiltration in the tumor supporting a rationale for
combined therapy [89–91]. While concurrent vemurafenib and ipilimumab was shown not to be
feasible due to hepatotoxicity, sequential administration was shown to be safe, with some potential
for efficacy [92,93]. With newer immunotherapies now available, additional combinations are being
pursued and selected ongoing trials are highlighted in Table 3.

Table 3. Selected ongoing combination studies in melanoma.

Combination Study Population Status Study Design

Nivolumab + ipilimumab
(NCT02320058)

Patients with melanoma
brain metastases Recruiting Single arm phase II

Pembrolizumab + pegylated
IFN alfa-2b and pembrolizumab
+ ipilimumab (NCT02089685)

Advanced/unresectable or
metastatic melanoma or renal
cell carcinoma

Recruiting
Single arm phase I

Randomized
expansion cohorts

Ipilimumab ˘ T-VEC
(NCT01740297)

Advanced/unresectable
melanoma, with injectable tumor Recruiting Phase Ib, II

Pembrolizumab + T-VEC
(NCT02263508)

Advanced/unresectable
melanoma, with injectable tumor

Active but not
recruiting Phase Ib/III

Ipilimumab + nivolumab and
dabrafenib + trametinib
(NCT02224781)

Advanced/unresectable
melanoma, BRAF mutated Recruiting Randomized phase III,

comparing sequence

Ipilimumab ˘ dabrafenib ˘

trametinib (NCT01940809)

Unresectable or metastatic
malignant melanoma,
BRAF mutated

Recruiting Phase I

Pembrolizumab + trametinib
and dabrafenib (NCT02130466)

Advanced (unresectable Stage III)
or metastatic (Stage IV) melanoma Recruiting Phase II/III

MPDL3280A + vemurafenib or
vemurafenib + cobimetinib
(NCT01656642)

Metastatic melanoma, with
BRAFV600 mutation Recruiting Phase II

MEDI4736 + dabrafenib and
trametinib or with trametinib
alone (NCT02027961)

Stage IIIc (unresectable) or
Stage IV (metastatic) melanoma Recruiting Phase II/III

6. Conclusions

Effective targeted treatments and new breakthroughs in immunotherapy have been shown to
improve survival and are now a part of the routine clinical care of melanoma patients. The challenge for
clinicians and researchers moving forward will be to determine the optimal tools for patient selection,
sequencing of therapy, and ideal combination strategies. The translation of key scientific findings into
well-designed clinical studies will be critical in answering the most important questions in the future.
Overall there has been much progress in the development of systemic therapy for advanced melanoma,
which will hopefully benefit many patients to come.
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