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Abstract: Colorectal cancer (CRC) is one of the most common cancers and the second leading cause
of cancer-related deaths. Discrepancies in clinical outcomes are observed even among patients with
same-stage CRC due to molecular heterogeneity. Thus, biomarkers for predicting prognosis in CRC
patients are urgently needed. We previously demonstrated that stage II CRC patients with NKX6.1
methylation had poor 5-year overall survival. However, the methylation frequency of NKX6.1 was
only 23% in 151 pairs of CRC tissues. Thus, we aimed to develop a more robust prognostic panel for
CRC using NKX6.1 in combination with three genes: LIM homeobox transcription factor 1α(LMX1A),
sex-determining region Y-box 1 (SOX1), and zinc finger protein 177 (ZNF177). Through quantitative
methylation analysis, we found that LMX1A, SOX1, and ZNF177 were hypermethylated in CRC tissues.
LMX1A methylation was significantly associated with poor 5-year overall, and disease-free survivals in
stage I and II CRC patients. Sensitivity and specificity analyses of the four-gene combination revealed
the best sensitivity and optimal specificity. Moreover, patients with the four-gene methylation profile
exhibited poorer disease-free survival than those without methylation. A significant effect of the
four-gene methylation status on overall survival and disease-free survival was observed in early stage I
and II CRC patients (p = 0.0016 and p = 0.0230, respectively). Taken together, these results demonstrate
that the combination of the methylation statuses of NKX6.1, LMX1A, SOX1, and ZNF177 creates a novel
prognostic panel that could be considered a molecular marker for outcomes in CRC patients.
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1. Introduction

Colorectal cancer (CRC) is the second leading cause of cancer-related deaths globally, following
lung cancer, and was responsible for an estimated 862,000 deaths in 2018 [1]. With advances in
strategies for early detection and treatment, the survival of CRC patients has improved over the last
two decades. However, the 5-year survival rate of CRC patients is only 65%, due to the high rates of
recurrence and metastasis [2].

The outcomes of CRC patients are closely related to the tumor stages at diagnosis [3]. The 5-year
relative survival rate of patients with localized, i.e., stage I, CRC is 90%, whereas that of patients with
cancer spreading to the surrounding tissues or regional lymph nodes (stage II and III) is approximately
70%. In addition, the 5-year survival rate of CRC patients in whom the cancer has spread to distant
sites (stage IV) is unfortunately <15%. While the data indicate that most stage II or III CRC patients
might have good outcomes, a small percentage of these patients remains at risk of recurrence and death
due to metastatic disease. Therefore, the identification of molecular markers, other than the cancer
stage, is necessary for predicting prognosis; moreover, it may lead to the development of effective
diagnostic, therapeutic, and preventive strategies for CRC.

DNA methylation is an important epigenetic modification of cancer cells, which is considered to
be one of the major mechanisms of the inactivation of tumor-related suppressor genes that ultimately
contribute to carcinogenesis [4,5]. In addition to its role in repressing gene expression by influencing
the chromatin structure and interfering with transcription initiation, many studies demonstrated
the clinical utility of DNA methylation biomarkers in various cancers, including CRC [6,7]. For
CRC screening, a stool-based screening test for N-Myc downstream-regulated gene 4 (NDRG4) and
bone morphogenic protein 3 (BMP3) methylation, as well as a blood-based assay for septin 9 (SEPT9)
methylation, were approved by the United States Food and Drug Administration [8–11]. However,
markers based on abnormal DNA methylation patterns remain poor choices for diagnosis, prognostic
prediction, and treatment selection; and the identification of novel genes in CRC is highly desired.

We recently demonstrated the abnormal methylation of NK6 homeobox 1 (NKX6.1) in CRC and
found that NKX6.1 methylation was an independent indicator of 5-year disease-free survival in stage II
CRC patients receiving adjuvant chemotherapy [12]. However, the methylation frequency of NKX6.1
was only 23% in our cohort of 151 pairs of CRC tissues. Therefore, a DNA methylation panel might
potentially improve the sensitivity of detection. Several genes, including LIM homeobox transcription
factor 1α (LMX1A), sex-determining region Y-box 1 (SOX1), and zinc finger protein 177 (ZNF177) were
previously identified to be methylated in a high fraction of cancers, and the methylations of genes
alone or in combination were shown to be potential biomarkers for cancers [13–24]. However, the
methylation frequencies of LMX1A, SOX1, and ZNF177, as well as the potential of their combined
methylation status to be a prognostic factor of CRC, are unknown. In the current study, we aimed to
determine the methylation frequencies of LMX1A, SOX1, and ZNF177 in CRC and to elucidate the
prognostic utility and efficacy of their methylation status in combination with the NKX6.1 methylation
status in CRC.

Our analysis of the methylation levels of LMX1A, SOX1, and ZN177 in CRC revealed that the
combination of the methylation statuses of NKX6.1, LMX1A, SOX1, and ZNF177 was an independent
indicator of the outcomes of CRC patients. These results indicate that the combination of four-gene
methylation statuses could be a novel prognostic DNA methylation marker for CRC.

2. Results

2.1. Abnormal Methylation of LMX1A, SOX1, and ZNF177 in CRC

To investigate whether LMX1A, SOX1, and ZNF177 were aberrantly methylated in CRC, we used
the data of the Infinium Human Methylation 450K BeadChips from the MethHC database to analyze
the methylation levels of LMX1A (NM_001174069), SOX1 (NM_005986), and ZNF177 (NM_003451) in
369 tissue samples from colon and rectal adenocarcinoma patients (Figure 1A). The analyses showed



Int. J. Mol. Sci. 2019, 20, 4672 3 of 14

that the average β values were significantly higher in the tumor group than in the normal control group
for all three genes (p < 0.0001). To further confirm the abnormal methylation phenotype, we examined
the methylation status of LMX1A, SOX1, and ZNF177 in five CRC cell lines (HCT8, HCT116, HT29,
SW480, and SW620) using the MSP assay (Figure 1B) and quantified the methylation levels using the
Q-MSP assay (Figure 1C). The results of both the gel-based MSP assay and the Q-MPS assay revealed
that LMX1A, SOX1, and ZNF177 were heavily methylated in over half of the cell lines. To analyze the
correlation between LMX1A, SOX1, and ZNF177 and their gene expressions, we treated HCT116 cells
with a DNA methylation inhibitor (5′-aza-2′-deoxycytidine; DAC) alone or in combination with an
HDCA (histone deacetylase) inhibitor (Trichostatin A; TSA). The reverse transcription polymerase
chain reaction (RT-PCR) data showed that the expressions of LMX1A, SOX1, and ZNF177 were restored
in HCT116 cells after the cells were treated with the two drugs (Figure 1B, right panel). The Q-MSP
results showed that the DNA methylation levels (methylation indexes) of LMX1A, SOX1, and ZNF177
were decreased after the HCT116 cells were treated with DAC only or the combination of DAC and
TSA (Figure 1C). Then we quantified the methylation levels of LMX1A, SOX1, and ZNF177 in 151
pairs of CRC tissues and found that the DNA methylation levels of LMX1A, SOX1, and ZNF177 in
151 CRC tissue samples were significantly higher than those in the corresponding nontumor tissue
samples (Figure 1D). Furthermore, we performed a receiver operating characteristic (ROC) curve
analysis to discriminate between the CRC tissue samples and their nontumor counterparts (supporting
information, Figure S1) and determined that the methylation frequencies of LMX1A, SOX1, and ZNF177
were 22.5%, 13.9%, and 12.6%, respectively, under the best cut-off values (Table 1).
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Figure 1. DNA methylation levels of LIM homeobox transcription factor 1α (LMX1A), sex-determining 
region Y-box 1 (SOX1), and zinc finger protein 177 (ZNF177) in colorectal carcinoma (CRC). (A) DNA 
methylation array data for LMX1A, SOX1, and ZNF177 in 45 tissue samples from normal individuals 
and 369 tissue samples from colon and rectal adenocarcinoma patients from the MethHC database 
are shown. The results are represented as average (AVG) β values for the probes. Black lines indicate 
the mean of AVG β value. The p-values for LMX1A, SOX1, and ZNF177 methylation levels among 
the groups (normal versus tumor) were determined by the Mann–Whitney U test. (B) The promoter 
methylation statuses of LMX1A, SOX1, and ZNF177 in five CRC cell lines were analyzed by MSP 
with methylated and unmethylated-specific primers. PC: positive control; NC: negative control. 
Gene expression levels of three genes and the internal reference GAPDH in HCT116 cells treated with 
5 µM DAC or 5 µM DAC combined with 300 nM TSA (5DAC/TSA), or left untreated, were analyzed 
by reverse transcription polymerase chain reaction (RT-PCR). Mr: molecular marker, or DNA ladder. 
(C) Quantitative DNA methylation levels of LMX1A, SOX1, and ZNF177 in five CRC cell lines were 
analyzed by Q-MSP. Quantitative DNA methylation levels of LMX1A, SOX1, and ZNF177 in 
HCT116 cells treated with 5 µM DAC or 5 µM DAC combined with 300 nM TSA (5DAC/TSA), or left 
untreated, were determined by Q-MSP. The results are represented as differences in the methylation 
index (MI). (D) Quantitative DNA methylation levels of LMX1A, SOX1, and ZNF177 were 
determined in 151 paired CRC tissue samples and the adjacent nontumor tissue samples (NT) by 
Q-MSP. The results are represented as differences in the methylation index. Black lines indicate mean 
methylation index. p values for methylation levels among the groups were determined by the 
Wilcoxon signed-rank test. 

Table 1. Sensitivity and specificity of candidate gene sets for discriminating 151 CRC from 
nontumor tissues. 

Gene Set Best Cut-Off Value Sensitivity Specificity 
NKX6.1 MI > 18.42 23.2% 99.3% 
LMX1A MI > 16.84 22.5% 99.3% 
SOX1 MI > 30.26 13.9% 98.7% 
ZNF177 MI > 51.14 12.6% 99.3% 

Figure 1. DNA methylation levels of LIM homeobox transcription factor 1α (LMX1A), sex-determining
region Y-box 1 (SOX1), and zinc finger protein 177 (ZNF177) in colorectal carcinoma (CRC). (A) DNA
methylation array data for LMX1A, SOX1, and ZNF177 in 45 tissue samples from normal individuals
and 369 tissue samples from colon and rectal adenocarcinoma patients from the MethHC database
are shown. The results are represented as average (AVG) β values for the probes. Black lines indicate
the mean of AVG β value. The p-values for LMX1A, SOX1, and ZNF177 methylation levels among
the groups (normal versus tumor) were determined by the Mann–Whitney U test. (B) The promoter
methylation statuses of LMX1A, SOX1, and ZNF177 in five CRC cell lines were analyzed by MSP
with methylated and unmethylated-specific primers. PC: positive control; NC: negative control. Gene
expression levels of three genes and the internal reference GAPDH in HCT116 cells treated with 5
µM DAC or 5 µM DAC combined with 300 nM TSA (5DAC/TSA), or left untreated, were analyzed
by reverse transcription polymerase chain reaction (RT-PCR). Mr: molecular marker, or DNA ladder.
(C) Quantitative DNA methylation levels of LMX1A, SOX1, and ZNF177 in five CRC cell lines were
analyzed by Q-MSP. Quantitative DNA methylation levels of LMX1A, SOX1, and ZNF177 in HCT116
cells treated with 5 µM DAC or 5 µM DAC combined with 300 nM TSA (5DAC/TSA), or left untreated,
were determined by Q-MSP. The results are represented as differences in the methylation index (MI).
(D) Quantitative DNA methylation levels of LMX1A, SOX1, and ZNF177 were determined in 151
paired CRC tissue samples and the adjacent nontumor tissue samples (NT) by Q-MSP. The results
are represented as differences in the methylation index. Black lines indicate mean methylation index.
p values for methylation levels among the groups were determined by the Wilcoxon signed-rank test.

Table 1. Sensitivity and specificity of candidate gene sets for discriminating 151 CRC from nontumor tissues.

Gene Set Best Cut-Off Value Sensitivity Specificity

NKX6.1 MI > 18.42 23.2% 99.3%
LMX1A MI > 16.84 22.5% 99.3%
SOX1 MI > 30.26 13.9% 98.7%
ZNF177 MI > 51.14 12.6% 99.3%
NKX6.1 or ZNF177 33.1% 98.7%
NKX6.1 or LMX1A 31.1% 98.7%
LMX1A or ZNF177 30.5% 98.7%
NKX6.1 or SOX1 29.1% 98.0%
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Table 1. Cont.

Gene Set Best Cut-Off Value Sensitivity Specificity

LMX1A or SOX1 27.2% 98.0%
SOX1 or ZNF177 21.9% 98.7%
NKX6.1 or LMX1A or ZNF177 37.7% 98.0%
NKX6.1 or SOX1 or ZNF177 36.4% 98.0%
LMX1A or SOX1 or ZNF177 33.8% 98.0%
NKX6.1 or LMX1A or SOX1 33.8% 97.4%
NKX6.1 or LMX1A or SOX1 or ZNF177 39.7% 97.4%

The methylation level of each gene was assessed as a methylation index (MI).

2.2. The Association of LMX1A Methylation and Patient Survival

To elucidate whether LMX1A, SOX1, and ZNF177 methylation could have a potential use in
clinical practice, we explored the association of the methylation of LMX1A, SOX1, and ZNF177 and the
clinical characteristics of 151 CRC patients (Table 2). We found a statistically significant association
between LMX1A methylation and tumor size (p = 0.0048) but did not observe significant associations
between SOX1 or ZNF177 methylation and any of the clinicopathological parameters. To further
investigate the relevance of gene methylation with survival, we next employed the Kaplan-Meier
method with the log-rank test for each gene methylation. As shown in Figure 2A, the methylation of
neither LMX1A, SOX1, nor ZNF177 had any effect on the overall 5-year overall survival or disease-free
survival of CRC patients. However, we found that early-stage (stage I or II) CRC patients with LMX1A
methylation exhibited a poorer 5-year overall survival (p = 0.0108) and disease-free survival (p = 0.0468)
than those without LMX1A methylation (Figure 2B).

Table 2. Association between gene methylation and clinicopathological characteristics in 151
CRC patients.

Symbol
LMX1A SOX1 ZNF177

(MI > 16.84) (MI > 30.26) (MI > 51.14)

UM M p UM M p UM M p

Age (63.44 ± 14.46) <64 years 62 12 0.0508 67 10 0.8162 69 8 0.4673
≥64 years 55 22 63 11 63 11

Sex Female 61 18 1.0000 66 13 0.3597 70 9 0.8067
Male 56 16 64 8 62 10

Stage I 20 2 0.2885 22 0 0.0510 18 4 0.5910
II 38 15 41 12 45 8
III 40 10 43 7 46 4
IV 19 7 24 2 23 3

Tumor grade Well differentiated 4 0 0.5387 4 0 0.6122 4 0 0.1327
Moderately differentiated 95 27 104 18 104 18
Poorly or
undifferentiated 15 5 18 2 20 0

Missing data 4 1 4 1 4 1

Tumor size ≤5 cm 72 10 0.0048 72 10 0.6151 74 8 0.5894
>5 cm 37 18 46 9 48 7
Missing data 9 5 12 2 10 4

No. of lymph node ≥12 95 22 0.3755 101 16 1.0000 105 12 0.2676
0–11 15 6 18 3 17 4
Missing data 8 5 11 2 10 3

Chemotherapy No 31 8 1.0000 32 7 0.4141 34 5 0.7729
Yes 79 20 87 12 88 11
Missing data 8 5 11 2 10 3

Recurrence No 74 19 0.5483 79 14 0.8095 82 11 0.8025
Yes 43 15 51 7 50 8

Survival Alive 100 24 0.0722 108 16 0.5381 109 15 0.7494
Dead 17 10 22 5 23 4

Unmethylation (UM) of each gene is represented as MI ≤ the best cut-off value; methylation (M) of each gene is
represented as MI > the best cut-off value.
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Figure 2. Correlation analysis between LMX1A, SOX1, and ZNF177 methylation levels and survival
in CRC patients. (A) The 5-year overall survival and disease-free survival rates of CRC patients with
different LMX1A, SOX1, and ZNF177 methylation statuses are presented. Red lines indicate cases with
LMX1A methylation (methylation index (MI) > 16.84), SOX1 methylation (MI > 30.26), and ZNF177
methylation (MI > 51.14). Black lines indicate cases without LMX1A methylation (MI ≤ 16.84), SOX1
methylation (MI ≤ 30.26), and ZNF177 methylation (MI ≤ 51.14). (B) The 5-year overall survival and
disease-free survival rates of stage I and II CRC patients.

2.3. The Efficacy of a Novel DNA Methylation Panel for Predicting the Prognosis of CRC

We previously demonstrated that NKX6.1 was a novel prognostic biomarker for CRC and that the
frequency of NKX6.1 methylation was 23% in a cohort of 151 CRC tissues [12]. Here, we determined
whether the methylation status of NKX6.1, in combination with those of LMX1A, SOX1, and ZNF177,
had a greater power in detecting CRC. The sensitivity and specificity of two and three-gene combinations
ranged from 21.9% to 37.7% and 97.4% to 98.7%, respectively, and the four-gene panel provided the
best sensitivity, 39.7%, and the optimal specificity, 97.4% (Table 1).

To further evaluate the utility of the four-gene methylation panel, we first analyzed its association
with the clinicopathological characteristics. As shown in Table 3, the four-gene methylation panel
was significantly associated with age (p = 0.0083), tumor size (p = 0.0323), and survival (p = 0.0297).
To determine its prognostic utility, we next used the Cox proportional hazards model to identify
independent factors associated with survival (Table 4). Univariate analysis revealed that the four-gene
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methylation panel was indeed a statistically significant indicator of overall survival (hazard ratio
(HR), 2.95; 95% confidence interval (CI), 1.36–6.39; p < 0.01). In the multivariate analysis, gene
methylation and chemotherapy were confirmed as independent factors for overall survival (HR for
gene methylation, 3.43; 95%CI, 1.37–8.57; p < 0.01) (HR for chemotherapy, 0.32; 95%CI, 0.12–0.85;
p < 0.05). Furthermore, the Kaplan–Meier survival analysis determined the effect of the four-gene
methylation panel on survival, revealing that patients who exhibited methylation for all four genes
had a worse 5-year overall survival (p = 0.0213) and disease-free survival (p = 0.0134) than those
without methylation of any of the four genes (Figure 3a). Finally, the four-gene methylation status was
associated with 5-year overall survival and disease-free survival in early-stage patients (Figure 3b;
p = 0.0016 and p = 0.0230), and in stage II and III CRC patients (Figure 3c; p = 0.0009 and p = 0.0363).
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Figure 3. Correlation analysis between the four-gene methylation panel and the survival of CRC
patients. (a) The 5-year overall survival and disease-free survival rates of CRC patients according
to the methylation status are presented. Red line: methylated cases discriminated by the four-gene
methylation panel; black line: unmethylated cases. (b) The 5-year overall survival and disease-free
survival rates of stage I and II CRC patients. (c) The 5-year overall survival and disease-free survival
rates of stage II and III CRC patients.
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Table 3. The associations between the four-gene methylation panel and clinicopathological
characteristics in 151 CRC patients.

Symbol NKX6.1 or LMX1A or SOX1 or ZNF177

UM M p

Age (63.44 ± 14.46) <64 years 52 21 0.0083
≥64 years 39 39

Sex Female 48 31 1.0000
Male 43 29

Stage I 16 6 0.3678
II 30 23
III 32 18
IV 13 13

Tumor grade Well differentiated 4 0 0.2355
Moderately differentiated 72 50
Poorly or undifferentiated 13 7

Missing data 4 1

Tumor size ≤5 cm 57 25 0.0323
>5 cm 28 27

Missing data 7 7

No. of lymph node ≥12 74 43 0.4653
0–11 11 10

Missing data 7 6

Chemotherapy No 24 15 1.0000
Yes 61 38

Missing data 7 6

Recurrence No 59 34 0.3928
Yes 32 26

Survival Alive 80 44 0.0297
Dead 11 16

Unmethylation (UM) of each gene is represented as MI ≤ the best cut-off value; methylation (M) of each gene is
represented as MI > the best cut-off value.
Table 4. Univariate and multivariate analysis of overall survival using clinical characteristics and the
the four-gene methylation panel in 151 CRC patients.

Variable
Univariate Analysis Hazard Ratio Multivariate Analysis Hazard Ratio

(95% Confidence Interval) (95% Confidence Interval)

Age (years) 0.99 (0.96–1.02) 0.98 (0.95–1.01)

Sex (female versus male) 1.05 (0.49–2.22) 1.35 (0.57–3.21)

Gene methylation
Unmethylation Reference Reference
Methylation 2.95 (1.36–6.39) ** 3.43 (1.37–8.57) **

Stage
I + II Reference Reference
III + IV 1.77 (0.81–3.87) 2.66 (0.98–7.26)

Tumor grade
Well + moderately Reference Reference
Poorly or undifferentiated 0.67 (0.16–2.86) 0.74 (0.16–3.36)

Tumor size
≤5 cm Reference Reference
>5 cm 0.97 (0.42–2.21) 0.63 (0.25–1.61)

No. of lymph node
≥12 Reference Reference
0–11 0.42 (0.17–1.07) 0.49 (0.17–1.40)

Chemotherapy
No Reference Reference
Yes 0.51 (0.23–1.13) 0.32 (0.12–0.85) *

* p < 0.05; ** p < 0.01.
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3. Discussion

The tumor-node-metastasis (TNM) staging is a key determinant of the therapy selection and
prognosis of CRC patients. However, beyond creating a more complex tumor classification, the TNM
staging system has not provided clinicians with the optimal treatment and management strategies that
it was originally designed for. Recent advances in the determination of the molecular CRC subtypes
have led to the identification of several prognostic biomarkers, based on molecular heterogeneity,
which might contribute to the risk stratification of patients with the same disease stages and who
are receiving the same treatment [25,26]. In the current study, we analyzed the methylation levels of
LMX1A, SOX1, and ZNF177 to elucidate novel changes in the methylation levels of genes in CRC and
determined that the novel four-gene methylation panel, which includes LMX1A, SOX1, ZNF177, and
NKX6.1, could discriminate the outcomes of CRC patients.

As in other cancers, CRC encompasses multiple molecular subtypes with specific characteristics. The
CpG island methylator phenotype (CIMP) is one famous CRC subtypes, including tumors with a high
frequency of hypermethylation at CpG islands [27]. CIMP-associated CRC has distinct epidemiology,
histology, precursor lesions, and molecular features (e.g., BRAF and KRAS mutations) [28,29].

In addition, recent studies have reported that the prognosis was significantly poor in CIMP-high
patients among the microsatellite stability (MSS) subgroup, although there was a trend of increased
cancer-specific survival in CIMP-positive CRC patients [30–36]. However, the association of CIMP
with the prognosis and survival of CRC subtypes remains unknown.

We previously reported several DNA methylation markers in various cancers, including cervical
cancer, ovarian cancer, and hepatocellular carcinoma [13,16,19]. However, the utility of these markers
or marker panels for CRC is unknown. Therefore, we designed a strategy to first verify the DNA
methylation levels of specific markers that we identified in colon and rectal adenocarcinomas using
array data from existing databases and then validated these results by a quantitative DNA methylation
analysis of potential genes in the study cohort using Q-MSP. With this strategy, we recently reported
NKX6.1 hypermethylation as a new biomarker for the prediction of outcomes and therapy selection in
stage II CRC patients [12]. In the current study, we not only showed that LMX1A hypermethylation
was significantly associated with tumor size and poor 5-year overall survival rates and disease-free
survival rates in early-stage CRC patients, but also demonstrated that the four-gene methylation panel,
including NKX6.1, LMX1A, SOX1, and ZNF177, was a novel and independent prognostic tool for stage
I and II, or stage II and III CRCs.

The four-gene methylation status was decreased and the expression level was restored in HCT116
cells after the cells were treated with DAC alone or with the combination of DAC/TSA. Moreover, the
correlation analysis of the differential methylation and expression levels of LMX1A, SOX1, ZNF177
and NKX6.1 in colon adenocarcinoma patients was based on data derived from the MethHC database
(supporting information in Figure S2). The inverse correlation between the gene expression and DNA
methylation of SOX1 (correlation = −0.2971, p < 0.0001) was statistically significant. There was no
correlation between the methylation and gene expression of LMX1A (correlation = −0.00675) and
NKX6.1 (correlation = −0.1046) from the MethHC database. However, a positive correlation was
observed between the gene expression level and the methylation status of ZNF177 (correlation = 0.3487,
p < 0.0001) (Figure S2). There are two ZNF177 variants reported at the NCBI, but the probe was designed
only for the variant NM_003451′s methylation analysis from MethHC. These controversial data may be
due to the different variants of ZNF177 and the heterogeneity of the clinical samples. In summary, there
was an inverse correlation between the methylation and expression of the four-gene panel in HCT116
cells. Among the markers, LMX1A is a LIM homeobox-containing gene, with roles in a wide variety of
developmental contexts [37]; SOX1 encodes a protein that plays a key regulatory role in neural cell fate
determination and differentiation [38,39]; and ZNF177 belongs to a zinc finger gene family encoding
a large number of common transcription factors [40,41]. Previously, in addition to identifying DNA
methylation biomarkers, we also revealed that LMX1A and SOX1 were tumor suppressor genes in
cervical cancer and hepatocellular carcinoma [42–44]. Additionally, the promoter-hypermethylations
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of LMX1A, SOX1, and ZNF177 were previously reported in lung, stomach, and bladder cancers,
respectively, by other groups [14,17,18]. In the two most recent reports, SOX1 hypermethylation was
also identified in colon cancer and CRC [45,46]. Overall, the data from previous studies, as well as
the data from the current report, indicate promoter hypermethylation of these genes are common
epigenetic events in multiple cancer types. The biological function of these four genes in CRC needs
further investigation.

Despite the promising results, the current study does have limitations. The cutoff value for each
gene was based on a hospital-based, retrospective case-control study from a research platform and
may not be applied directly to clinical settings with larger populations. To determine its prognostic
utility, we used the Cox proportional hazards model to identify independent factors associated with
survival (Tables S1–S4). The univariate analysis revealed that LMX1A and NKX6.1 methylation was
indeed a statistically significant indicator of overall survival (hazard ratio (HR) for LMX1A methylation,
2.58; p < 0.05) (HR for NKX6.1 methylation, 2.60; p < 0.01). In the multivariate analysis, NKX6.1
methylation, stage and chemotherapy were confirmed as independent factors for overall survival
(HR for NKX6.1 methylation, 6.06; p < 0.01) (HR for stage, 3.77; p < 0.05) (HR for chemotherapy, 0.26;
p < 0.05). LMX1A methylation and chemotherapy were confirmed as independent factors for overall
survival (HR for LMX1A methylation; p < 0.05) (HR for chemotherapy, 0.33; p < 0.05). However, our
previous study demonstrated that the methylation frequency of NKX6.1 was 23% in our cohort of
151 pairs of CRC tissues. In this study, we aimed to develop a DNA methylation panel that might
potentially improve the sensitivity of the application. While the methylation of SOX1 and ZNF177
was not a statistically significant indicator of overall survival, the combination of these two genes
could improve the sensitivity (23% to 39.7%) when discriminating 151 CRC tissues from nontumor
tissues. Therefore, we used a four-gene methylation panel to elucidate its prognostic utility for CRC. As
there was no patient survival information in the MethHC database, we could not determine whether
the four-gene set had a prognostic value in these cohorts. In this study, we did not have any other
available cohort to further validate the prognostic value. However, we analyzed data from PRECOG
(https://precog.stanford.edu), a database for querying associations between gene expressions and
clinical outcomes, to examine the association between the expression of the four-gene panel and
the survival of CRC patients. A GEO dataset (GSE12945) showed that patients with a low NKX6.1
expression had a poorer survival rate, compared with those with a high NKX6.1 expression (p = 0.0159;
Figure S3). For the other three genes, LMX1A, SOX1, and ZNF177, there was no significant correlation
between the gene expression and patient survival. The reason for these results was due to the limited
patient survival information and the heterogeneity of the clinical samples. In summary, this is a pilot
study that indicates that the abnormal DNA methylation panel is a potential prognostic biomarker of
CRC. Nonetheless, the prognostic value of the four-gene panel needs another independent cohort to
further validate these results, and an in vitro validation of the biological function of these genes will
provide a better understanding of the findings.

The molecular heterogeneity of CRC may aid in determining clinical survival of CRC patients.
The current study examined the prognostic value of the methylation levels of LMX1A, SOX1, and
ZNF177 in CRC patients. The results suggest that the combination of NKX6.1, LMX1A, SOX1, and
ZNF177 promoter methylation statuses is a potentially novel stage-independent prognostic marker.

4. Materials and Methods

4.1. MethHC Database

MethHC (http://MethHC.mbc.nctu.edu.tw) is a web resource specifically focused on the DNA
methylation of human cancers [13]. In the current study, we used DNA methylation data in the MethHC
database for preliminary analysis of the methylation levels of LMX1A, SOX1, and ZNF177 in 46 tissue
samples from normal individuals and 369 tissue samples from colon or rectal adenocarcinoma patients.

https://precog.stanford.edu
http://MethHC.mbc.nctu.edu.tw
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4.2. Clinical Samples and Cell Lines

Our cohort included 151 paired tumor tissue and adjacent nontumor tissue specimens that were
obtained from the Tri-Service General Hospital. The use of these samples was approved by our
Institutional Review Board (TSGHIRB number: 098-05-292). The clinicopathologic characteristics of
the patients were summarized previously [12]. Additionally, five CRC cell lines (HCT8, HCT116, HT29,
SW480, and SW620) were used in the current study. HT29 cells were purchased from the American
Type Culture Collection. HCT8, HCT116, SW480, and SW620 cells were purchased from the Food
Industry Research and Development Institute (Taiwan).

4.3. DNA Methylation and Gene Expression Analysis

For DNA methylation analysis, the genomic DNA of clinical samples and cell lines
were extracted and bisulfite-converted as previously described [12]. CpG methylated human
genomic DNA (Thermo Fisher Scientific, San Diego, CA, USA) and DNA extracted from normal
peripheral blood lymphocytes were modified by sodium bisulfite to generate positive and negative
controls, respectively. MS-PCR and Q-MSP were performed as previously described. For
Q-MSP, the DNA methylation levels were assessed by determining the methylation index (MI)
using the following formula: 100 × 2−((Cp of Gene)−(Cp of COL2A)). The Q-MSP primer sequences
used in the current study were as follows: LMX1A-F tgggacgcgggattgtaaattttat, LMX1A-R
aaaccctcgaaacgtctctacaaaa, SOX1-F ggttgtatcgtaatcgttttttgtaggtt, SOX1-R cctccaactcgaaaactacaacttct,
ZNF177-F ggaagtgggcgttcgtcgtttc, ZNF177-R cccttccctcccgattccg, COL2A-F gggaagatgggatagaagggaatat,
and COL2A-R tctaacaattataaactccaaccaccaa. For gene expression analysis, reverse transcription
polymerase chain reaction (RT-PCR) was conducted as previously described [12]. The RT-PCR primer
sequences used in the current study are shown in the Table S5.

4.4. Statistical Analysis

Statistical analyses were performed using GraphPad Prism software (version 4.03; GraphPad
Software, La Jolla, CA, USA) and SPSS software (IBM SPSS Statistics 21; Asia Analytics Taiwan,
Taipei, Taiwan). The Mann–Whitney U and Wilcoxon signed-rank tests were used to determine
differences between gene methylation levels and disease status. Receiver operating characteristic (ROC)
curves were generated to calculate the cut-off values for LMX1A, SOX1, and ZNF177 methylation for
discriminating tumors from nontumor tissues. χ2 test and an χ2 test for trend were used to calculate the
associations between gene methylations and clinical parameters. Kaplan–Meier curves were calculated
to estimate survival rates at five years after treatment. The log-rank test was used to compare the
association between survival and gene methylation. The Cox proportional hazards model was used to
identify factors for overall survival.

5. Conclusions

In summary, our results demonstrate that the combination of the methylation statuses of NKX6.1,
LMX1A, SOX1, and ZNF177 is a novel prognostic panel that could be considered a molecular marker
for outcomes in CRC patients. This is a pilot study that indicates that the abnormal DNA methylation
panel is a potential prognostic biomarker of CRC. Nonetheless, the prognostic value of the four-gene
panel needs another independent cohort to further validate these results.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/19/
4672/s1. Figure S1. ROC curves of LMX1A, SOX1, and ZNF177 in CRC tissues. Figure S2. Correlation between
gene expression level and methylation status of LMX1A, SOX1, ZNF177, and NKX6.1 in CRC tissues. Figure S3.
Kaplan–Meier curves for survival analysis in 62 CRC patients. Table S1. Univariate and multivariate of overall
survival analysis using clinical characteristics and the LMX1A methylation panel in 151 CRC patients. Table S2.
Univariate and multivariate of overall survival analysis using clinical characteristics and the SOX1 methylation
panel in 151 CRC patients. Table S3. Univariate and multivariate of overall survival analysis using clinical
characteristics and the ZNF177 methylation panel in 151 CRC patients. Table S4. Univariate and multivariate of

http://www.mdpi.com/1422-0067/20/19/4672/s1
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overall survival analysis using clinical characteristics and the NKX6.1 methylation panel in 151 CRC patients.
Table S5. Primer sequences used for RT-PCR.

Author Contributions: H.-H.C. and C.-C.K. designed the study. Y.-W.L., Y.-L.S., Y.-C.C., C.-W.H., C.-Y.C., J.-M.H.,
and C.-H.H. provided experimental materials. H.-H.C. cultured the CRC cell lines. H.-H.C. and C.-C.K. performed
genomic DNA extraction, DNA bisulfite-conversion, MSP, and the Q-MSP experiments. H.-H.C. and C.-C.K.
analyzed the results and prepared the figures and tables. H.-H.C. wrote the paper. All authors discussed the
results and commented on the manuscript. All authors have read and approved the final manuscript.

Funding: This work was supported in part by the following grants: MOST 105-2314-B-016-049, MOST
107-2314-B-016-012, and MOST 105-2320-B-016-017-MY3 from the Ministry of Science and Technology, Taiwan,
Republic of China; MAB-106-045, MAB-106-046, MAB-106-047, MAB-107-026, MAB-107-027, and MAB-107-028
from the Ministry of National Defense, Taiwan, Republic of China; and TSGH-C107-049 and TSGH-C108-072 from
Tri-Service General Hospital, Taiwan.

Acknowledgments: We thank Ming-De Yan for advice on paper-writing, and Chia-Hsin Lin and Shin-Ping Lin
for technical assistance.

Conflicts of Interest: The authors declare that they have no competing interests.

References

1. Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018:
GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA-Cancer J.
Clin. 2018, 68, 394–424. [CrossRef] [PubMed]

2. Brenner, H.; Kloor, M.; Pox, C.P. Colorectal cancer. Lancet 2014, 383, 1490–1502. [CrossRef]
3. Wu, X.; Zhang, J.; He, X.; Wang, C.; Lian, L.; Liu, H.; Wang, J.; Lan, P. Postoperative adjuvant chemotherapy

for stage II colorectal cancer: A systematic review of 12 randomized controlled trials. J. Gastrointest. Surg.
Off. J. Soc. Surg. Aliment. Tract 2012, 16, 646–655. [CrossRef] [PubMed]

4. Robertson, K.D. DNA methylation and human disease. Nat. Rev. Genet. 2005, 6, 597–610. [CrossRef]
[PubMed]

5. Fakhr, M.G.; Hagh, M.F.; Shanehbandi, D.; Baradaran, B. DNA methylation pattern as important epigenetic
criterion in cancer. Genet. Res. Int. 2013, 2013, 317569. [CrossRef]

6. Silva, T.D.; Vidigal, V.M.; Felipe, A.V.; De Lima, J.M.; Neto, R.A.; Saad, S.S.; Forones, N.M. DNA methylation
as an epigenetic biomarker in colorectal cancer. Oncol. Lett. 2013, 6, 1687–1692. [CrossRef] [PubMed]

7. Lam, K.; Pan, K.; Linnekamp, J.F.; Medema, J.P.; Kandimalla, R. DNA methylation based biomarkers in
colorectal cancer: A systematic review. Biochim. Biophys. Acta 2016, 1866, 106–120. [CrossRef] [PubMed]

8. Imperiale, T.F.; Ransohoff, D.F.; Itzkowitz, S.H. Multitarget stool DNA testing for colorectal-cancer screening.
N. Engl. J. Med. 2014, 371, 187–188. [CrossRef] [PubMed]

9. Toth, K.; Wasserkort, R.; Sipos, F.; Kalmar, A.; Wichmann, B.; Leiszter, K.; Valcz, G.; Juhasz, M.; Miheller, P.;
Patai, A.V.; et al. Detection of methylated septin 9 in tissue and plasma of colorectal patients with neoplasia
and the relationship to the amount of circulating cell-free DNA. PLoS ONE 2014, 9, e115415. [CrossRef]

10. Wasserkort, R.; Kalmar, A.; Valcz, G.; Spisak, S.; Krispin, M.; Toth, K.; Tulassay, Z.; Sledziewski, A.Z.;
Molnar, B. Aberrant septin 9 DNA methylation in colorectal cancer is restricted to a single CpG island. BMC
Cancer 2013, 13, 398. [CrossRef]

11. Molnar, B.; Toth, K.; Bartak, B.K.; Tulassay, Z. Plasma methylated septin 9: A colorectal cancer screening
marker. Expert Rev. Mol. Diagn. 2015, 15, 171–184. [CrossRef] [PubMed]

12. Chang, S.Y.; Kuo, C.C.; Wu, C.C.; Hsiao, C.W.; Hu, J.M.; Hsu, C.H.; Chou, Y.C.; Shih, Y.L.; Lin, Y.W. NKX6.1
hypermethylation predicts the outcome of stage II colorectal cancer patients undergoing chemotherapy.
Genes Chromosom. Cancer 2018, 57, 268–277. [CrossRef] [PubMed]

13. Kuo, C.C.; Lin, C.Y.; Shih, Y.L.; Hsieh, C.B.; Lin, P.Y.; Guan, S.B.; Hsieh, M.S.; Lai, H.C.; Chen, C.J.; Lin, Y.W.
Frequent methylation of HOXA9 gene in tumor tissues and plasma samples from human hepatocellular
carcinomas. Clin. Chem. Lab. Med. 2014, 52, 1235–1245. [CrossRef] [PubMed]

14. Diaz-Lagares, A.; Mendez-Gonzalez, J.; Hervas, D.; Saigi, M.; Pajares, M.J.; Garcia, D.; Crujerias, A.B.; Pio, R.;
Montuenga, L.M.; Zulueta, J.; et al. A Novel Epigenetic Signature for Early Diagnosis in Lung Cancer. Clin.
Cancer Res. Off. J. Am. Assoc. Cancer Res. 2016, 22, 3361–3371. [CrossRef] [PubMed]

http://dx.doi.org/10.3322/caac.21492
http://www.ncbi.nlm.nih.gov/pubmed/30207593
http://dx.doi.org/10.1016/S0140-6736(13)61649-9
http://dx.doi.org/10.1007/s11605-011-1682-8
http://www.ncbi.nlm.nih.gov/pubmed/22194062
http://dx.doi.org/10.1038/nrg1655
http://www.ncbi.nlm.nih.gov/pubmed/16136652
http://dx.doi.org/10.1155/2013/317569
http://dx.doi.org/10.3892/ol.2013.1606
http://www.ncbi.nlm.nih.gov/pubmed/24260063
http://dx.doi.org/10.1016/j.bbcan.2016.07.001
http://www.ncbi.nlm.nih.gov/pubmed/27385266
http://dx.doi.org/10.1056/NEJMoa1311194
http://www.ncbi.nlm.nih.gov/pubmed/25006736
http://dx.doi.org/10.1371/journal.pone.0115415
http://dx.doi.org/10.1186/1471-2407-13-398
http://dx.doi.org/10.1586/14737159.2015.975212
http://www.ncbi.nlm.nih.gov/pubmed/25429690
http://dx.doi.org/10.1002/gcc.22529
http://www.ncbi.nlm.nih.gov/pubmed/29363224
http://dx.doi.org/10.1515/cclm-2013-0780
http://www.ncbi.nlm.nih.gov/pubmed/24681432
http://dx.doi.org/10.1158/1078-0432.CCR-15-2346
http://www.ncbi.nlm.nih.gov/pubmed/26842235


Int. J. Mol. Sci. 2019, 20, 4672 13 of 14

15. Chen, Y.C.; Tsao, C.M.; Kuo, C.C.; Yu, M.H.; Lin, Y.W.; Yang, C.Y.; Li, H.J.; Yan, M.D.; Wang, T.J.; Chou, Y.C.;
et al. Quantitative DNA methylation analysis of selected genes in endometrial carcinogenesis. Taiwan. J.
Obstet. Gynecol. 2015, 54, 572–579. [CrossRef] [PubMed]

16. Lai, H.C.; Lin, Y.W.; Huang, T.H.; Yan, P.; Huang, R.L.; Wang, H.C.; Liu, J.; Chan, M.W.; Chu, T.Y.; Sun, C.A.;
et al. Identification of novel DNA methylation markers in cervical cancer. Int. J. Cancer 2008, 123, 161–167.
[CrossRef] [PubMed]

17. Dong, W.; Feng, L.; Xie, Y.; Zhang, H.; Wu, Y. Hypermethylation-mediated reduction of LMX1A expression
in gastric cancer. Cancer Sci. 2011, 102, 361–366. [CrossRef]

18. Zhao, Y.; Guo, S.; Sun, J.; Huang, Z.; Zhu, T.; Zhang, H.; Gu, J.; He, Y.; Wang, W.; Ma, K.; et al. Methylcap-seq
reveals novel DNA methylation markers for the diagnosis and recurrence prediction of bladder cancer in a
Chinese population. PLoS ONE 2012, 7, e35175. [CrossRef]

19. Su, H.Y.; Lai, H.C.; Lin, Y.W.; Chou, Y.C.; Liu, C.Y.; Yu, M.H. An epigenetic marker panel for screening and
prognostic prediction of ovarian cancer. Int. J. Cancer 2009, 124, 387–393. [CrossRef]

20. Shih, Y.L.; Hsieh, C.B.; Yan, M.D.; Tsao, C.M.; Hsieh, T.Y.; Liu, C.H.; Lin, Y.W. Frequent concomitant epigenetic
silencing of SOX1 and secreted frizzled-related proteins (SFRPs) in human hepatocellular carcinoma.
J. Gastroenterol. Hepatol. 2013, 28, 551–559. [CrossRef]

21. Zhao, Y.; Zhou, H.; Ma, K.; Sun, J.; Feng, X.; Geng, J.; Gu, J.; Wang, W.; Zhang, H.; He, Y.; et al. Abnormal
methylation of seven genes and their associations with clinical characteristics in early stage non-small cell
lung cancer. Oncol. Lett. 2013, 5, 1211–1218. [CrossRef] [PubMed]

22. Kuo, I.Y.; Chang, J.M.; Jiang, S.S.; Chen, C.H.; Chang, I.S.; Sheu, B.S.; Lu, P.J.; Chang, W.L.; Lai, W.W.;
Wang, Y.C. Prognostic CpG methylation biomarkers identified by methylation array in esophageal squamous
cell carcinoma patients. Int. J. Med. Sci. 2014, 11, 779–787. [CrossRef] [PubMed]

23. Li, N.; Li, S. Epigenetic inactivation of SOX1 promotes cell migration in lung cancer. Tumour Biol. J. Int. Soc.
Oncodev. Biol. Med. 2015, 36, 4603–4610. [CrossRef] [PubMed]

24. Lopez, J.I.; Angulo, J.C.; Martin, A.; Sanchez-Chapado, M.; Gonzalez-Corpas, A.; Colas, B.; Ropero, S. A
DNA hypermethylation profile reveals new potential biomarkers for the evaluation of prognosis in urothelial
bladder cancer. Acta Pathol. Microbiol. Immunol. Scand. 2017, 125, 787–796. [CrossRef] [PubMed]

25. Herzig, D.O.; Tsikitis, V.L. Molecular markers for colon diagnosis, prognosis and targeted therapy. J. Surg.
Oncol. 2015, 111, 96–102. [CrossRef] [PubMed]

26. Mahasneh, A.; Al-Shaheri, F.; Jamal, E. Molecular biomarkers for an early diagnosis, effective treatment and
prognosis of colorectal cancer: Current updates. Exp. Mol. Pathol. 2017, 102, 475–483. [CrossRef] [PubMed]

27. Toyota, M.; Ahuja, N.; Ohe-Toyota, M.; Herman, J.G.; Baylin, S.B.; Issa, J.P. CpG island methylator phenotype
in colorectal cancer. Proc. Natl. Acad. Sci. USA 1999, 96, 8681–8686. [CrossRef] [PubMed]

28. Shen, L.; Toyota, M.; Kondo, Y.; Lin, E.; Zhang, L.; Guo, Y.; Hernandez, N.S.; Chen, X.; Ahmed, S.; Konishi, K.;
et al. Integrated genetic and epigenetic analysis identifies three different subclasses of colon cancer. Proc.
Natl. Acad. Sci. USA 2007, 104, 18654–18659. [CrossRef]

29. Ang, P.W.; Loh, M.; Liem, N.; Lim, P.L.; Grieu, F.; Vaithilingam, A.; Platell, C.; Yong, W.P.; Iacopetta, B.;
Soong, R. Comprehensive profiling of DNA methylation in colorectal cancer reveals subgroups with distinct
clinicopathological and molecular features. BMC Cancer 2010, 10, 227. [CrossRef]

30. Lee, S.; Cho, N.Y.; Yoo, E.J.; Kim, J.H.; Kang, G.H. CpG island methylator phenotype in colorectal cancers:
Comparison of the new and classic CpG island methylator phenotype marker panels. Arch. Pathol. Lab. Med.
2008, 132, 1657–1665. [CrossRef]

31. Barault, L.; Charon-Barra, C.; Jooste, V.; de la Vega, M.F.; Martin, L.; Roignot, P.; Rat, P.; Bouvier, A.M.;
Laurent-Puig, P.; Faivre, J.; et al. Hypermethylator phenotype in sporadic colon cancer: Study on a
population-based series of 582 cases. Cancer Res. 2008, 68, 8541–8546. [CrossRef] [PubMed]

32. Shen, L.; Catalano, P.J.; Benson, A.B., 3rd; O’Dwyer, P.; Hamilton, S.R.; Issa, J.P. Association between DNA
methylation and shortened survival in patients with advanced colorectal cancer treated with 5-fluorouracil
based chemotherapy. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2007, 13, 6093–6098. [CrossRef]
[PubMed]

33. Lee, S.; Cho, N.Y.; Choi, M.; Yoo, E.J.; Kim, J.H.; Kang, G.H. Clinicopathological features of CpG island
methylator phenotype-positive colorectal cancer and its adverse prognosis in relation to KRAS/BRAF
mutation. Pathol. Int. 2008, 58, 104–113. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.tjog.2015.08.010
http://www.ncbi.nlm.nih.gov/pubmed/26522113
http://dx.doi.org/10.1002/ijc.23519
http://www.ncbi.nlm.nih.gov/pubmed/18398837
http://dx.doi.org/10.1111/j.1349-7006.2010.01804.x
http://dx.doi.org/10.1371/journal.pone.0035175
http://dx.doi.org/10.1002/ijc.23957
http://dx.doi.org/10.1111/jgh.12078
http://dx.doi.org/10.3892/ol.2013.1161
http://www.ncbi.nlm.nih.gov/pubmed/23599765
http://dx.doi.org/10.7150/ijms.7405
http://www.ncbi.nlm.nih.gov/pubmed/24936140
http://dx.doi.org/10.1007/s13277-015-3107-x
http://www.ncbi.nlm.nih.gov/pubmed/25613070
http://dx.doi.org/10.1111/apm.12719
http://www.ncbi.nlm.nih.gov/pubmed/28586118
http://dx.doi.org/10.1002/jso.23806
http://www.ncbi.nlm.nih.gov/pubmed/25297801
http://dx.doi.org/10.1016/j.yexmp.2017.05.005
http://www.ncbi.nlm.nih.gov/pubmed/28506769
http://dx.doi.org/10.1073/pnas.96.15.8681
http://www.ncbi.nlm.nih.gov/pubmed/10411935
http://dx.doi.org/10.1073/pnas.0704652104
http://dx.doi.org/10.1186/1471-2407-10-227
http://dx.doi.org/10.1043/1543-2165(2008)132[1657:CIMPIC]2.0.CO;2
http://dx.doi.org/10.1158/0008-5472.CAN-08-1171
http://www.ncbi.nlm.nih.gov/pubmed/18922929
http://dx.doi.org/10.1158/1078-0432.CCR-07-1011
http://www.ncbi.nlm.nih.gov/pubmed/17947473
http://dx.doi.org/10.1111/j.1440-1827.2007.02197.x
http://www.ncbi.nlm.nih.gov/pubmed/18199160


Int. J. Mol. Sci. 2019, 20, 4672 14 of 14

34. Kim, J.H.; Shin, S.H.; Kwon, H.J.; Cho, N.Y.; Kang, G.H. Prognostic implications of CpG island
hypermethylator phenotype in colorectal cancers. Virchows Arch. Int. J. Pathol. 2009, 455, 485–494.
[CrossRef]

35. Sanchez, J.A.; Krumroy, L.; Plummer, S.; Aung, P.; Merkulova, A.; Skacel, M.; DeJulius, K.L.; Manilich, E.;
Church, J.M.; Casey, G.; et al. Genetic and epigenetic classifications define clinical phenotypes and determine
patient outcomes in colorectal cancer. Br. J. Surg. 2009, 96, 1196–1204. [CrossRef] [PubMed]

36. Ward, R.L.; Cheong, K.; Ku, S.L.; Meagher, A.; O’Connor, T.; Hawkins, N.J. Adverse prognostic effect of
methylation in colorectal cancer is reversed by microsatellite instability. J. Clin. Oncol. Off. J. Am. Soc. Clin.
Oncol. 2003, 21, 3729–3736. [CrossRef] [PubMed]

37. Hobert, O.; Westphal, H. Functions of LIM-homeobox genes. Trends Genet. 2000, 16, 75–83. [CrossRef]
38. Buescher, M.; Hing, F.S.; Chia, W. Formation of neuroblasts in the embryonic central nervous system of

Drosophila melanogaster is controlled by SoxNeuro. Development 2002, 129, 4193–4203. [PubMed]
39. Kan, L.; Israsena, N.; Zhang, Z.; Hu, M.; Zhao, L.R.; Jalali, A.; Sahni, V.; Kessler, J.A. Sox1 acts through multiple

independent pathways to promote neurogenesis. Dev. Biol. 2004, 269, 580–594. [CrossRef] [PubMed]
40. Laity, J.H.; Lee, B.M.; Wright, P.E. Zinc finger proteins: New insights into structural and functional diversity.

Curr. Opin. Struct. Biol. 2001, 11, 39–46. [CrossRef]
41. Cassandri, M.; Smirnov, A.; Novelli, F.; Pitolli, C.; Agostini, M.; Malewicz, M.; Melino, G.; Raschella, G.

Zinc-finger proteins in health and disease. Cell Death Discov. 2017, 3, 17071. [CrossRef] [PubMed]
42. Liu, C.Y.; Chao, T.K.; Su, P.H.; Lee, H.Y.; Shih, Y.L.; Su, H.Y.; Chu, T.Y.; Yu, M.H.; Lin, Y.W.; Lai, H.C.

Characterization of LMX-1A as a metastasis suppressor in cervical cancer. J. Pathol. 2009, 219, 222–231.
[CrossRef] [PubMed]

43. Tsao, C.M.; Yan, M.D.; Shih, Y.L.; Yu, P.N.; Kuo, C.C.; Lin, W.C.; Li, H.J.; Lin, Y.W. SOX1 functions as a
tumor suppressor by antagonizing the WNT/beta-catenin signaling pathway in hepatocellular carcinoma.
Hepatology 2012, 56, 2277–2287. [CrossRef] [PubMed]

44. Lin, Y.W.; Tsao, C.M.; Yu, P.N.; Shih, Y.L.; Lin, C.H.; Yan, M.D. SOX1 suppresses cell growth and invasion in
cervical cancer. Gynecol. Oncol. 2013, 131, 174–181. [CrossRef] [PubMed]

45. Huang, J.; Tan, Z.R.; Yu, J.; Li, H.; Lv, Q.L.; Shao, Y.Y.; Zhou, H.H. DNA hypermethylated status and gene
expression of PAX1/SOX1 in patients with colorectal carcinoma. OncoTargets Ther. 2017, 10, 4739–4751.
[CrossRef] [PubMed]

46. Molnar, B.; Galamb, O.; Peterfia, B.; Wichmann, B.; Csabai, I.; Bodor, A.; Kalmar, A.; Szigeti, K.A.; Bartak, B.K.;
Nagy, Z.B.; et al. Gene promoter and exon DNA methylation changes in colon cancer development—mRNA
expression and tumor mutation alterations. BMC Cancer 2018, 18, 695. [CrossRef] [PubMed]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s00428-009-0857-0
http://dx.doi.org/10.1002/bjs.6683
http://www.ncbi.nlm.nih.gov/pubmed/19787768
http://dx.doi.org/10.1200/JCO.2003.03.123
http://www.ncbi.nlm.nih.gov/pubmed/14551292
http://dx.doi.org/10.1016/S0168-9525(99)01883-1
http://www.ncbi.nlm.nih.gov/pubmed/12183372
http://dx.doi.org/10.1016/j.ydbio.2004.02.005
http://www.ncbi.nlm.nih.gov/pubmed/15110721
http://dx.doi.org/10.1016/S0959-440X(00)00167-6
http://dx.doi.org/10.1038/cddiscovery.2017.71
http://www.ncbi.nlm.nih.gov/pubmed/29152378
http://dx.doi.org/10.1002/path.2589
http://www.ncbi.nlm.nih.gov/pubmed/19644956
http://dx.doi.org/10.1002/hep.25933
http://www.ncbi.nlm.nih.gov/pubmed/22767186
http://dx.doi.org/10.1016/j.ygyno.2013.07.111
http://www.ncbi.nlm.nih.gov/pubmed/23927962
http://dx.doi.org/10.2147/OTT.S143389
http://www.ncbi.nlm.nih.gov/pubmed/29033587
http://dx.doi.org/10.1186/s12885-018-4609-x
http://www.ncbi.nlm.nih.gov/pubmed/29945573
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	Abnormal Methylation of LMX1A, SOX1, and ZNF177 in CRC 
	The Association of LMX1A Methylation and Patient Survival 
	The Efficacy of a Novel DNA Methylation Panel for Predicting the Prognosis of CRC 

	Discussion 
	Materials and Methods 
	MethHC Database 
	Clinical Samples and Cell Lines 
	DNA Methylation and Gene Expression Analysis 
	Statistical Analysis 

	Conclusions 
	References

