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ignificance Statement

\programs at different stages.

While there is a large body of evidence in favor of a clustering of representations of body effectors in the
posterior parietal cortex, recent advances have revealed a hierarchical organization beyond a flat intentional
map composed of functionally distinct subdivisions operating in parallel at same level. In particular, the
parietal reach region (PRR) and dorsal area 5 (area 5d) have been found to play distinct roles in visually-
guided reach. Based on three lines of neurophysiological studies on nonhuman primates that utilize
sophisticated behavioral tasks, including reference frame, effector choice, and sequential reach, this essay
proposes that the PRR and area 5d are involved in translation of general motor intentions into detailed motor

~
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Introduction

The posterior parietal cortex (PPC) has historically been
considered a typical association cortex, important for spatial
attention and multisensory integration in the generation of a
unitary map whose output is relayed to the frontal lobe to
guide behavior (Critchley, 1953; Ungerleider and Mishkin,
1982; Colby and Goldberg, 1999). Since the 1970s, tremen-
dous progress in neurophysiology, neuroanatomical tracing,
functional imaging, and experimental intervention has
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yielded evidence of a variety of distinct functional subareas
in the PPC, as opposed to a homogeneous area that con-
structs a single unified perceptual representation (Rizzolatti
etal., 1997; Mountcastle, 1998; Andersen and Buneo, 2002).
Furthermore, the PPC has been shown to be involved in
movement planning in a number of different contexts (An-
dersen and Cui, 2009; Rizzolatti and Kalaska, 2013). The
PPC seems to be composed of a mosaic of intentional
maps, each of which is thought to be specialized for a
different kind of movement for a particular body part (Ander-
sen and Buneo, 2002; Scherberger et al., 2013). Recent
advances have further suggested that the individual
effector-specific regions are heterogeneous (Heed et al.,
2011; Leone et al., 2014), with a hierarchical organization
among different subdivisions preferring the same effector
(Cui and Andersen, 2011; Verhagen et al., 2013), indicating
that some subareas in PPC are involved in sensorimotor
integration at multiple levels, instead of working in parallel
within a flat intentional map. This essay will focus on two
reach-related areas in Brodmann’s area 5 (Fig. 1A), the
parietal reach region (PRR), and dorsal area 5 (area 5d), and
discuss the functional relationship between them based on
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Figure 1 Anatomical and functional distinctions between two reach-related areas in the PPC. A, Locations of the PRR (MIP) and area
5d. B, Three paradigms to distinguish general motor intention from detailed motor programs. In the reference frame task, general
motor intention is represented in extrinsic space, while physical movement is prepared in intrinsic space. In the effector-choice task,
multiple potential action plans can be formed prior to specification of the concrete motor parameters controlling the end-effector. In
the sequential reach task, an action sequence encompassing all motor components at a cognitive level is formed before it is unfolded

into a series of detailed programs of element movements.

recent neurophysiological studies using a variety of senso-
rimotor contingencies.

The PRR was originally defined as an area medial and
posterior to the lateral intraparietal area (LIP), including
more than one cytotectonic area, whose cells are more
active for reaching arm movements than for saccadic eye
movements (Snyder et al., 1997; Quian Quiroga et al.,
2006; Cui and Andersen, 2007). Many subsequent neuro-
physiological studies of the PRR have targeted the medial
bank of the IPS (MIP) (Baldauf et al., 2008; Cui and
Andersen, 2007, 2011; Pesaran et al., 2006, 2008; Scher-
berger and Andersen, 2007). Reversibly inactivating the
PRR in monkeys causes miss-reach, similar to the optic
ataxia reported in human patients (Hwang et al. 2012). In
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addition, pre-movement activity is not simply related to
the cue, because the PRR has been found to encode the
desired movement goal during an anti-reach task (Gail
and Andersen, 2006). Moreover, the reaching plan em-
bedded in the PRR includes not only target locations or
end-points, but also high-level kinematics such as move-
ment trajectories (Torres et al., 2013), supporting the view
that movement trajectories are geometrically formed, in-
dependently of physical motor commands (Torres and
Zipser, 2002; Torres and Andersen, 2006).

Area 5d, which is located caudal to the primary somato-
sensory cortex (Sl) and medial to the IPS, is involved in
representing spatial information for limbs and control of
reaching arm movements (Lacquaniti et al. 1995; Kalaska
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et al. 1997). It receives major cortical inputs from Sl (Jones
et al. 1978; Pearson and Powell 1985), and is reciprocally
interconnected with primary and premotor cortex (Strick
and Kim, 1978). It was previously thought of as a higher
somatosensory area that codes posture and joint posi-
tions (Sakata et al., 1973). However, studies on behaving
monkeys demonstrate that cells in area 5 became much
more active during arm movements (Mountcastle et al.,
1975), with strong directional tuning (Kalaska et al., 1983).
During delayed reach, many area 5 cells exhibit sustained
activity far before the earliest increase in electromyo-
graphic activity (Kalaska and Crammond, 1995). Com-
pared with primary and premotor cortex, area 5 seems to
be less directly involved in control of musculoskeletal
dynamics: it appears to be insensitive to external force
load, and to encode movement kinematics instead of
dynamics (Kalaska et al., 1990). Also, many area 5 neu-
rons show strong firing patterns that continuously covary
with hand trajectory (Archambault et al., 2011; Hauschild
et al., 2012), a manually/brain controlled cursor (Mulliken
et al., 2008), or even the seen position of a realistic fake
arm (Graziano et al., 2000).

Although both the PRR and area 5d have been found to
be intimately involved in planning of reach, several recent
studies of reference frame, decision making, and sequen-
tial movement suggest that they might play distinct roles
in planning and control of reaching arm movement at
different (abstract vs concrete) levels of complexity (Fig.
1B), indicating a hierarchical circuitry that is involved in
translation from cognitive intention into detailed motor
programs to implement a key step of the complex senso-
rimotor transformations from receptors to muscle activa-
tion patterns.

Reference Frame
The first findings in favor of a hierarchical PRR—area 5d
circuitry emerged from experiments characterizing senso-
rimotor coordinates with a variety of combinations of
target, eye, and hand positions (Andersen at al., 1997).
Unlike an oculomotor plan in eye-centered coordinates
that is always registered to its sensory target in a retino-
topic map, goal-directed reach initially planned in visual
space (Flanagan and Rao, 1995; Wolpert et al., 1995)
requires a transformation from extrapersonal to joint/mus-
cle coordinates. Recent studies demonstrate that differ-
ent coordinate systems are employed in the PRR and area
5d (Batista et al., 1999; Bremner and Andersen, 2012),
suggesting that these areas are involved in reach planning
in extrinsic and intrinsic spaces, respectively.
Neurophysiological recordings during a delayed-reach
task revealed a gradient distribution in the medial wall of
the IPS, with deep (superficial) neurons tending to be
more modulated in the cue (movement) epoch (Johnson
et al., 1996), suggesting that they are involved in different
stages of the sensorimotor transformation (Battaglia-
Mayer et al., 2003). Reaching goals have been found to be
represented in retinal coordinates (Batista et al., 1999;
Pesaran et al. 2006) in the PRR, indicating a cognitive plan
at a more conceptual level than at the subsequent stages
of motor planning. That is, the PRR only conveys abstract
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information (i.e., the spatial goal) about upcoming move-
ments, without specifying physical movement parameters
(i.e., joint angles). Nonetheless, accurate motor control
must take into account intrinsic variables, such as pos-
ture, hand position, the dynamics and structure of mus-
cles, etc. Therefore, abstract motor intentions ultimately
must be converted into detailed physical motor plans,
with movement parameters specified in muscle/joint co-
ordinates to activate musculoskeletal system (Kalaska
et al., 1997). The first step in converting target location in
gaze-centered coordinates into limb motor commands for
reaching is to incorporate proprioceptive and efference
copy information about starting hand position and intrin-
sic arm posture. It seems likely that area 5d plays a key
role in this stage by providing target information with
respect to initial hand position to specify action parame-
ters in musculoskeletal coordinates (Buneo et al., 2002).
From the PRR to area 5d, neuronal representations of the
reaching goal progressively shift from eye-centered to
hand-centered along the ventral—dorsal axis of the me-
dial bank of the IPS (Buneo and Andersen, 2006), so that
pre-movement activity in area 5d predominantly encodes
the reach vector (Bremner and Andersen, 2012). However,
this hand-centered coding is not static, but gradually
emerges during the reach planning period (Bremner and
Andersen, 2014), supporting the view that area 5d inte-
grates the intrinsic biomechanics of the musculoskeletal
system by dynamically incorporating information about
intrinsic arm posture.

Decision Making

Another approach to elucidating parietal sensorimotor
circuitry is to identify distinct functional areas for decision
making and motor planning. Decision making initially was
assumed to be a neural process separate from action
planning (Miller et al., 1960; Keele, 1968). Nevertheless,
attempts to distinguish decision making from motor plan-
ning with target selection tasks have proven frustrating,
because virtually all motor-related areas seem to convey
potential movements to candidate targets, and multiple
potential plans exist concurrently before the final action is
chosen (Riehle and Requin, 1989; Platt and Glimcher,
1997; Basso and Wurtz, 1998; Cisek and Kalaska, 2005).
Consequentially, it is commonly believed that target se-
lection and movement preparation involve overlapping
brain circuits, and are performed in an integrated manner,
as opposed to a serial model in which decision making
occurs before action planning (Shadlen and Newsome,
2001; Wang, 2008; Cisek and Kalaska, 2010). From the
evolutionary point of view, forming multiple potential ac-
tion plans prior to choosing among them might not only
benefit reward prediction, but might also reduce reaction
time (Andersen and Cui, 2009; Cisek and Kalaska, 2010).
Nevertheless, the idea of integrated circuitry for decision
making and motor planning has only been tested for
spatial target selection (Cisek, 2007), which involves spa-
tial attention, and in turn engages numerous cortical areas
(Desimone and Duncan, 1995). It is unclear if plan selec-
tion and action preparation are embedded in segregated
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areas for other kinds of decision making, such as non-
spatial effector choice.

To examine anatomical overlap for decision making and
motor planning in nonspatial action selection, an effector-
choice task was designed in which monkeys autono-
mously chose between a saccade and a hand reach to the
same visual stimulus (Cui and Andersen, 2007). Monkeys
were required to play a mixed-strategy game against a
computer (Barraclough et al., 2004) to compensate for a
potential bias due to movement costs. The effector-
choice trials were pseudo-randomly interleaved with
effector-instructed trials in which the monkeys were ex-
plicitly cued to make either a saccade or a reach to the
target in the middle of a trial to discourage premature
decisions. The effector-choice task allows potential motor
plans to be formed without immediate specification of
concrete motor parameters controlling a particular end-
effector, providing an ideal paradigm to determine
whether action selection and motor preparation are en-
coded in overlapping or in distinct areas in nonspatial
decision making. If a brain region is involved in effector
decision formation, then it should encode potential motor
plans prior to effector selection. Conversely, if an area
only carries selected motor plans, then it should only
reflect the decision outcome after the effector is unam-
biguously specified. Interestingly, recent studies demon-
strate remarkable qualitative differences between LIP/
PRR and area 5d (Cui and Andersen, 2007, 2011).
Whereas the LIP and PPR encode potential motor plans,
area 5d encodes only selected reach plans after the arm
is chosen as the effector, suggesting that it is downstream
to the PRR in a serial visuomotor cortical circuit (Cui and
Andersen, 2011). While the PRR and area 5d presumably
work in concert with premotor and primary motor areas,
respectively (Wise et al., 1997), the functional relationship
between the parietal and frontal areas in effector choice
remains unclear.

Sequential Planning

In contrast to the prefrontal cortex (Tanji, 2001), the PPC
has historically received little attention in studies of se-
quential planning. Nonetheless, neurological studies have
suggested that the PPC is crucial for serial behaviour
(Buxbaum, 1998; Zadikoff and Lang, 2005). Patients with
damage to the left parietal lobe appear normal in perform-
ing elementary movements, but are impaired in generat-
ing complex action sequences, indicating a profound role
of the PPC in integrating multiple spatial goals into a
motor sequence.

To reveal the functional role of PPC in sequential arm
movements, single-neuron activity from the PRR (Baldauf
et al.,, 2008) and area 5d (Li and Cui, 2013) has been
recorded from monkeys performing a double-reach task.
When the monkeys prepared to reach two simultaneously
presented targets with sequential arm movements, most
PRR neurons carried information about both the immedi-
ate and the subsequent goals (Baldauf et al., 2008). Sit-
uated at the early stage of the visuomotor transformation,
the PRR presumably is involved in the first step to gen-
erate a coherent sequence, integrating information about
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all component movements into a high-level movement
plan at an abstract level. Nevertheless, a conceptual se-
quential plan encompassing multiple goals in parallel ul-
timately must be decomposed into serial motor
commands to drive the musculoskeletal system. In con-
trast to the PRR, area 5d has been found to only encode
the immediate upcoming reach, and not the subsequent
movement (Li and Cui, 2013). Area 5d activity is tightly
coupled only to the next upcoming movement, suggest-
ing it might play a key role in integrating the visual goals
from the PRR with physical limb information to form a
state estimation (Mulliken et al., 2008; Shi et al., 2013).
Moreover, the component reach encoded in area 5d, as
opposed to the sequential information being conveyed in
the PRR and other cortical sensorimotor areas, suggests
that unfolding of the movement sequence begins in the
parietal-frontal cortex, including the PPC, prefrontal cor-
tex, premotor cortex, primary motor cortex, and supple-
mental motor cortex, instead of being exclusively
conducted by downstream subcortical and spinal circuits.
Again, decomposition of the motor sequence appears to
engage a larger sensorimotor network via mutual commu-
nication between parietal and frontal cortices (Pesaran
et al., 2008).

Discussion

A series of recent experiments have been conducted on
monkeys performing a variety of sensorimotor tasks to
elucidate distinct roles of the PRR and area 5d at different
stages of the sensorimotor transformation. First, the ref-
erence frame task allowed us to isolate general motor
intentions in extrinsic space and physical movement
preparation in intrinsic space. Second, the effector-choice
task allowed potential action plans to be formed without
immediate specification of the concrete motor parameters
controlling the end-effector. Third, the sequential reach
task enabled us to isolate the cognitive action sequence
from the detailed motor program of element movements.
Three lines of evidence obtained with these tasks suggest
that the PRR and area 5d form a hierarchical sensorimotor
circuitry that translates abstract intentions into detailed
motor plans.

Despite the markedly different functional roles between
PRR and area 5d, we should keep in mind that they are
not sequentially involved in converting extrinsic stimuli
into intrinsic motor plans in a hardwired fashion. First,
although a serial neural process was observed in the
sensorimotor tasks mentioned above, effector specificity
and information flow might be different in behavioral con-
texts other than visually guided reach (e.g., Swaminathan
et al.,, 2013; Woloszyn and Shadlen, 2013). Secondly,
behavioral and computational studies have suggested
that the sensorimotor transformation emerges through an
intimate interplay between sensory inflow and motor out-
flow through paired forward and inverse internal models
(Wolpert and Kawato, 1998; Shadmehr and Wise, 2005):
the forward model translates motor commands into an-
ticipated sensory outcomes, whereas the inverse model
converts desired sensory consequences into motor com-
mands (Franklin and Wolpert, 2011; Shadmehr and
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Mussa-lvaldi, 2012). Although the prevalent view posits
that sensorimotor control largely relies on forward predic-
tion of sensory consequences (Wolpert et al., 2011), direct
neurophysiological evidence that persuasively links neural
firing to predicted sensory consequences is still lacking,
because the internal prediction of sensory consequences
is inherently different from actual sensorimotor variables,
and seems not to be behaviorally measurable. Since most
previous studies have used reactive movements to sta-
tionary goals predefined by sensory cues, it is difficult to
determine whether the neural activity observed reflects
sensory stimuli or predicts impending movements. Al-
though corollary discharges have been found in diverse
species (Crapse and Sommer, 2008) for gating sensory
inputs (e.g., Lee and Malpeli, 1998) and updating percep-
tion (e.g., Duhamel et al., 1992; Sommer and Wurtz, 2002;
Synofzik et al., 2008), as well as for distinguishing sensory
signals between active and passive motion (e.g., Roy and
Cullen, 2004), it remains unclear how they are integrated
with sensory inflow in recipient structures to form internal
models for directing movement. Further elucidation of the
PPC sensorimotor circuitry calls for novel behavioral tasks
that are highly dependent on predictive spatiotemporal
transformations.
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