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Abstract. Chronic glomerulonephritis (CGN) is the most 
common form of glomerular disease; however, its associ-
ated molecular mechanisms remain unclear. Spleen tyrosine 
kinase (Syk) is a key mediator of B‑receptor signaling on the 
surface of inflammatory cells. The primary target for R406 is 
Syk. The aim of the present study was to investigate the molec-
ular mechanisms involved in a rat model of CGN induced by 
adriamycin (ADR) and in the rat glomerular mesangial cell 
line, HBZY‑1, stimulated by lipopolysaccharide (LPS). CGN 
was induced in the rat models by two intravenous injections 
of ADR into the tail: 3.5 mg/kg ADR was given on the first 
day and 3.0 mg/kg on the fourteenth day. HBZY‑1 cells were 
incubated with 0.5 µg/ml LPS for 48 h. The pathological 
alterations in the kidney tissues were observed by hematoxylin 
and eosin staining. The 24  h urinary protein, blood urea 
nitrogen (BUN) and creatinine levels were measured using 
an automatic biochemistry analyzer. The mRNA expression 
levels of Syk, Ras, mitogen activated protein kinase kinase 
(MEK), extracellular signal regulated kinase (ERK)1/2 and 
c‑Fos was measured by reverse transcription‑quantitative 
polymerase chain reaction. Subsequently, the protein levels 
of phosphorylated (p)‑Syk, Ras, p‑MEK1/2, p‑ERK1/2 and 
c‑Fos were measured by western blot analysis. In the model 
group, 24 h urinary protein, BUN and creatinine levels were 
increased when compared with the normal group (P<0.05). 
In addition, compared with the normal group, the mRNA 
and protein levels of the Syk/Ras/c‑Fos pathway components 
in vitro and in vivo were markedly increased, inhibiting the 
abnormal cell viability of mesangial cells. In conclusion, the 

results of the present study suggested a potential role for the 
Syk/Ras/c‑Fos signaling pathway in CGN, which indicated the 
necessity for further investigation at the clinical level.

Introduction

Chronic glomerulonephritis (CGN), the most common form 
of glomerular disease, accounts for ~20% of chronic kidney 
disease cases in many countries (1,2). CGN is associated with 
immune‑mediated inflammatory diseases and is characterized 
by proteinuria, edema, hematuria and hypertension, which are 
accompanied by renal dysfunction which is a primary cause of 
end‑stage of renal disease (ESRD) (3,4). Numerous pathogenic 
factors may promote the development of this disease; however, 
the molecular mechanisms remain unknown (5,6).

In the authors previous experiments, differentially regu-
lated genes were screened and analyzed. The results revealed 
that Fos and spleen‑associated tyrosine kinase (Syk) were 
potent hub genes and that CGN pathogenesis may be associ-
ated with the disordered inflammatory response in addition to 
abnormal metabolism (7). Therefore, it is important to explain 
the specific mechanism of Fos and Syk in CGN, which may 
contribute to understanding the pathogenesis of CGN and 
developing novel diagnostic markers.

The functions of B lymphocytes are adjusted by a number 
of signaling pathways, some of which involve the B‑cell 
receptor (BCR) (8). Syk exhibits a central role in the activation 
of the BCR (9). The Fos gene family encode leucine zipper 
proteins that form the transcription factor complex activating 
protein (AP)‑1, and can regulate the expression of tumor 
necrosis factor‑α, interleukin (IL)‑6 and IL‑8 by phosphory-
lation of mitogen‑activated protein kinase (MAPK) and the 
BCR signaling pathway, which participates in inflammation in 
CGN (10). The Syk/Ras/c‑Fos signaling pathway has a critical 
role in B cells, including ontogeny, autoimmunity, immune 
response and immunoglobulin production.

By searching relevant literature, we found that LPS can be 
used as an inducer for cell viability of glomerular mesangial 
cells. And this is consistent with our CGN pathology (11,12).

In the present study, Adriamycin (ADR)‑induced CGN 
rats and lipopolysaccharide (LPS)‑stimulated HBZY‑1 cells 
were used as experimental models to identify the differentially 
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expressed mRNAs and proteins of the Syk/Ras/c‑Fos signaling 
pathway, and elucidate the potential pathogenesis of CGN.

Materials and methods

Materials. ADR was obtained from Hisun Pfizer 
Pharmaceuticals Ltd. (cat. no. 15029611; Zhejiang, China). 
Sodium pentobarbital was obtained from Shanghai Chemical 
Reagent Company (cat. no. 127K1005; Shanghai, China). Total 
RNA from renal cortex tissues was extracted by TRIzol® 
reagent (Invitrogen; Thermo Fisher Scientific, Inc., Waltham, 
MA, USA) following the manufacturer's protocol. Antibodies 
against phosphorylated (p)‑Syk, Ras, p‑MAPK extracellular 
signal regulated kinase (ERK; MEK)1/2, p‑ERK1/2, c‑Fos 
and β‑actin were purchased from Abcam (Shanghai, China; 
cat. nos.  ab79193, ab16907, ab194754, ab76299, ab209794, 
ab8226). The Syk/Ras/c‑Fos pathway inhibitor R406 (inhibitor 
of Syk) was purchased from AbMole BioScience, (Shanghai, 
China). All the materials under current study were non‑toxic 
to animals and cell cultures, including all biological and 
synthetical agents used for immunopharmacological studies.

Animals and cell cultures. The HBZY‑1 cell line was 
obtained from the Cell Bank of Chinese Academy of Sciences 
(Shanghai, China) and incubated with Dulbecco's modified 
Eagle's/F‑12 medium [10% (v/v) fetal calf serum and 1% (v/v) 
antibiotics mixture] in 95% air and 5% CO2 at 37˚C (13). 
Specific pathogen‑free (SPF), male Sprague‑Dawley (SD) 
rats (weighing 280‑320 g, 9 weeks old) were provided by 
the Laboratory Animal Center of Anhui Medical University 
(Hefei, China). All rats were kept in standard cages under 
40‑60% humidity at 18‑22˚C with free access to food 
and water. All animal experiments were approved by the 
Committee on the Ethics of Animal Experiments of The 
First Affiliated Hospital of Anhui University of Chinese 
Medicine (Hefei, China). All surgeries were performed under 
sodium pentobarbital anesthesia, and all efforts were made to 
minimize suffering.

CGN rat model establishment and experimental protocols. 
Following acclimatization for 2  weeks, all animals were 
divided randomly into the control group and experimental 
model group (n=10 per group). CGN was induced in the rats 
by tail intravenous injection with ADR: 3.5 mg/kg ADR was 
given on the 1st day and 3.0 mg/kg on the 14th day (7,14), 
whereas the control group was administered a saline solution 
for comparison at the same time. On the 21st day, all rats were 
placed into metabolism cages and urine was collected over 
24 h to determine the urinary protein levels. A successful 
model was considered to be indicated by a 24 h urinary protein 
quantitation of >50 mg/kg. The rats were anesthetized with 
intraperitoneal sodium pentobarbital (2 ml/kg), and serum 
samples were obtained from the abdominal aorta for measuring 
biochemical parameters. All urine and serum samples were 
stored at ‑70˚C prior to analysis. Animals were then sacrificed 
and each kidney was retrieved to determine kidney viscera 
index, and then one half of each kidney was frozen in liquid 
nitrogen for RNA preparation and protein extraction, while the 
other half was fixed in 10% neutral formalin for histological 
evaluation.

Biochemical determination. The 24‑h urinary protein, blood 
urea nitrogen (BUN) and creatinine (Crn) were measured 
using an automatic biochemistry analyzer.

Hematoxylin and eosin (HE) staining. Glomerular speci-
mens were fixed in 10% neutral formalin, and 4‑µm‑thick 
paraffin‑embedded sections were stained with HE and 
observed microscopically.

HBZY‑1 cell model establishment and experimental 
protocols. HBZY‑1 cells were seeded into 6‑well plates at 
a density of 3x105 cells per well and allowed to grow until 
70‑80% confluent. The cells were divided into three groups: 
Normal control (normal HBZY‑1 cells), an LPS model group 
(cells were incubated with 0.5 µg/ml LPS for 48 h) and an 
LPS + R406 group (cells were incubated with 1.5 µg/ml R406 
for 48 h following model establishment). Each treatment and 
control were performed at least in triplicate.

mRNA extraction and reverse transcription‑quantitative 
polymerase chain reaction (RT‑qPCR). Total RNA samples 
from glomerular specimens and HBZY‑1 cells were extracted 
by TRIzol reagent according to the manufacturer's protocol. 
The total RNA was used as a template to synthesize first‑strand 
cDNA using a ThermoScript RT‑qPCR system (Thermo 
Fisher Scientific, Inc.) The primers for Syk, Ras, MEK1/2, 
ERK1/2, c‑Fos and β‑actin were synthesized by Thermo Fisher 
Scientific, Inc. RT‑qPCR was completed in a final volume of 
25 µl and the following thermal cycling profile for SYBR 
Green PCR was used: 95˚C for 5 min, followed by 40 cycles 
of 95˚C for 10 sec and 60˚C for 30 sec. To confirm that only 
one PCR product was amplified and detected, a dissociation 
curve analysis of amplification products was performed at the 
end of each PCR. The comparative Cq method (2‑ΔΔCq method) 
was used to quantify the expression levels of the different 
genes (15). Primer sequences are listed in Table I.

Protein extraction and western blot analysis. Total protein 
samples were extracted from glomerular specimens and rat 
HBZY‑1 cells using a Total Protein Extraction kit, according 
to the manufacturer's protocol. Protein concentrations were 
determined by BCA assay. An aliquot of 30 µg of denatured 
protein from each sample was subjected to 10% SDS‑PAGE, 
transferred onto a polyvinylidene difluoride membrane, and 
then incubated with 5% skimmed milk for 1  h. Primary 
antibodies against p‑Syk (1:500 dilution; ab79193), Ras (1:25 
dilution; ab16907), p‑MEK1/2 (1:500 dilution; ab194754), 
p‑ERK1/2 (1:5,000 dilution; ab76299), c‑Fos (1:100 dilution; 
ab209794) and β‑actin (1:500 dilution; ab8226; all from 
Abcam) were added and incubated at 4˚C overnight. Following 
washing with TBST, the membranes were incubated with goat 
anti‑rabbit or anti‑mouse IgG secondary antibodies conjugated 
with horseradish peroxidase (1:5,000 dilution) for 1 h at 37˚C. 
The blots were visualized using an ECL western blot detection 
system and scanned with a Gel Imaging System.

Statistical analysis. Data are presented as the mean ± standard 
deviation. All data were analyzed using SPSS software, v.17.0 
(SPSS, Inc., Chicago, IL, USA). Two groups were compared 
with t‑test, and one‑way analysis of variance with Tukey's post 
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hoc test was used to determine the significance of three groups. 
P<0.05 was considered to indicate a statistically significant 
difference.

Results

Characteristics of experimental rats. Table  II presents 
the laboratory data of the two groups of rats at the end 
of the experimental period. Compared with the normal 
group, body weights were significantly lower (P<0.05) 
and the kidney viscera index and 24 h urine protein were 
significantly increased (both P<0.01; Table II) in the model 
group. Furthermore, the levels of BUN and Crn in serum 
samples were significantly increased in the model group 
(both P<0.01; Table II), which was in accord with previous 
studies (16,17).

Histopathology. HE staining is presented in Fig. 1. Rats from 
the control group invariably exhibited normal glomerular 
structure and glomerular basement membrane thickness, clear 
Bowman's capsule structure and convoluted tubule structure, 
and opened capillary loops. However, in the model group, 
there were incrassations of the capillary loops and Bowman's 
capsule. In addition, degeneration of renal tubule epithelial 
cells, infiltration of inflammatory cells and casts (protein) in 

the lumen were also observed, which was in agreement with the 
authors previous research and indicated that the CGN model was 
successfully established (6,14).

mRNA and protein expression of Syk/Ras/c‑Fos signaling 
pathway components in the kidney of CGN rats. In order to 
evaluate Syk/Ras/c‑Fos signaling pathway whether involved in 
CGN lesion, the key genes mRNA and protein expression level 
were detected in kidney of CGN rats (Figs. 2 and 3). According 
to western blot results, levels of p‑Syk, Ras, p‑MEK1/2, 
p‑ERK1/2 and c‑Fos were higher in CGN model group than 
in the control group (Fig. 3). Similar results were found in 
the relative mRNA levels of Syk, Ras, MEK1/2, ERK1/2 and 
c‑Fos mRNA (Fig. 2).

mRNA and protein levels of Syk/Ras/c‑Fos signaling pathway 
components in LPS‑stimulated HBZY‑1 cells. The litera-
ture shows that LPS can be used as an inducer to induce cell 
viability of mesangial cells. And this is consistent with our 
CGN pathology (11,12). So in this experiment, LPS‑stimulated 
HBZY‑1 cells were used as experimental models to elucidate the 
potential pathogenesis of CGN. The results revealed that Syk, Ras, 
MEK1/2, ERK1/2 and c‑Fos mRNA and p‑Syk, Ras, p‑MEK1/2, 
p‑ERK1/2 and c‑Fos protein levels markedly increased in the 
LPS model group (Figs. 4 and 5). This may suggest that the key 

Table I. Primer sequences.

Gene name	 Forward and reverse sequences (5'‑3')	 Product length (bp)

β‑actin	 F: CAGCGGAACCGCTCATTGATGG	 155
	 R: TCACCCACACTGTGCCCAACGA	
Syk	 F: AGAGGGGAGCTCAGACATGA	 138
	 R: TCTTGTACACACCCTTGGCA	
Ras	 F: GAGTACAGTGCAATGAGGGAC	 130
	 R: CCTGAGCCTGTTTTGTGTCTAC	
MEK1/2	 F: GACGAGCAGCAGCGG	 126
	 R: CTTGAACACCACTCCACCATTG	
ERK1/2	 F: TCATAGGCATCCGAGACATC	 129
	 R: TGGTAGAGGAAGTAGCAGATG	
c‑Fos	 F: TACTACCATTCCCCAGCCGA	 113
	 R: GCTGTCACCGTGGGGATAAA	

β‑actin was used as an internal control. F, forward; R, reverse; Syk, spleen associated tyrosine kinase; ERK, extracellular signal regulated 
kinase; MEK, mitogen activated protein kinase kinase.

Table II. Body weight, kidney viscera index, 24 h urine protein, blood urea nitrogen and Syk in the different groups.

Parameter	 Normal	 Model	 P‑value

Body weight (g)	 315.15±23.61	 281.91±44.95a	 0.046
Kidney viscera index (%)	 0.64±0.04	 0.90±0.17b	 <0.001
24 h urine protein (mg/24 h)	 27.32±5.99	 292.99±44.21b	 <0.001
BUN (mmol/l)	 5.53±1.89	 12.19±3.60b	 <0.001
Crn (µmol/l)	 38.58±6.65	 65.75±13.78b	 <0.001

aP<0.05 and bP<0.001 vs. normal (control) group. Syk, spleen tyrosine kinase; BUN, blood urea nitrogen; Crn, creatinine.
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genes mRNA and protein expression level increased evidently 
in Syk/Ras/c‑Fos signaling pathway in LPS‑stimulated HBZY‑1 

cells. Furthermore, R406 was revealed to inhibit the LPS‑induced 
activation of the Syk/Ras/c‑Fos signaling pathway.

Figure 1. Pathological analysis of kidney tissues from adriamycin‑treated and normal rats: (A) Normal and (B) model groups. In the model group, (a, arrows) 
casts (protein) in the lumen, (b, arrows) infiltration of inflammatory cells and (c, arrows) incrassation of the basal lamina were observed. Compared with the 
normal group, degeneration of renal tubule epithelial cells, infiltration of inflammatory cells and casts (protein) in the lumen were observed in the model group 
(magnification, x200).

Figure 2. mRNA levels of Syk, Ras, MEK1/2, ERK1/2 and c‑Fos in glomerular tissues of adriamycin‑treated and normal rats. The mRNA expression levels 
of (A) Syk, (B) Ras, (C) MEK1/2, (D) ERK1/2 and (E) c‑Fos were assessed using reverse transcription‑quantitative polymerase chain reaction. Syk, Ras, 
MEK1/2, ERK1/2 and c‑Fos mRNA levels were significantly increased in the model group. Data are presented as the mean ± standard deviation of at least 
three independent experiments. **P<0.01 vs. normal (control) group. Syk, spleen associated tyrosine kinase; ERK, extracellular signal regulated kinase; MEK, 
mitogen activated protein kinase kinase.
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Discussion

CGN, which is associated with immune‑mediated inflamma-
tory diseases, frequently occurs during ESRD and seriously 
affects patient survival. Biological and clinical observations 
indicate that focal infection, caused by hematuria, protein-
uria, arterial hypertension and edema, primarily manifests 
as glomerular injury (18). Autoimmunity, infection and the 
inflammatory response are known to be involved in the patho-
genesis of CGN (19). However, despite ongoing investigation, 
the exact molecular mechanisms remain unclear.

In the current study, ADR‑induced CGN rats and 
LPS‑stimulated HBZY‑1 cells were used to explore the 
molecular pathogenesis of CGN (7). The results indicated that 
the kidney viscera index and the 24 h urinary protein, BUN 
and Crn levels were significantly increased while body weight 
decreased. The Syk/Ras/c‑Fos signaling pathway was acti-
vated both in vitro and in vivo. Therefore, it was hypothesized 
that activation of Syk/Ras/c‑Fos signaling may be involved in 

the inflammatory reaction and proteinuria during the process 
of CGN. For all that, The LPS as ADR‑induced CGN may not 
be accurate, but it can be used as an inducer for glomerular cell 
viability and it as a limitation of the present study.

The establishment of appropriate models is critical for 
disease research. In the current study, the ADR‑induced CGN 
rat model was selected as it has previously been demonstrated 
to be similar to human CGN progression (20). LPS was used 
in the in vitro studies, however not in the animal models. In 
the present study, ADR‑induced rats developed expansion of 
the convoluted tubules, degeneration of renal tubule epithelial 
cells, infiltration of inflammatory cells, and casts (protein) in 
the lumen, which were consistent with results from a previous 
study (7). The present study focused on cell viability of the 
glomerular mesangial cells, and used the classical proliferation 
and inflammatory inducer LPS to simulate CGN in the cells. 
However, LPS is considered to be one of the strong stimulating 
factors for glomerular mesangial cells, it may be used as an 
inducer for glomerular cell viability.

Figure 3. Protein levels of p‑Syk, Ras, p‑MEK1/2, p‑ERK1/2 and c‑Fos in the glomerular tissues of adriamycin‑treated and normal rats. Protein expression 
levels of (A) p‑Syk, (B) Ras, (C) p‑MEK1/2, (D) p‑ERK1/2 and (E) c‑Fos were assessed by western blot analysis. p‑Syk, Ras, p‑MEK1/2, p‑ERK1/2 and c‑Fos 
protein levels were upregulated. Data are presented as the mean ± standard deviation of at least three independent experiments. **P<0.01 vs. normal (control) 
group. Syk, spleen associated tyrosine kinase; MEK, mitogen activated protein kinase kinase; ERK, extracellular signal regulated kinase; p‑, phosphorylated.
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Syk and c‑Fos were demonstrated to be involved in the 
BCR signaling pathway. BCR signaling is a complex process 
that involves a number of kinases, phosphatases and adaptor 
proteins that transmit, modulate or terminate the signal (21). 
Once activated, Syk propagates the BCR signal through an 
important signaling intermediate associated with the phosphor-
ylation of adapter proteins, including B‑cell linker protein and 
phospholipase Cγ2 (22). The signaling cascade then proceeds 
to activate downstream signaling molecules that regulate the 
cellular response, including Ras GTPase‑activating protein 
(Ras GAP). Ras GAP regulates Ras by converting the active 
GTP‑bound form of Ras into the inactive GDP‑bound form 
and may also function as an effector of Ras (23,24).

MAPKs are important mediators of the intracellular signal 
transduction pathways that are responsible for cell growth 
and differentiation (25). Ras may induce cell proliferation 
by activating the MAPK survival pathway and regulating the 

expression of IL‑8, IL‑2 and IL‑6. A previous study suggested 
that the expression of p‑ERK is significantly increased in the 
anti‑Thy1 nephritis group as compared with the sham group 
(P<0.01), and it was suggested that kidney injury may be 
directly associated with the inactivation of the ERK signaling 
pathway, thereby inhibiting the abnormal cell viability of 
intravascular cells (26). In another study, the development of 
diabetic nephropathy is accelerated with a decrease in Raf 
kinase inhibitor protein and an increase in p‑ERK1/2 (27).

Activated ERK1/2 is transferred from the cytoplasm 
to the nucleus, where it further mediates the transcriptional 
activation of c‑Fos and c‑Jun. c‑Fos is an important member 
of the AP‑1 transcription complex, which is involved in major 
cellular functions including proliferation, transformation, 
differentiation and apoptosis  (28). Zu et al (29) concluded 
that saikosaponin‑D inhibits the proliferation of glomerular 
mesangial cells and the synthesis of extracellular matrix 

Figure 4. mRNA levels of (A) Syk, (B) Ras, (C) MEK1/2, (D) ERK1/2 and (E) c‑Fos in HBZY‑1 cells were determined by reverse transcription‑quantitative 
polymerase chain reaction. Syk, Ras, MEK1/2, ERK1/2 and c‑Fos mRNA levels significantly increased in the LPS model group. The inhibitor R406 inhibited 
the LPS‑induced activation of the Syk/Ras/c‑Fos signaling pathway. Data are presented as the mean ± standard deviation of at least three independent 
experiments. **P<0.01 vs. normal group; ##P<0.01 vs. LPS group. Syk, spleen associated tyrosine kinase; MEK, mitogen activated protein kinase kinase; ERK, 
extracellular signal regulated kinase; p‑, phosphorylated; LPS, lipopolysaccharide.
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proteins through the downregulation of the cyclin dependent 
kinase 4, c‑Jun and c‑Fos genes. Therefore, members of the 
Fos gene family are known to be regulators of cell prolifera-
tion, differentiation, transformation and inflammation, which 
are involved in inflammation in CGN (10). In the present study, 
the expression levels of Ras, p‑MEK, p‑ERK1/2 and c‑Fos 
were increased in the model group rats and HBZY‑1 cells after 
LPS treatment compared with control group, which was in 
accordance with the literature (30).

Although the inhibitor R406 is used in cell experiments, 
there is no interference experiment with syk on animal models, 
is a great regret of our project and also the limitation of this 
experiment. In addition, we should increase the expression of 
Syk/Ras/c‑fos by immunohistochemical staining, which will 
give us a direct and vivid expression.

In conclusion, the Syk/Ras/c‑Fos signaling pathway 
was activated significantly in ADR‑induced CGN rats and 
LPS‑induced HBZY‑1 cells. The results of the present study 

provide novel insights suggesting that Syk/Ras/c‑Fos signaling 
may be directly associated with CGN.
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