
RESEARCH ARTICLE

Comparing Different Classifiers in Sensory
Motor Brain Computer Interfaces
Hossein Bashashati1*, Rabab K. Ward1, Gary E. Birch1,3, Ali Bashashati2

1 Electrical and Computer Engineering Department, University of British Columbia, Vancouver, BC, Canada,
2Department of Molecular Oncology, British Columbia Cancer Agency, Vancouver, BC, Canada, 3Neil
Squire Society, Burnaby, BC, Canada

* hosseinbs@ece.ubc.ca

Abstract
A problem that impedes the progress in Brain-Computer Interface (BCI) research is the diffi-

culty in reproducing the results of different papers. Comparing different algorithms at pres-

ent is very difficult. Some improvements have been made by the use of standard datasets

to evaluate different algorithms. However, the lack of a comparison framework still exists. In

this paper, we construct a new general comparison framework to compare different algo-

rithms on several standard datasets. All these datasets correspond to sensory motor BCIs,

and are obtained from 21 subjects during their operation of synchronous BCIs and 8 sub-

jects using self-paced BCIs. Other researchers can use our framework to compare their

own algorithms on their own datasets. We have compared the performance of different pop-

ular classification algorithms over these 29 subjects and performed statistical tests to vali-

date our results. Our findings suggest that, for a given subject, the choice of the classifier for

a BCI system depends on the feature extraction method used in that BCI system. This is in

contrary to most of publications in the field that have used Linear Discriminant Analysis

(LDA) as the classifier of choice for BCI systems.

Introduction
A Brain Computer Interface is a system that discovers specific patterns in a person0s brain ac-
tivity that relate to the his/her intention to control a device [1]. If such patterns are detected in
the EEG, then the BCI issues specific signals to put into effect the intended action. Traditional-
ly, the most popular application of BCIs has been to assist disabled people [2], however, new
applications such as playing computer games have emerged recently [3].

Among the various means to measure the brain activity, the EEG-based BCI systems have
several advantages [4]. They can measure the changes in the brain activity over short periods of
time (milliseconds), they are inexpensive, non-invasive and versatile. However, they also have
several drawbacks. The signal to noise ratio of the EEG signal is low, i.e., the signals have very
low amplitude (i.e. about 10 to 100 micro volts) compared to the background noise. Therefore,
detecting the intentions of a person from his measured brain signals is a challenging task and
has been at the forefront of research. Furthermore, the resolution of brain signals referred to as
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the spatial resolution is low and dependent on the number of electrodes that could be placed
on the subject’s head.

Present-day BCIs use several different electrophysiological activities to operate. Among the
various different methods to operate a BCI, those that rely on the sensory motor have been of
special interest [4][5]. This kind of BCIs does not need any stimuli from outside the BCI to
control the system and the subject can learn to generate the appropriate brain pattern to con-
trol a device voluntarily. The focus of this paper is on sensory motor BCI systems.

When a person performs a motor activity such as limb movement, changes that are frequen-
cy specific would result in the EEG activity. Generally such changes may result in decrease or
increase in the power of certain frequency bands in the EEG signals [6]. This may be consid-
ered due to a decrease or an increase in the synchrony of the underlying neuronal populations.
The decrease in the synchrony is called Event Related Desynchronization (ERD), and the in-
crease is referred to as Event Related Synchronization (ERS). It has been shown that cortical ac-
tivation that is related to movement preparation and execution desynchronizes the upper
alpha and the lower beta rhythms [6]. It has also been shown that a motor imagery activity (i.e.,
an imagined movement) generates patterns in the EEG that are similar to those generated by
actual movements [7]. BCIs that are motor imagery based are especially suitable for disabled
people who do not have control over their limbs.

Sensory motor (and other) BCI systems can be categorized by two different paradigms,
namely synchronous and self-paced systems [8][9]. The majority of the research in BCIs have
concentrated on synchronous systems. In synchronous BCIs, the subjects can only control the
BCI output during system-defined periods and therefore, they cannot control the output in
other times. On the other hand, in self-paced BCIs, the users have the option of controlling the
system whenever they intend to do so. The periods during which the user is not controlling the
system are called the No-Control (NC) states. The system will not issue any control signal dur-
ing the NC states. Despite the significant improvements in self-paced BCIs, compared to syn-
chronous BCI systems, designing self-paced BCIs remains extremely challenging.

Even though much interest and progress have been made during the past two decades in
BCI research, this field is still at its infancy. Many improvements are still necessary in order to
encourage its widespread adoption. Current BCI systems are not accurate enough and are far
from perfect to operate in online settings. Particularly for noninvasive BCIs, which are by far
the most widely used BCIs for measuring the brain activity, some characteristics of the re-
corded signal (e.g. the low signal to noise ratio, susceptibility to artifacts, etc.) make it challeng-
ing to extract people0s intentions from their brain waves. Therefore, the accuracy of BCI
systems has not yet reached required high level to enable them in day-to-day human life appli-
cations, this is especially true for self-paced BCIs, which are ultimately the more natural way to
operate BCIs [10].

Regarding the signal processing aspects of BCI research, feature extraction and classification
have been studied separately. However, a more optimal learning framework for a BCI problem
should aim at studying feature extraction and classification jointly, considering the fact that the
performance of the classifier depends on the choice of the feature extraction method. In other
words, we should customize the classifier and feature extractor based on each other. For in-
stance, selecting a particular feature extraction method might cause the data samples of differ-
ent brain states to be linearly separable in the feature space. As a result, selecting a linear
classifier would be a better choice for discriminating between the brain states.

Most BCI systems utilize the Linear Discriminant Analysis (LDA) classifier for classification
purposes [5][11]. The LDA classifier has a very strong assumption that the conditional proba-
bility densities of the two classes have a Gaussian distribution with the same covariance func-
tion. As a result, the discriminant function is linear and may not be suitable for non-linearly
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separable feature spaces. In addition, this classifier is very sensitive to outliers. On the other
hand, the main challenges in classification of EEG data in BCIs is that the data is non-station-
ary, noisy, contains outliers, usually of high dimensions and the training set for learning the
patterns of the data is unfortunately small [12][13]. As a result, the classification strategies in
BCI systems should be able to cope with these problems appropriately.

Due to the variations in BCI technologies and the lack of a general comparison framework
in BCIs, it is almost infeasible to compare existing BCI technologies and consequently the prog-
ress in the field is slow. This is due to the fact that most of scientific papers have not described
the experimental details which are important for replication of the results. Also, the data used
in several papers are not shared. There are some general purpose software systems [14][15]
that facilitate the research in BCIs. However, these systems are mostly suitable for data acquisi-
tion and for real time processing of brain signals. The purpose of BCI competitions was to en-
courage scientists to apply their algorithms on the same data. Besides sharing the data, it is also
essential to share the source code so as to enable the results to be reproduced and move the
field forward at a faster pace. The idea of reproducibility and data sharing has been practiced in
other fields and yielded profound improvements in making meaningful progress [16].

In this study, we have built a unified comparison framework to evaluate the performance of
different classifiers on several sensory motor BCI datasets. The data used are those from BCI
competitions [17][18][19][20], as well as one of our own datasets [21]. There have been some
efforts to compare the performance of different classifiers in BCI systems [22][23][24][25][26].
However, these comparisons have been performed for a small number of subjects on small
number of classification methods. In [27], the authors surveyed the performance of different
classifiers in BCIs, however, the best way to compare the classifiers is to evaluate their perfor-
mance in the same context, i.e., on the same set of subjects using the same set of features with
the same set of parameters.

This study provides an open source comparison framework for BCI systems and is unique
in three aspects. First, the number of subjects considered in this paper are 21 subjects using
synchronous BCIs and 8 subjects using self-paced BCIs (i.e. an overall of 29 subjects). Other
studies have been performed on smaller sample sizes (less than 5 subjects) and as a result, their
findings may not be generalized in a larger subject pool. Secondly, we have used statistical tests
to compare the performance of different algorithms. This will enable us to examine whether or
not there is significant differences between the performance of different classifiers. Other stud-
ies have not employed statistical tests for comparisons, mainly due to their smaller sample sizes
and have solely relied on the mean performance of the classifiers (which is not a robust mea-
sure), as a surrogate for the overall performance of a specific classifier. Thirdly, to increase the
transparency, the source code of our experiments is openly available so that other researchers
can apply it on their own data and benchmark their algorithms with standard methods.

In the following sections we first explain the general structure of the comparison framework,
then we explain the datasets used and finally the results of the different algorithms are
compared.

Methods
The overall structure of our comparison framework is shown in Fig 1. This framework has
three main sequential processing components, Filtering, Feature Extraction and Classification.
All data from the available EEG channels are fed as the input, the Filtering component per-
forms frequency filtering and spatial filtering, and the Feature Extraction component extracts
features from the filtered data. Finally, in the last step the extracted features are combined to
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build a dataset which is then fed to the classification component. In the following subsections,
the details of each of the above mentioned components are explained.

Spatial and Frequency Filtering
The first step of our framework is composed of frequency filtering and spatial filtering. Fre-
quency filtering is done using a filter bank. A filter bank is an array of band pass filters and con-
tains n blocks. Each block corresponds to filtering the original signal in a specific sub-band.
For frequency filtering, we have used the fifth order Butterworth filter. This filter has a flat fre-
quency response in the pass band. The result of applying each filter-bank block is fed to the
next block in which spatial filtering is performed on the signal.

Common Spatial Patterns (CSP) [28][29] is used for spatial filtering. CSP has been widely
used in BCI systems and has yielded considerable improvements in the signal to noise ratio of
the EEG signal. CSP projects multiple channels of the EEG data onto a surrogate sensor space
by applying a linear transformation on the EEG data. This technique is a supervised method of
combining multiple channels and has been developed for binary classification. This method
maximizes the variance of signals for one class while minimizing the variance of the signals for
the other. As the signals are standardized before applying CSP, the variance of the signals
would be equivalent to their band power. Thereby, if we use the band power as the extracted
feature in the surrogate space, the discrimination of the classes (e.g., right and left hand imag-
ery movements) would be maximized.

Suppose the normalized covariance matrices of both classes for each trial are given by Sc

where c 2 {+,−}. The covariance matrices are N × T where N is the number of channels and T
is the number of samples. The CSP algorithm maximizes the following equation:

argmax
W

WTSþW
WTS�W

ð1Þ

whereW is the projection matrix. This equation can be solved by applying simultaneous diago-
nalization of the covariance matrices of both classes. By multiplying the projection matrix by
the original EEG signal we can obtain the uncorrelated brain signals.

Fig 1. The BCI framework.Our framework has three main steps: 1. Filtering, 2. Feature Extraction and 3. Classification. The output of each step is fed to the
next step.

doi:10.1371/journal.pone.0129435.g001
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The benefit of applying CSP is that we can select a subset of filters that preserves as much in-
formation as possible and discriminates the two classes very well. However, choosing the num-
ber of filters (i.e., spatial patterns) is difficult, and is usually determined by heuristic
approaches. CSP is inherently designed for 2-class BCI tasks. To use CSP for multi-class prob-
lems, we use a one-against-others scheme.

Feature Extraction
In the feature extraction step, different kinds of features can be extracted from the filtered sig-
nal. The extracted features should properly represent the information hidden in the raw EEG
signal. We use two of the most common and successful feature extraction methods utilized in
motor-imagery based BCI systems. Both approaches calculate the band-power (BP) of the sig-
nal [30][31][32].

In the first approach, the band-power of a signal is extracted by directly applying to a signal,
a filter that only allows the frequencies inside each filter band to pass. Assuming a perfect block
filter, we can then estimate the power of the filtered signal by summing the squares of the mag-
nitude of the filtered signal. Since the logarithm of band-power features has also been used in
the literature [30], we have included both the band-power and its logarithm in our feature set.
In this study, we extracted the band power features for the α [8–12 Hz] and β [16–24 Hz] fre-
quency bands of the brain signals. We refer to these band-power features as the BP features in
the remainder of the text.

In the second feature extraction approach, we used the Morlet wavelet to extract the band-
power features. This method is one of the most successful feature extraction methods used in
sensory motor BCI systems [30]. In this method, the EEG signal is decomposed using the Mor-
let mother wavelet and the power in each frequency band is calculated. We used the exact con-
figuration as in [31] to extract these features; i.e., for each channel, all the frequency bands are
chosen to be in the 4 to 30 Hz range. This results in 26 features for each channel. This setting
for extracting BP features will result in high-dimensional feature spaces, especially for datasets
with many EEG channels.

After extracting features from each block of the filter bank, the extracted features are com-
bined to build a feature vector, which is fed to the classification component of our framework.

Classification
In supervised learning, given a set of training samples D ¼ fðx1; y1Þ; ðx2; y2Þ; . . . ; ðxn; ynÞg, the
aim is to find an approximation of the unknown function g : X! Y which has generated the
samples. Each xi is a features vector and yi is the label of the corresponding feature vector. X is
the feature matrix and Y is a vector corresponding to the label of each row (i.e. xi) of X. In
probabilistic classification, instead of approximating the function g, we find a posterior proba-
bility Pðc j xÞ (where c is the predicted class label and x is the feature vector), and eventually as-
sign the label to the class with the highest probability. This probability can be calculated using
the Bayes rule. Pðc j xÞ is called the posterior and Pðx j cÞ is the class conditional density.

PðcjxÞ ¼ PðxjcÞPðcÞ
PðxÞ ð2Þ

Gaussian Discriminant Analysis. If we assume the class conditional density to have a
Gaussian distribution, the resulting classifier is called the Gaussian Discriminant analysis [33].
In other words, this model fits a Gaussian distribution to the samples of each class. If the co-
variance matrices of both classes are considered the same, the result will be a Linear Discrimi-
nant Analysis (LDA) classifier in which the decision boundary is a linear surface. If we do not
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assume any constraints on the covariance function, the resulting decision boundary is a qua-
dratic function and the corresponding classifier is called Quadratic Discriminant Analysis.

LDA classifier imposes very strong assumption on the underlying distribution of the data.
However, the computation of the discriminative function is very efficient and, therefore, LDA
has been popular in the BCI field. It is worth mentioning that various algorithms [34][35][36]
have been proposed to address the shortcomings of LDA. These algorithms are more robust
and some of them, such as Z-LDA, [34] can handle the case where the covariance of two classes
are different.

Logistic Regression (LR). Logistic Regression [37] is a discriminative learning classifier
that directly estimates the parameters of the posterior distribution function Pðc j xÞ. This algo-
rithm assumes the distribution Pðc j xÞ is given by Eq 3.

Pðc ¼ kjxÞ ¼ expðwT
k xÞPK

j¼1 expðwT
j xÞ

ð3Þ

where wjs are the parameters to estimate and K is the number of classes. Then maximum likeli-

hood method is used to directly approximate wjs. As the Hessian matrix for the logistic regres-

sion model is positive definite, the error function has a unique minimum. Overfitting can
occur in logistic regression when the data is sparse and of high dimensions (which is the case in
BCIs). We used L1 and L2 regularization jointly to cope with the overfitting problem.

Random Forests (RF). Random Forest [38] is an ensemble learning algorithm that is con-
structed by combining multiple decision trees at the training stage and produces a result that is
the average of the output of individual trees. This powerful learning algorithm injects random-
ness into each tree in two ways. The first uses bootstrapping to sample from the original dataset
(i.e. the algorithm takes N samples with replacement from the original dataset). The second is
by selecting a subset of the features to split each node of the tree. Injecting randomness in the
process of building Random Forests, makes these classifiers robust and cause them to have a
good performance when the data have many outliers, which is the case in BCIs [39]. Another
consequence of injecting randomness in random forests is the ability to rank the different fea-
tures and also to acquire a measure for feature importance.

The seminal paper of Random Forests [40] claims that increasing the number of trees does
not cause the random forest to overfit. However, [41] has found that RFs can overfit with noisy
datasets. As a consequence, along with other important parameters of RF we have tuned this
parameter too (refer to Model Selection Section).

Support Vector Machines (SVM). SVM [42] is a discriminative classification algorithm
which is able to find a decision hyper-plane with the maximum distance (margin) to the near-
est data points (Support Vectors) of each class. As a result, this method has a high generaliza-
tion power. The decision function of SVM is fully specified by a subset of the training data
points, which leads to a sparse solution for SVM. The cost function of SVM is a convex func-
tion that leads to an optimal solution for the optimization task.

The mathematical formulation of SVM gives us the ability to use the kernel trick to map the
original finite dimensional space into a destination space with much higher dimensions. The
use of a kernel trick is beneficial particularly when the data points cannot be separated with a
hyper-plane in the original feature space. This may lead to an easier separation of the data
points in the destination space. Even though the data points might be mapped into a very high
dimensional or even an infinite space the complexity of computing a kernel matrix can be far
smaller. Hence, the SVM algorithm circumvents the curse of dimensionality by relying on the
data points only through the kernel. In this study, we have only used SVMs with radial basis
function (RBF) kernel. As stated in [43], under some conditions, linear kernel SVM can be
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approximated with an RBF kernel. SVMs are inherently designed for two-class classification
tasks. Many different methods have been proposed to adapt SVMs to multi-class problems
[44]. We used a one-against-one scheme to adapt SVMs for multi-class problems.

Boosting Algorithm. Boosting [45] is a learning algorithm based on the observation that
building a highly accurate rule for classification is a really difficult task. This algorithm works
by building many rough rules of thumb. These rules are called weak classifiers. Each of these
weak classifiers is trained on a subset of the data points. These weak classifiers are then com-
bined into a single prediction rule which would be much more accurate than individual weak
classifiers.

There are many variants of the boosting algorithm. The differences amongst these algo-
rithms stem from two issues. The first is concerned with how to choose the subset of the data
points for each weak learning algorithm. The second is related to how to combine the output of
a weak classifier into a single prediction rule. In this study, we used a variant of boosting called
the Adaboost algorithm. In this algorithm, the subset of data points that are used for training a
weak learning are the ones that are misclassified by the previous weak learner. For generating a
single prediction rule, Adaboost takes a weighted majority vote of the prediction of the weak
learners.

Multi Layer Perceptron (MLP). The last classifier used in this paper is a feed forward neu-
ral network [37] with one hidden layer. It is proved that an MLP with enough number of neu-
rons in the hidden layer can approximate any function. Despite the flexibility and capability of
this algorithm to approximate any nonlinear function, this algorithm can easily overfit and the
cost function to optimize is a non-convex function. The cost function used in this paper is the
negative log-likelihood function with both L1 and L2 regularization to avoid overfitting.

Performance Measure
For the synchronous datasets, after the labels of different classes of motor imagery tasks were
obtained, the classification accuracy was used as the measure to compare the performance of
different algorithms.

For self-paced datasets, the true positive rate (TPR) and the false positive rate (FPR) are the
most popular measures in the field. It is common to fix the FPR to a small value (e.g. 1 percent)
and compare the performance of TPRs of different methods. However, this method does not
exploit all the information given by the output of the classifiers because all the classifiers ap-
plied in this research produce probability estimates (i.e. confidence) of a sample belonging to
each class. Since, the output of the classifiers is not just the label of each sample, a good perfor-
mance measure should exploit the added information. The receiver operating characteristic
(ROC) [46] curve is the best way to compare these classifiers as it illustrates the performance of
classifiers for varied discrimination thresholds. ROC is well-suited for self-paced BCIs because
ROC is is suitable in evaluating the performance when we have imbalanced data or unequal
misclassifications costs. To compare the performances of the methods, we use the Area Under
the ROC Curve (AUC). AUC represents the probability that a randomly selected positive sam-
ple gets a higher rank than a randomly chosen negative sample. AUC varies between 0 and 1
and in general a higher AUC is better.

Model Selection
Model selection consists of finding the appropriate set of parameters for each learning algo-
rithm. We adjusted the value of a set parameters (referred to as “BCI parameters”) consisting
of parameters of the sensory motor EEG signal and the classifier-specific parameters using a
grid-based approach.
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A set of candidate parameters including both the BCI parameters and the classifier parame-
ters was considered for each algorithm, and 5 times 5-fold cross validation was performed to
find the best parameters. Then the parameters with the best mean performance were used to
train a classifier on the training set and the final classifier was used to evaluate the performance
on independent test dataset. The values of all these parameters, i.e. the BCI parameters and the
classifier parameters were adjusted jointly.

The BCI parameters used in model selection in the synchronous BCI dataset consisted of
the selection of the time segment from which the features are extracted and the number of CSP
filters. To adjust the values of these parameters, the system should be customized based on the
brain characteristics of each individual subject. To get an acceptable performance with respect
to the synchronous datasets, we usually discard some parts of the movement period in each
trial. The choice of the time segment from which features are extracted, has a major role in the
performance of the learning system. In datasets with many channels we also used CSP to com-
bine different channels. As a result, the number of CSP filters was also included as a parameter
in model selection.

In self-paced BCIs, the classification problem is a sequential learning problem. To be able to
apply static classifiers to this problem, we used sliding windows with overlap. The size of the
window and the overlap of two consecutive windows were parameters in the self-paced
datasets.

Statistical Tests
Instead of using empirical approaches that have been commonly used in the BCI field to com-
pare the performance of different algorithms, the Friedman statistical test is used in this study.
The Friedman test [47][48] is a non-parametric statistical test, which ranks different classifiers
for each subject separately. Then it averages the ranks over all subjects. The null hypothesis as-
sumes that all algorithms have the same performance so they have the same rank. In other
words, it assumes the difference between different algorithms is random. The test statistic has a
Chi-square distribution and if the p-value is low enough to reject the null hypothesis, we can
conclude that the difference between the algorithms is not random.

If the null hypothesis is rejected, another statistical test is to identify which algorithms are
the source of difference. We then conduct the Holm’s test as the post-hoc statistical test. The
classifier with the best rank is selected as the control classifier, then a pairwise comparison of
all the other classifiers and the control classifier is performed. In this statistical test, the null hy-
pothesis states that the control classifier and the other classifier have the same mean rank. We
have divided the algorithms based on the outcome of the Holm’s test into two categories: the
recommended and not recommended. The recommended classifiers include the control classi-
fier, i.e., the best one and any other classifier that we are not able to prove it has a worse perfor-
mance than the best classifier. All the others were deemed to belong to the not recommended
category.

Datasets
Five sensory motor BCI datasets consisting of 29 subjects were used to evaluate different meth-
odologies studied in this paper. These are the datasets I [17], IIa [18] and IIb [19] of the BCI
competition IV, and dataset IIIa [20] from BCI competition III and SM2 from [21].

Table 1 shows a summary of each of the datasets. While SM2 and BCICIV1 datasets were
used to evaluate different BCI designs in self-paced paradigm, the remaining datasets were
used for synchronous BCI systems evaluation.
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Dataset I from competition IV (BCICIV1) was recorded from 4 subjects performing motor
imagery tasks (left hand, right hand or foot imagery). Each subject participated in two sessions
of brain signal recording. The first session, namely the calibration phase of recording is used
for training the BCI system. The second session of signal recording is used for the evaluation of
the BCI system. This dataset consists of 59 EEG channels (corresponding to 59 sensors) that
were spread around the sensory motor area of the brain. In the calibration phase, each subject
was assigned to perform two of the three classes of motor imagery tasks: left hand, right hand,
or foot imagery movements. There were 200 trials of imagery movements that were balanced
between two classes. Each trial was 8 seconds long, the length of the motor imagery intervals in
the evaluation session varied between 1.5 and 8s. The NC intervals were also between 1.5 and
8s. Getting a very good performance on this 3-class self-paced dataset is very challenging,
therefore we converted the problem into a binary classification in which the aim is to decide
whether an output is a control state or a No-Control state.

The SM2 dataset was collected from 4 subjects attempting to activate a switch by performing
a right index finger movement. At random intervals, a cue was displayed for the subjects. The
subjects attempted to activate a switch by moving their right index finger after the cue ap-
peared. This dataset is a self-paced data and the EEG was recorded from 10 channels positioned
over the supplementary motor area and the primary motor cortex (i.e. FC1-4, FCz, C1-4, Cz).
In this dataset, for each subject, an average of 10 sessions of recording of the brain activity was
performed for six days. In each session, the period between any two trials varied and the sub-
jects performed actual movement. A detailed description of this dataset is in [21].

The BCICIV1 and SM2 datasets have two challenging properties: 1) since the data were re-
corded in a self-paced manner in the evaluation set, the classifier does not have any clue about
the start time of a movement imagination trial; 2) these datasets contain periods in which the
user has no BCI control intentions, which makes the classification problem extremely
challenging.

Dataset IIa from the BCI competition IV (BCICIV2a) was recorded for 9 subjects perform-
ing 4-class motor imagery (left hand and right hand, both feet and tongue imagery movements)
tasks. The data consists of 19 channels along the scalp and the challenge with this dataset is the
4-class classification task. Dataset IIb from BCI competition IV (BCICIV2b) was recorded for
9 subjects performing 2-class motor imagery (left hand and right hand) tasks. The data consists
of 3 channels (i.e. C3, CZ and C4) along the motor cortex of the scalp. Dataset IIIb from BCI
competition III (BCICIII3b) was recorded from 3 subjects performing 2-class motor imagery
(left hand and right hand) tasks. The data has 2 channels (i.e. C3, C4) from the motor cortex
area of the brain.

Results and Discussion
We applied different combinations of feature extraction, classification and model selection
methods to five datasets. Tables 2 and 3 show the performance for synchronous and self-paced
datasets, respectively, with the best performing feature extraction/classification combinations
typed in bold. Qualitative comparison of the different feature extraction/classification combi-
nations suggests the following: 1) for synchronous BCI systems, logistic regression classifica-
tion outperforms the other classifiers (Table 2). This is regardless of the feature extraction
methodology used. 2) For self-paced BCIs, (Table 3), both logistic regression and MLP classifi-
ers yield better performances. In addition in both self-paced and synchronous BCIs Tables 2
and 3 show that for the subjects with the higher numbers of EEG channels, BP outperforms
Morlet mainly due to the application of CSP on the channels. In datasets with lower numbers
of EEG channels, the use of Morlet features outperforms that of BP features.
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The Friedman statistical test was performed to compare the performance of the different
classification methods. This was done for both the BP and Morlet feature extraction methods
for both types of BCIs (synchronous and self-paced), resulting in four different comparison set-
tings. In Settings 1 and 2, the BP and Morlet features with different classifiers were applied on
the synchronous datasets, respectively, and in Settings 3 and 4, the BP and Morlet features with
different classifiers were applied on the self-paced datasets, respectively.

The reason we compared the performance of different classifiers when a single feature ex-
traction methodology was used was that the nature of feature spaces was different for each set-
ting and the results could thus be misleading. For example, when we use the BP features, the

Table 2. The accuracy of classifiers for synchronous BCI operation for all subjects. For each subject the accuracy on the test data is shown. For each
classification algorithm the first column shows the results of BP features and the second column shows the results of Morlet features.

Boosting Logistic Random
Forest

SVM LDA QDA MLP

BP Morlet BP Morlet BP Morlet BP Morlet BP Morlet BP Morlet BP Morlet

Subject1 (O3) 75.47 80.5 80.5 82.39 74.84 79.25 81.76 77.36 81.13 74.21 79.25 60.38 78.62 83.65

Subject2 (S4) 71.11 77.96 70.19 83.89 68.52 79.26 71.11 83.52 70 81.11 70.37 72.41 70.37 82.22

Subject3 (X11) 72.22 78.15 74.26 78.15 71.48 77.78 72.78 77.78 74.07 76.48 74.81 72.22 74.81 76.67

Subject4 (100) 66.23 61.84 60.96 68.86 63.6 65.35 64.04 64.91 61.4 75.88 63.16 58.77 63.6 69.3

Subject5 (200) 53.47 51.84 56.33 58.37 54.29 54.29 56.73 59.18 56.33 55.92 54.69 55.51 56.33 58.37

Subject6 (300) 56.52 54.35 56.09 53.48 51.74 51.74 51.74 45.22 56.09 49.13 54.35 46.52 57.83 51.74

Subject7 (400) 89.25 90.88 94.79 94.79 91.21 92.83 95.11 94.14 93.81 94.46 95.77 83.39 92.18 94.46

Subject8 (500) 61.9 86.45 67.77 91.58 63.37 85.71 68.13 85.71 65.57 87.18 67.03 76.56 67.4 85.71

Subject9 (600) 74.1 79.68 75.7 82.87 74.1 80.48 65.74 80.88 76.1 82.07 75.3 60.96 76.89 83.27

Subject10 (700) 54.31 70.69 53.02 72.84 49.14 76.29 52.59 70.69 59.05 71.55 57.33 64.66 51.29 71.12

Subject11 (800) 91.74 83.91 92.17 83.48 90 86.52 92.17 80.87 92.17 80.87 86.52 67.83 90.87 80

Subject12 (900) 78.37 82.45 77.55 86.12 75.92 82.86 76.73 86.12 77.96 76.33 77.96 68.57 77.14 83.67

Subject13 (1) 79 71.53 79 60.85 81.85 73.31 81.14 61.57 74.38 50.89 52.67 26.33 81.85 58.01

Subject14 (2) 51.59 53.36 61.13 54.42 53.36 51.24 57.24 57.6 62.9 32.86 38.87 25.8 58.3 54.77

Subject15 (3) 78.75 83.15 86.45 86.81 78.02 82.78 84.25 78.02 80.22 50.55 41.03 27.47 85.35 83.15

Subject16 (4) 71.49 32.02 73.68 41.23 73.68 45.18 71.05 36.84 60.96 35.53 36.84 30.26 72.81 34.65

Subject17 (5) 56.16 33.33 60.14 40.58 58.33 35.14 56.88 41.67 50 28.26 34.06 28.26 60.14 38.77

Subject18 (6) 51.63 24.65 56.74 26.98 52.09 26.05 57.21 25.58 54.42 27.91 33.95 26.98 59.07 26.05

Subject19 (7) 84.48 64.98 87.36 56.32 81.95 71.48 87.36 64.26 70.4 32.49 25.27 31.41 87 60.29

Subject20 (8) 77.12 54.98 80.81 61.62 79.34 63.47 81.55 62.36 75.65 37.27 46.49 31 80.44 61.62

Subject21 (9) 78.03 46.97 83.71 39.39 82.95 56.44 84.09 45.08 73.86 41.29 34.47 25 84.85 44.32

doi:10.1371/journal.pone.0129435.t002

Table 1. Specification of datasets used in this paper.

Dataset Type Number of Subjects Task Number of Channels

BCICIII3b Synchronous 3 left hand vs. right hand 2

BCICIV2b Synchronous 9 left hand vs. right hand 3

BCICIV2a Synchronous 9 left hand vs. right hand vs. bothfeet vs. tongue 22

BCICIV1 self-paced 4 left hand, right hand and foot vs. No-Control 59

SM2 self-paced 4 right index finger vs. No-Control 10

doi:10.1371/journal.pone.0129435.t001
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feature space is of low dimensions compared to the settings where the Morlet feature is used.
Therefore, classification methodologies could only be compared when they are applied on the
same feature space. Since the classification problem in synchronous and self-paced BCIs was
different, it only make sense to compare the classifiers on self-paced and synchronous datasets
separately.

The comparison between different classifiers was performed as follows: (a) we ranked each
classification algorithm based on its performance on the test data. For example, for subject1
(O3), when the Morlet features were used, the MLP was the best classifier, LR was the second
best and so on. We ranked the algorithms for all subjects separately, then we averaged the
ranks, (b) the Friedman test was then applied on the resulting ranked results. (c) if the null hy-
pothesis was rejected by the Friedman statistical test, we performed a second set of statistical
tests. In particular, we used Holm’s test with the winning algorithm being the control in the
test.

The average rank of the different classifiers that are based on the number of wins for the
synchronous and the self-paced datasets respectively are given in Table 4. These results show
that depending on the feature sets and the dataset type (synchronous versus self-paced), both
linear classifiers such as LR and LDA and non-linear ones (e.g., MLP, RF) could be among the

Table 3. The AUC of classifiers for self-paced subjects. For each classification algorithm the first column shows the results of BP features and the second
column shows the results of morlet features.

Boosting Logistic Random
Forest

SVM LDA QDA MLP

BP Morlet BP Morlet BP Morlet BP Morlet BP Morlet BP Morlet BP Morlet

Subject22 (22) 0.46 0.56 0.64 0.58 0.49 0.49 0.41 0.48 0.64 0.57 0.62 0.55 0.63 0.56

Subject23 (23) 0.54 0.61 0.67 0.68 0.53 0.55 0.5 0.59 0.64 0.68 0.63 0.53 0.66 0.7

Subject24 (24) 0.6 0.58 0.66 0.58 0.58 0.51 0.6 0.52 0.65 0.58 0.64 0.54 0.63 0.57

Subject25 (25) 0.36 0.31 0.78 0.77 0.6 0.69 0.47 0.6 0.79 0.77 0.68 0.66 0.79 0.73

Subject26 (a) 0.59 0.53 0.66 0.55 0.64 0.53 0.56 0.53 0.65 0.53 0.61 0.5 0.66 0.57

Subject27 (b) 0.79 0.77 0.82 0.83 0.78 0.81 0.72 0.76 0.66 0.8 0.72 0.73 0.82 0.83

Subject28 (f) 0.49 0.54 0.51 0.53 0.51 0.53 0.49 0.51 0.5 0.53 0.48 0.51 0.49 0.52

Subject29 (g) 0.52 0.5 0.53 0.58 0.52 0.51 0.53 0.51 0.53 0.55 0.58 0.52 0.53 0.58

doi:10.1371/journal.pone.0129435.t003

Table 4. Average Rankings of the classification algorithms for both synchronous and self-paced data-
sets. The number in the parenthesis corresponds to the average rank of the algorithm among different sub-
jects. For each feature extraction method the classifiers typed in bold are the recommended ones. The
recommended classifiers are selected based on the results of the statistical tests.

Synchronous Self-paced

BP (Setting 1) Morlet (Setting 2) BP (Setting 3) Morlet (Setting 4)

1 MLP(2.92) LR(2.45) LR(1.81) LR(1.87)

2 LR(2.97) RF(3.3) MLP(2.75) MLP(2.56)

3 SVM(3.11) MLP(3.42) LDA(3.06) LDA(2.81)

4 LDA(4.09) SVM(3.57) QDA(4.18) BST(4.25)

5 BST(4.54) BST(4.16) RF(4.87) RF(4.87)

6 QDA(5.11) LDA(4.45) SVM(5.5) SVM(5.81)

7 RF(5.21) QDA(6.61) BST(5.81) QDA(5.81)

doi:10.1371/journal.pone.0129435.t004
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top performing classifiers. Another interesting observation is that in all settings, the average
rank of the LR classifier is better than LDA. This is due the fact that the data in BCI is noisy
and usually have many outliers. As discussed in the previous sections, unlike LR, LDA is sensi-
tive to outliers and is therefore not robust. Comparing the ensemble classifiers shows that RF
has a better average rank compared to BST; this is again due the sensitivity of BST to outliers.

In Setting 1, as shown in Table 4, MLP was the best performing classifier, i.e., when the BP
features were used on synchronous datasets. Since the null hypothesis was rejected by the
Friedman statistical test (p-value = 1.4e-4), the Holm’s post-hoc was performed and all classifi-
ers were compared to MLP (control classifier). The p-values corresponding to pairwise com-
parison of classifiers are shown in Table 5. For α = 0.1, all hypothesis with p-value less than
0.0333 were rejected. According to the Holm’s test results, there is not significant difference be-
tween the performance of MLP, LR, SVM and LDA. Thereby, these classifiers are the recom-
mended ones for the BP features in synchronous data. The other classifiers, i.e., BST, QDA and
RF had a poor performance for this type of feature extraction.

In Setting 2, the best performing classifier was LR (Table 4). The p-value for the Friedman
test was 1.7e-8; therefore, the difference between the classifiers is not random. The Holm’s test
suggests that RF, MLP, and SVM are as good as the LR classifier (Table 5 setting 2).

In Settings 3 and 4, the LR classifier performed better than others (Table 4). In Setting 3 the
Friedman’s test p-value was 7.16e-4, and in Setting 4 Friedman’s test p-value was 1.8e-4. The
Holm’s test results suggested that there was not significant difference between MLP, LDA and
LR (Table 5 setting 3 and 4). All hypothesis with p-value less than 0.05 were rejected.

Among the classifiers used in this study, RF, BST and MLP are inherently designed to han-
dle multi-class classification and the others (i.e., SVM, LR, LDA and QDA) are used in a one
against others setting to handle multi-task problems. Therefore, in addition to the four settings
discussed above, we have also performed two other statistical tests. The aim was to determine
which classifiers yield the best results in binary-task BCIs and which one(s) yield the best re-
sults in multi-task BCIs. From the total of 21 subjects in the synchronous BCIs datasets, 12 had
performed binary tasks and 9 had performed multi-task control of BCIs. Therefore, we per-
formed separate statistical tests for binary and for multi-task datasets. The average rank of dif-
ferent classifiers for the binary and for the multi-task datasets are given in Table 6. Table 6
shows that in binary-task BCIs for both BP and Morlet features the best performing classifier is
an inherently binary classifier (i.e., SVM in binary-task BCIs with BP features and LR in bina-
ry-task BCIs with Morlet features). Furthermore, in multi-task BCIs for both kinds of features

Table 5. P-values corresponding to pairwise comparison of different classifiers. α is chosen to be 0.1. For settings 1 and 2 all hypothesis with p-value
less than 0.0333 are rejected. For setting 3 and 4 all hypothesis with p-value less than 0.05 are rejected. The results are rounded up to 4 decimal places.

Setting 1(Synchrounous, BP) Setting 2(Synchrounous,
Morlet)

Setting 3(Self-paced, BP) Setting 4(Self-paced, Morlet)

hypothesis P−value hypothesis P−value hypothesis P−value hypothesis P−value

RF vs. MLP 0.0006 QDA vs. LR 0.0 SVM vs. LR 0.0002 SVM vs. LR 0.0002

QDA vs. MLP 0.0010 LDA vs. LR 0.0026 BST vs. LR 0.0006 QDA vs. LR 0.0002

BST vs. MLP 0.0151 BST vs. LR 0.0101 RF vs. LR 0.0045 RF vs. LR 0.0054

LDA vs. MLP 0.0801 SVM vs. LR 0.0932 QDA vs. LR 0.0278 BST vs. LR 0.0278

SVM vs. MLP 0.7750 MLP vs. LR 0.1431 LDA vs. LR 0.2471 LDA vs. LR 0.3854

LR vs. MLP 0.9430 RF vs. LR 0.1985 MLP vs. LR 0.3854 MLP vs. LR 0.5244

doi:10.1371/journal.pone.0129435.t005
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the best performing classifier is an inherently multi-class classifier (i.e. MLP in multi-task BCIs
with BP features and RF in multi-task BCIs with Morlet features).

For each of the groups of the subjects, we performed the Friedman test and the Holm’s
post-hoc test. This is done to statistically compare the performance of other classifiers with re-
spect to the best performing classifier in each case. The p-values corresponding to pairwise
comparison of classifiers are given in Table 7. Table 7 suggests that for the BP features, MLP,
LR and SVM are recommended in both the binary and multi-class BCIs. According to Table 4,
these classifiers are also recommended in Setting 1 (corresponding to 21 subjects performing
synchronous BCIs with BP feature extraction method). Table 7 also suggests that, for Morlet
features, LR and MLP classifiers are recommended for both the binary and multi-class BCIs.
According to Table 4, these classifiers are among the recommended ones in Setting 2 (corre-
sponding to 21 subjects performing synchronous BCIs with Morlet feature extraction method).
The results suggest that among the classifiers that are designed to handle multi-task classifica-
tion, RF and MLP are recommended to be used in multi-task BCIs. The other observation is
that even in multi-task BCIs some inherently binary classifiers are among the recommended
classifiers. The results of Table 4 are, however, more reliable as the number of subjects in Set-
tings 1 and 2 is almost twice the number of subjects considered in Table 6.

Table 7. P-values corresponding to pairwise comparison of different classifiers. α is chosen to be 0.1. For binary task BCIs with BP features all hypothe-
sis with p-value less than 0.02 are rejected. For multi-task BCIs with BP features all hypothesis with p-value less than 0.0333 are rejected. For binary task
BCIs with Morlet features all hypothesis with p-value less than 0.1 are rejected. For multi-task BCIs with Morlet features all hypothesis with p-value less than
0.025 are rejected. The results are rounded up to 4 decimal places.

(Binary, BP) (Multi-task, BP) (Binary, Morlet) (Multi-task, Morlet)

hypothesis P−value hypothesis P−value hypothesis P−value hypothesis P−value

RF vs. SVM 0.0011 QDA vs. MLP 0.0 QDA vs. LR 0.0 QDA vs. RF 0.0001

BST vs. SVM 0.2986 LDA vs. MLP 0.0045 BST vs. LR 0053 LDA vs. RF 0.0088

QDA vs. SVM 0.6706 BST vs. MLP 0.0053 SVM vs. LR 0.0159 BST vs. RF 0.1560

LR vs. SVM 0.8132 RF vs. MLP 0.0808 RF vs. LR 0.0206 MLP vs. RF 0.2300

MLP vs. SVM 0.8132 SVM vs. MLP 0.4781 LDA vs. LR 0.0206 LR vs. RF 0.4781

LDA vs. SVM 0.9247 LR vs. MLP 0.9131 MLP vs. LR 0.1305 SVM vs. RF 0.6234

doi:10.1371/journal.pone.0129435.t007

Table 6. Average Rankings of the classification algorithms for binary andmulti-class classification in synchronous datasets. The number of sub-
jects in binary task was 12 and the number of subjects in multi-task BCIs was 9. The number in the parenthesis corresponds to the average rank of the algo-
rithm among different subjects. For each feature extraction method the classifiers typed in bold are the recommended ones. The recommended classifiers
are selected based on the results of the statistical tests.

BP Morlet

Binary Multiclass Binary Multiclass

1 SVM(3.33) MLP(2.11) LR(1.87) RF(2.50)

2 LDA(3.41) LR(2.22) MLP(3.20) SVM(3.00)

3 MLP(3.54) SVM(2.83) RF(3.91) LR(3.22)

4 LR(3.54) RF(3.88) LDA(3.91) MLP(3.72)

5 QDA(3.70) BST(4.94) SVM(4.0) BST(3.94)

6 BST(4.25) LDA(5.0) BST(4.33) LDA(5.16)

7 RF(6.20) QDA(7.0) QDA(6.74) QDA(6.44)

doi:10.1371/journal.pone.0129435.t006
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Conclusion
We have built the first general open source Python-based framework to compare the perfor-
mance of different algorithms in BCIs. Using this framework, we performed a comprehensive
comparison between 14 different BCI designs (two feature extraction methods and seven classi-
fication methods for each feature extraction methodology) over 29 sensory motor BCI subjects
in synchronous and self-paced BCI paradigms.

Our results show that the Logistic Regression (LR) and Multi-Layer Perceptron (MLP) clas-
sifiers are among the best performing classifiers and are recommended in all different designs.
LR is linear like Linear Discriminant Analysis (LDA) while MLP is a very powerful nonlinear
classifier. Both the LR and MLP classifiers are prone to over-fitting; however, in both cases we
have included regularization terms to avoid overfitting. The observation that LR was among
the best classifiers suggested that the feature space of our task was somewhat linearly separable.

Unlike most publications in the BCI field which recommend the LDA as the best classifier,
our findings show that for each feature extraction method at least the recommended classifiers
should be tested and then the best classifier should be selected based on the cross-validation re-
sults. In general, there is not a best classifier or best feature extraction method that outperforms
all others. For each subject, the combination of classifier, feature and model parameters should
be tuned together, and finally the method with the best performance on the training data set
should be selected as the final model for testing on unseen data.

Finally, we should emphasize that classification is just one step in our framework, and to get
acceptable performance other steps are also important. Pre-processing of the data, feature ex-
traction, and feature selection all change the distribution of the data in the feature space and
have a major role in getting good results. Therefore, a BCI system should be viewed as a unit
consisting of different blocks in which all the block settings and parameters should be adjusted
jointly for each individual subject.

Table 8. List of classifier parameters tuned in the training phase.

Random Forest Number of trees

Maximum number features evaluated to split each node

Maximum depth of each tree

Minimum number of samples in each leaf

SVM C

Gamma

LR Regularization type

Regularizer coefficient

Boosting Number of trees

Maximum number features evaluated to split each node

Maximum depth of each tree

Learning rate

MLP Number of neurons in hidden layer

L1 coefficient

L2 coefficient

Learning rate

GDA None

doi:10.1371/journal.pone.0129435.t008
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Appendix

1
All implementations are performed in Python. For classification algorithms Scikit-learn tool-
box [49] has been used. For MLP classifier, Theano toolbox [50][51] has been used. The source
code of our framework and the SM2 dataset are both available at https://github.com/hosseinbs/
BCI-Comparison-Framework.

2
For model selection different set of parameters have been evaluated. The set of parameters eval-
uated for all classifiers (i.e. classifier parameters) are given in Table 8. All these parameters
along with the BCI parameters were optimized in the training phase.
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