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Multiple Simulated Annealing-
Molecular Dynamics (MSA-MD) for 
Conformational Space Search of 
Peptide and Miniprotein
Ge-Fei Hao1, Wei-Fang Xu1, Sheng-Gang Yang1 & Guang-Fu Yang1,2

Protein and peptide structure predictions are of paramount importance for understanding their 
functions, as well as the interactions with other molecules. However, the use of molecular simulation 
techniques to directly predict the peptide structure from the primary amino acid sequence is always 
hindered by the rough topology of the conformational space and the limited simulation time scale. 
We developed here a new strategy, named Multiple Simulated Annealing-Molecular Dynamics 
(MSA-MD) to identify the native states of a peptide and miniprotein. A cluster of near native 
structures could be obtained by using the MSA-MD method, which turned out to be significantly 
more efficient in reaching the native structure compared to continuous MD and conventional SA-MD 
simulation.

Protein and peptide tertiary structures are of paramount importance for understanding their function, as 
well as the interactions with other molecules. Peptide plays many biological functions such as hormones, 
neurotransmitters to antibiotics and so on. In addition, the folding mechanism also gives much more 
insight into the function of protein or peptide. However, considering the number of new sequences that 
are delivered by each genome project, present estimates of the number of hypothetical peptide code 
sequences in the complete prokaryotic genomes available today are on the order of 1.5 million, which 
is much higher in eukaryotes1,2. Hence, the majority of protein or peptide structures have not been 
resolved. Moreover it is hard to perform experimental study of the folding mechanism. To uncover the 
mystery of how proteins or peptides folding, molecular simulation techniques, as complementarities with 
experimental methodology, are frequently used for prediction and optimization of protein or peptide 
structures3.

The molecular simulation techniques for protein or peptide structure prediction can be divided into 
comparative modeling and ab initio prediction. The 3D structure of a protein can be predicted through 
comparative modeling based on the amino acid sequence and X-ray crystal structures of proteins with 
more than 30% sequence identity4. But without human intervention, comparative models result in 
low-accuracy due to errors as a result of inaccurate sequence alignment, and inability to identify and cor-
rectly model domains, such as loop and ligand-binding regions5. Even the proteins with high sequence 
identity may have different native structures6. In addition, compared with larger proteins, one major 
obstacle in predicting peptide structures is the limited number of solution structures are available7. Ab 
initio protein or peptide structure prediction refers to an algorithmic process by which protein tertiary 
structure is predicted from its amino acid primary sequence. The problem itself has occupied leading 
scientists for decades, which remains one of the top outstanding issues in modern science.
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At present, some of the most successful ab initio methods have a reasonable probability of predicting 
the folds of small, single-domain proteins within 1.5 angstroms over the entire structure. For example, 
using MD simulation to perform protein or peptide structure prediction is one of the main types of ab 
initio methods, which include conventional molecular dynamics (CMD), simulated annealing molecular 
dynamics (SA-MD), replica exchange molecular dynamics (REMD) and some other methods through 
adding new algorithms in the above mentioned MD simulation8–13. Carlos Simmerling et al. has success-
fully predicted a “Trpcage” protein by using CMD method14, but the currently possible time scales still 
limit the sampled conformational space of biomolecules. Hence, Sugita et al. developed REMD method 
which can overcome the multiple-minima problem by simulating several replicas independently and 
simultaneously exchanging non-interacting replicas (neighboring pairs) of the system by performing 
CMD at several temperatures to obtain good prediction15. However, it need to parallel a lot of replicas 
simultaneously in order to get better overlap between the neighboring energy16, which needs relative high 
computational demands. To enhance conformational sampling, SA algorithm is to start the simulation 
at high temperature to overcome barriers followed by gradual cooling (annealing) to reach low energy 
regimes17. It is widely used for the optimization of structures from experimental methods18,19, compar-
ative protein modeling20,21, or studying the conformational dynamics of protein or peptide folding and 
unfolding22.

In this work, we developed a strategy called Multiple Simulated Annealing-Molecular Dynamics 
(MSA-MD) which is a highly accurate prediction method combined Simulated Annealing-Molecular 
Dynamics (SA-MD) and empirical based screening for peptides. Based on MSA-MD, we can detect a 
wider conformational space of a peptide or miniprotein through large scale structure sampling. And 
the near native conformations of the pepides and proteins can be obtained. A conformational ensem-
ble which is close to the protein native crystal structure can be obtained. This strategy is applied for 
the structure prediction of ALPHA1, Trp-cage protein, PolyAla, two pepides containing β  sheet struc-
ture and two miniproteins containing more than 40 residues. Good ability in sampling lower energy 
conformations and wider conformation space were obtained. Figure 1 shows the prediction process of 
MSA-MD for small peptides in details. Two key issues were studied in this work: the conformation sam-
pling (the capability of MSA-MD in searching of conformational space) and the conformation screening 
(how to screen the near native states).

Figure 1. A flowchart of Multiple Simulated Annealing-Molecular Dynamics (MSA-MD) to predict the 
structures of small peptides. It shows the prediction process of small peptides structures in details. First, 
a full extended conformation of the peptide was built by Accelrys Discovery Studio2.5 from the primary 
sequence. Second, large scale structure sampling was performed through energy minimization, simulating 
annealing, and refined MD simulation to produce a large number of structures. Third, the stereochemical 
qualities of those structures were evaluated and about 20% of the total is screened out. Fourth, the structures 
with better stereochemical qualities were screened by clustering.
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Results and Discussion
We evaluated the capability of MSA-MD in folding seven small peptides and proteins, ALPHA1 (PDB 
code:1AL1), Trp-cage miniprotein (PDB code:1L2Y), PolyAla, two pepides containing β  sheet structures 
(PDB code:1UAO and 1E0Q) and two miniproteins containing more than 40 residues (PDB code:1ERD 
and 1GAB). The structural similarity was assessed by the root-mean-square deviation (RMSD) of the 
aligned Cα  atom excluding the flexible termini, which is a similar treatment in other studies23. Starting 
from extended conformations, a total of 1000 simulated annealing MD simulations (each 10 ns) were 
performed for each protein (Table 1).

The conformation sampling. ALPHA1. The sequence of ALPHA1 is ELLKKLLEELKG. In order 
to compare the performance of the MSA-MD and single simulated annealing-MD (SSA-MD), the per-
formance of the conformational search were compared. Three SSA-MD trajectories were selected as 
representatives and compared with MSA-MD. The Cα  RMSD of the 1000 structures from MSA-MD 
distributed in around 6 Å range with 2.5 Å as the maximum normal distribution. While in each SSA-MD, 
the Cα  RMSD distributions were much narrower and the maximum normal distributions were much 
larger than MSA-MD (Fig. 2A). In addition, the maximum normal distributions of the potential energies 
were slightly larger in SSA-MD. But, no significant differences were found for the distribution range of 
the potential energy (Fig.  2B). Moreover, the MSA-MD was also compared with simulated annealing 
coupled replica exchange molecular dynamics (SA-REMD) developed by Kannan et al.24. The Cα  RMSD 
distributed from 1 to 5 Å and the potential energies distributed from − 420 to − 340 kcal/mol in the 
SA-REMD. While, the range of Cα  RMSD is from 0 to 6 Å and the range of potential energy is from 
− 445 to − 385 kcal/mol in MSA-MD. Hence, the MSA-MD can search a wider conformational space 
than SSA-MD and SA-REMD.

To investigate the folding pattern of the simulated structures, the forming tendency of the second-
ary structure were analyzed for the 1000 structures by using DSSP program25 and compared with the 
ALPHA1 native secondary-structure. The forming tendency of alpha helix (H), 3-helix (G), hydrogen 
bonded turn (T), and bend (S) structure as a function of residue number were shown in Fig.  2C. The 
helix-forming tendency is dominant over other conformations and β -sheet forming tendency was not 
observed for ALPHA1. Hence, the secondary structure forming tendency is consistent with the native 
secondary structure of ALPHA1. In addition, there are 120 structures with Cα  RMSD lower than 1.0 Å 
and 306 structures with Cα  RMSD lower than 2.0 Å (Fig. 3A). There is one structure with Cα  RMSD 
value =  0.198 Å compared with the native structure (Fig. 3A). Hence, a cluster of near native structures 
of ALPHA1 can be predicted by MSA-MD.

Trp-cage protein. A more challenging protein with 20-residues was used to assess the performance of 
MSA-MD method26. The sequence of the Trp-cage protein is NLYIQWLKDGGPSSGRPPPS. This mini-
protein can fold fast to a globular structure in solution (~4.1 μ s)27, which consists of an α  helix (residues 
1–9), a short 310 helix (residues 11–13), and coil. The terminal amino group and carboxylate group 
between the side chains of Asp9 and Arg16 formed a salt bridge and then stabilized the two hydrophobic 
cores that pack against each other, namely the residue 1–9 that form a helix and the residue 16–20 that 
form a loop. The small size and fast folding nature of Trp-cage miniprotein makes it an ideal test model 
to validate novel structural prediction method28–32.

To search a wider conformational space, Trp-cage miniprotein was simulated for 1000 trajectories 
(10 ns each) from extended initial structure by setting different random number. Figure  3B shows the 
Cα  RMSD distribution of the 1000 structures from the trajectories, which ranges around 8 Å and covers 
a wide conformational space. There are 37 structures with Cα  RMSD <  2.0 Å and 267 structures with 
Cα  RMSD <  3.0 Å. The Cα  RMSD value of the nearest native structure predicted by MSA-MD is 0.96 Å 
(As show in Fig. 3B).

Protein
Chain 
length

Secondary 
structure type

time scale 
(ns)

RMSD region 
(residue numbers)

Lowest Cα 
RMSD/Å

1AL1 12 α -helix 10 1–12 0.198

1L2Y 20 α -helix 10 1–20 0.960

PolyAla 11 α -helix 10 1–11 0.197

1UAO 10 β –turn 10 1–10 1.200

1E0Q 17 β –sheet 10 1–17 2.955

1ERD 40 α -helix 10 4–34 2.908

1GAB 53 α -helix 10 9–52 4.715

Table 1.  Comparison of the results from MSA-MD simulation of the seven peptides.
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PolyAla. We also evaluate the ability of MSA-MD in folding PolyAlanine [Ac-(Ala)11-NH2] to the 
known α -helical structure33. Starting from extended conformation, 1000 folding simulations of PolyAla 
were performed respectively for 10 ns by setting different random number. Just like other studies to 
evaluate the simulation result of PolyAla by helicity10. We construct a fully helical PolyAla conformation 
as a standard conformation. Then we assessed the simulation result by Cα  RMSD between the pre-
dicted structures and a constructed helical conformation. Figure 3C shows the Cα  RMSD distribution 
of the 1000 structures formed by MSA-MD, which ranges around 5.5 Å. There are 49 structures with Cα  
RMSD <  1.0 Å and 450 structures with Cα  RMSD <  2.0 Å. The lowest Cα  RMSD value is 0.197 Å, which 
means MSA-MD can accurately predict the PolyAla structure (Fig. 3C).

β sheet structure. To validate the prediction ability of MSA-MD for β  sheet structure, such as 
β -hairpin or β -turn, two small proteins were tested. The first is a β -turn protein (PDB code:1UAO) 
which can form chignolin peptide34. The sequence is GYDPETGTWG. 1000 structures were obtained 
by performing MSA-MD simulations (each for 10 ns). The Cα  RMSDs of the 1000 structures range 
around 6 Å (shown in Fig. 3D), which represent a wider conformational space. The lowest Cα  RMSD of 
the structures predicted by MSA-MD relative to 1UAO is 1.200 Å. The overlay with 1UAO is shown in 
Fig. 3D. In addition, another β -hairpin protein (PDB code:1E0Q) contain 17 residues was also tested35. 
The sequence is MQIFVKTLDGKTITLEV and 1000 structures were obtained by performing MSA-MD. 
The range of Cα  RMSD is around 9 Å (shown in Fig. 3E). The lowest Cα  RMSD of the structures pre-
dicted by MSA-MD relative to 1E0Q is 2.955 Å with the overlaid structure in Fig. 3E. The peptides con-
taining β  sheet structure did not fold well to native conformation by performing MSA-MD simulation. 
It is because the secondary structure propensities observed in protein simulations depend heavily on the 
force field parameters used36. Many previous studies revealed the helix-favoring bias in the AMBER ff94 
and ff99 force fields using an explicit solvent model or the generalized Born implicit solvent model37. Our 
simulation with simulated annealing algorithm at high temperatures cannot solve the force-field bias in 
folding study. The results imply that the intrinsic secondary structure bias in a force field cannot easily 
be solved by modifying parameters of simulation. Hence, one should consider the integrative effects of all 
the force field parameters to improve the secondary structure balance of a force field38. If the force-field 
bias can be resolved, MSA-MD will still be accurate for structure prediction of β  sheet structure.

Miniprotein with more residues. We also access the prediction ability of MSA-MD for two min-
iproteins with more residues. The first one (PDB code:1ERD) is a α -helix protein with 40 residues24. 
The sequence of 1ERD is: XDPMTCEQAMASCEHTMCGYCQGPLY MTCIGITTDPECGLP. And 
the second (PDB code: 1GAB) is a 53-residues protein containing α -helix structure24. The sequence 
is: TIDQWLLKNAKEDAIAELKKA GITSDFYFNAINKAKTVEEVNALKNEILKAHA. 1000 structures 
were obtained for both 1ERD and 1GAB by performing MSA-MD simulation. We calculated the Cα  
RMSD against the 1ERD structure with residues 1 to 3 and 35 to 40 excluded as flexible termini. The 
range of Cα  RMSD is around 8 Å (Fig. 3F). The structure with the lowest Cα  RMSD relative to 1ERD 
is 2.908 Å (Fig. 3F). Similar with 1ERD, we calculated the Cα  RMSD against the 1GAB structure with 
residues 1 to 8 and 51 to 53 excluded as flexible termini. The range of Cα  RMSD is around 8 Å (Fig. 3G). 

Figure 2. (A) The comparison of the Cα  RMSD distribution of the structures generated by MSA-MD and 
SSA-MD. Black represents structures from 10 ns MSA-MD; red, blue and grey represent structures from the 
single trajectory of 2.pdb, 19.pdb, 102.pdb respectively. The Cα  RMSD of 2.pdb, 19.pdb, 102.pdb relative 
to the 1AL1 crystal structure is 1.195 Å, 3.882 Å, 5.085 Å respectively. (B) The comparison of the potential 
energy distribution of the structures generated by MSA-MD and SSA-MD. (C) Secondary-structure-forming 
tendencies of the ALPHA1 as a function of residue number. The results are mean values over the final 1000 
structures from 10 ns MSA-MD. Square with black solid line: alpha helix structure (H); circles with red solid 
line: 3-helix structure (G); up triangles with blue solid line: hydrogen bonded turn (T); down triangles with 
grey solid line: bend structure (S).
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The Cα  RMSD of the best predicted structure relative to 1GAB is 4.715 Å (Fig.  3G). MSA-MD can 
have a better effect for small peptides than miniproteins containing more than 40 residues, which is 
because the secondary structure propensities observed in protein simulations depend heavily on the force 
field parameters and sufficient sampling time. In short, to the tested seven peptides and miniproteins, 
MSA-MD can search lower energy conformations and wider conformation space.

The conformation screening. The MSA-MD can search a large number of near-native conforma-
tions for the peptides containing α -helix structure. Hence, a screening strategy should be developed 

Figure 3. The Cα RMSD distributions of the structures generated by MSA-MD and the structural 
alignments with the native structure. The structures formed by the 10 ns MSA-MD compared with their 
own native structures of the seven peptides. White structure is the native conformation, and the yellow 
structure is the best structure formed by MSA-MD. (A) The Cα  RMSD distribution of the structures formed 
by MSA-MD simulations relative to the ALPHA1 crystal structure and the overlay of the best predicted 
structure with the ALPHA1 native structure. (B) The Cα  RMSD distribution of the structures formed by 
MSA-MD simulations relative to the 1L2Y crystal structure and the overlay of the best predicted structure 
with the 1L2Y native structure. (C) The Cα  RMSD distribution of the structures formed by MSA-MD 
simulations relative to the PolyAla crystal structure and the overlay of the best predicted structure with the 
standard conformation. (D) The Cα  RMSD distribution of the structures formed by MSA-MD simulations 
relative to the 1UAO crystal structure and the overlay of the best predicted structure with the 1UAO native 
structure. (E) The Cα  RMSD distribution of the structures formed by MSA-MD simulations relative to the 
1E0Q crystal structure and the overlay of the best predicted structure with the 1E0Q native structure. (F) 
The Cα  RMSD distribution of the structures formed by MSA-MD simulations relative to the 1ERD crystal 
structure and the overlay of the best predicted structure with the 1ERD native structure. (G) The Cα  RMSD 
distribution of the structures formed by MSA-MD simulations relative to the 1GAB crystal structure and the 
overlay of the best predicted structure with the 1GAB native structure.
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to choose the right conformation which is similar to the native structure. In this paper, we tested an 
empirical-based screening strategy to discover a conformational cluster near to the native structure.

ALPHA1. In order to examine the convergence of the simulated annealing, the potential energy dis-
tribution of the final structures from 1, 5, 10, and 15 ns were compared. In some other studies of struc-
ture prediction, Cα  RMSD value lower than 3 Å is an acceptable minimum similarity for the small 
peptide39,40. As shown in Fig. 4A, the number of the structures with Cα  RMSD smaller than 3 Å tends 
to be increasing when the simulation time is less than 10 ns. In addition, the potential energy distribu-
tion of the final structures from 1, 5, 10, and 15 ns were also compared. As shown in Fig. 4B, potential 
energy distribution move to the direction of lower potential energy from 1 to 5 ns. Hence, extension of 
the simulation time from 1 to 5 ns could improve the convergence of simulation. However, there is no 
significant difference of the potential energy distribution of 5, 10, and 15 ns simulations. Taking both the 
distribution of Cα  RMSD and potential energy into account, choosing the time scale of 10 ns can get a 
good performance for the structure prediction of ALPHA1.

How to obtain the conformational ensemble similar with the native state of ALPHA1? To solve the 
problem, an empirical-based screening strategy to discover structures which are more similar with the 
native structure was proposed. First, the stereochemical qualities of 1000 predicted protein structures 
were evaluated by using PROCHECK program41,42 and the first nearly 20% structures (221 structures 
of the total 1000 structures with residues in most favored regions more than 90%) were screened out. 
Then, 221 structures were further clustered according to a threshold RMSD of 1.5 Å using MaxCluster 
program. The largest cluster of 132 structures is reserved, which occupy 59.73% of the total. Due to the 
flexibility, the difference of the RMSD value of the terminal residue may disturb the cluster. In order to 
strike off this influence, a new cluster analysis to the above 132 structures was performed. In this step, 
the RMSD values of the terminal residues were not taken into account and a threshold RMSD of 1.0 Å 
was used. All the 132 structures were further classified into 3 clusters with 113 structures in the largest 
cluster, which is 85.61% of the total.

In order to know that if the most structures obtained by three steps screening were similar with the 
native structure, the Cα  RMSD of the final 113 structures compared to the native structure were statis-
tically analyzed. The Cα  RMSD <  1.0 Å and <  2.0 Å is 54.87% and 98.23% respectively, while the ratio 
is 49.24% and 97.73% before the third step, which demonstrate that most structures are similar with 
the native structure and the three-steps screening is reasonable. Figure 4C shows the distribution of Cα  
RMSD value of the final 113 structures. Based on the overlay between the best structure (No.964) and 
the crystal structure of ALPHA1, the Cα  RMSD value of No.964 is 0.294 Å while its heavy atoms RMSD 
is 0.901 Å, which is lower than 1.3 Å (heavy atoms RMSD), the best structure predicted by SA-REMD 
previously24.

Trp-cage protein. The 1000 folding simulations of the Trp-cage miniprotein were extended to 20 ns. 
Figure 5A,B shows the Cα  RMSD and the potential energy distribution of the 1000 structures extracted 
from 1, 5, 10, and 20 ns MSA-MD trajectory. Conformations with much lower Cα  RMSD values and 
potential energies were obtained when extending the time scale from 1 to 20 ns, which is different with 
the simulation of ALPHA1. Hence, the 20 ns MSA-MD simulation is not enough for Trp-cage mini-
protein’s folding. Although the distribution of the Cα  RMSD and potential energy would be further 
improved by extending the simulation time, it’s obvious time consuming.

As well known the convergence of the simulation is also dependent on folding process. The simulation 
in short time scale may also reach a convergence. Hence, a standard deviation (STD) based criteria was 
introduced to judge the convergence of each MSA-MD simulation. The STD value of the RMSD relative 
to the initial structure was calculated each 500 ps. If the trajectory is not largely fluctuated (with STD 

Figure 4. The Cα RMSD and the potential energy distribution of the 1000 structures extracted from 
1, 5, 10, and 15 ns MSA-MD trajectory. (A) The Cα  RMSD distribution of 1, 5, 10, and 15 ns MSA-MD 
simulations compared to 1AL1 crystal structure. (B) The potential energy distribution of 1, 5, 10, and 15 ns 
MSA-MD simulations. (C) The distribution of Cα  RMSD value of the final 113 structures after three steps 
screen. All of the 113 structures have a Cα  RMSD < 2.2 Å, and 62 structures have a Cα  RMSD < 1.0 Å.
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lower than 0.2), the MSA-MD simulation should be terminated and the final structure was extracted or 
the MSA-MD simulation continue for the next 500 ps until the maximum of 20 ns time scale and no 
structure will be produced. The mass-weighted RMSD curve is relatively smooth during the 500 ps sim-
ulation (shown in Figure S1 in the Supporting Information). Finally the 1000 folding simulations took 
14.8850 μ s in total and 530 structures were generated which took 5.4145 μ s in total after the maximum 
of 1000 simulation cycles. Based on the distribution of the Cα  RMSD of these structures relative to the 
native structure, the Cα  RMSD values of 314 structures (59.25% of the total) are lower than 3 Å and 41 
structures (7.74% of the total) are lower than 2 Å.

Then, the 530 structures were screened by the same strategy. First, all of the 530 structures were val-
idated by PROCHECK program and 127 structures (23.96% of the total) with residues in most favored 
regions more than 80% were screened out. Due to the size of this protein (the size of the Trp-cage 
protein 1L2Y is almost double to the size of the protein ALAPHA1) and the stereochemical qualities of 
structures, the RMSD threshold of 3.0 Å was utilized in the next step. The 127 structures were classified 
into 3 clusters with 78 structures in the largest cluster, which is 61.42% of the total. Thirdly, the terminal 
residues of the 78 structures were cut and a RMSD threshold of 2.4 Å was utilized. All the above 78 struc-
tures were classified into 2 clusters with 64 structures in the largest cluster, which is 82.05% of the total.

Similar with ALPHA1, the screened structures were more and more similar with the native structure 
of Trp-cage protein. Figure 5C shows the Cα  RMSD distribution of the final 64 structures after screening. 
It is clear that the Cα  RMSD values of 64 structures are all lower than 3.0 Å. And there are 10 structures 
with Cα  RMSD lower than 2.0 Å. The best structure (Cα  RMSD =  1.284 Å, backbone RMSD =  1.224 Å) 
predicted by MSA-MD is very close with the previously best structure (backbone RMSD =  1.3 Å) pre-
dicted by Neil et al.10

PolyAla. In order to examine the convergence of the simulated annealing, the potential energy distri-
bution of the final structures from 10 and 20 ns were compared (Fig. 6). As shown in Fig. 6A, there is 
no significant difference of the Cα  RMSD distribution of 10 and 20 ns simulations, which indicates that 
the 10 ns time scale simulation of the PolyAla is convergent.

Then, the same screening strategy was applied on PolyAla. First, all of the 1000 structures were val-
idated by PROCHECK program and 135 structures (13.50% of the total) with residues in most favored 
regions more than 80% were screened out. Then, the 135 structures were further classified into 6 clusters 
according to a threshold RMSD of 1.5 Å using MaxCluster program. The largest cluster of 43 structures 
is reserved, which occupy 31.85% of the total. Last, excluding the flexile termini residue, a threshold 
RMSD of 1.0 Å was used, and the 43 structures were further classified into 2 clusters with 25 structures 
in the largest cluster, which is 58.14% of the total. The screened structures were similar with the native 
state of PolyAla. Figure 6B shows the Cα  RMSD distribution of the final 25 structures. The ratio of Cα  
RMSD <  1.0 Å and <  2.0 Å is 56.00% and 100% respectively, while the ratio is 4.90% and 45.00% before 
screening. The Cα  RMSD values of all the 25 structures are lower than 2.0 Å while there are 14 structures 
with Cα  RMSD lower than 1.0 Å. The Cα  RMSD of the best structure is 0.197 Å compared with the fully 
helical conformation.

Conclusion
The MSA-MD method is applied for the structure prediction of ALAPHA1, Trp-cage miniprotein, 
PolyAla, β  sheet structure and miniproteins, which shows good ability in sampling lower energy confor-
mations and searching wider conformational space. A structural ensemble containing 113 structures of 
ALAPHA1 (Cα  RMSD <  2.2 Å), 64 structures of Trp-cage miniprotein (Cα  RMSD <  3.0 Å) and 25 struc-
tures of PolyAla (Cα  RMSD <  2.0 Å) was obtained. Table S1 summarizes the structure prediction results 
for the representative peptides associated with different methods reported in recent years. Predictive 

Figure 5. The Cα RMSD and the potential energy distributions of 1, 5, 10, and 20 ns MSA-MD 
simulations. (A) The Cα  RMSD distribution of 1, 5, 10, and 20 ns MSA-MD. (B) The potential energy 
distribution of 1, 5, 10, and 20 ns MSA-MD. (C) The Cα  RMSD distribution of the 64 structures after 
screening. The distribution of Cα  RMSD value of the final 64 structures after screen.
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results of these studies are mainly evaluated by RMSD. MSA-MD method turned out to be very efficient 
in predicting structures close to the native structure. In future work, the method will be extended to the 
structural prediction of other peptides.

Methods
Large scale structural sampling by MSA-MD. The starting structure was a fully extended confor-
mation of the peptide/protein sequence, which was built by Discovery Studio Client 2.5. The topology 
and coordinate files of the structure were built with Leap module of the Amber12 package. Energy 
minimization was performed using the Sander module of the Amber12 program. The Amber ff99 force 
field was used as the parameters for the amino acid residues43. Solvation effects were incorporated by 
using the Generalized Born model44. So the simulation was performed in an implicit Generalized Born 
model. The cutoff distance for the long-range electrostatic interaction and VDW interaction was set 
at 999.0 Å because this simulation is a non-periodic simulation and the Particle Mesh Ewald (PME) 
method didn’t need to give infinite electrostatics45,46. The maximum distance between atoms pairs that 
will be considered when calculating the effective Born radii was also set at 999.0 Å. Then the structure 
was subjected to two stages of minimization. First, the backbone atoms of the structure were fixed. 
Next, all atoms were permitted to move freely. In every stage, the energy minimization was executed by 
using the steepest descent method for the first 1000 steps and then followed 1000 steps minimization by 
using the conjugated gradient methods. 1000 simulated annealing (SA-MD) simulations started from the 
same minimization structure but different initial velocities were used by different trajectories. To prevent 
unwanted rotations around the peptide bond which might occur leading to non-physical chiralities at 
high temperature, a chirality restraint on the backbone was used. Next, a simulated annealing process 
was performed as follows: first, heating the system from 10 K to 500 K in 50 ps; second, a 30 ps production 
simulation was performed to stable the system; finally, cooling the system to 0 K in 70 ps. The simulated 
annealing process was performed with the step size of 1fs. Then, the long-time production MD simula-
tion was running from the structure after the simulated annealing process. The system simulated at 300 K 
by using the weak-coupling algorithm47. The simulation process was performed with the step size of 2 fs. 
All production MD simulations were performed without any restraints.

The convergence of the simulation was examined and the simulated structures was furthered ana-
lyzed. If the simulation cannot converge in a limited time scale, a convergence criteria based on RMSD 
fluctuation would be introduced. The standard deviation (STD) of the RMSD values was calculated each 
500 ps. If the STD is lower than the standard values, the simulated will be terminated in limited time 
scale and the final structure will be produced. If not, the simulation will be prolonged until the largest 
time scale limitation. We can obtain a large number of predicted structures by performing multiple sim-
ulation. In addition, Post-simulation analyses were performed for the determination of residue secondary 
structural assignments using the DSSP program25.

Structural Screening. To obtain the conformational ensemble similar with the native state, an 
empirical-based screening strategy was proposed. First, the stereochemical qualities of structures pre-
dicted by MSA-MD simulation were evaluated by using PROCHECK program41,42 and the first 20% struc-
tures were screened out. Then the structures passed the PROCHECK screening were further evaluated 

Figure 6. The structures formed by MSA-MD compared with PolyAla fully helical structure. (A) 
The Cα  RMSD distribution of the 1000 structures extracted from 10 and 20 ns MSA-MD compared to 
PolyAla structure. Black represents 10 ns MSA-MD and red represents 20 ns MSA-MD. (B) The Cα  RMSD 
distribution of the final 25 structures after screening. The Cα  RMSDs of 25 structures are lower than 2.0 Å 
with 14 structures lower than 1.0 Å, which is 56% of the total.
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by using the MaxCluster program. The Nearest Neighbour (NN) clustering algorithm in MaxCluster was 
used to cluster structures48. Two structures are considered in the same cluster, if the backbone RMSD 
is within an acceptable value. Here, a RMSD cut-off threshold was set to cluster the structures through 
comparing the RMSD between each other. During the clustering process, the RMSD values between dif-
ferent structures were calculated by using MaxCluster program49,50. A central structure with the closest 
neighbourhood with other structures in one cluster group was picked out. The second screening step was 
roughly performed by setting a relatively bigger cluster threshold. Due to the flexibility, the difference of 
the Cα  RMSD value of the terminal residue may disturb the cluster. In order to strike off this influence, 
another cluster analysis to the structures from the largest cluster groups was performed. In this step, the 
RMSD values of the terminal residues were not taken into account and a relatively small cluster threshold 
was used. Finally, the structures of the largest cluster group in the third step were the targeted structures.
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