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Abstract
Beta-diversity was originally defined spatially, i.e., as variation in community composition among sites in a region. However, 
the concept of beta-diversity has since been expanded to temporal contexts. This is referred to as “temporal beta-diversity”, 
and most approaches are simply an extension of spatial beta-diversity. The persistence and turnover of individuals over time 
is a unique feature of temporal beta-diversity. Nakadai (2020) introduced the “individual-based beta-diversity” concept, and 
provided novel indices to evaluate individual turnover and compositional shift by comparing individual turnover between two 
periods at a given site. However, the proposed individual-based indices are applicable only to pairwise dissimilarity, not to 
multiple-temporal (or more generally, multiple-unit) dissimilarity. Here, individual-based beta-diversity indices are extended 
to multiple-unit cases. In addition, a novel type of random permutation criterion related to these multiple-unit indices for 
detecting patterns of individual persistence is introduced in the present study. To demonstrate the usage the properties of 
these indices compared to average pairwise measures, I applied them to a dataset for a permanent 50-ha forest dynamics 
plot on Barro Colorado Island in Panama. Information regarding “individuals” is generally missing from community ecol-
ogy and biodiversity studies of temporal dynamics. In this context, the methods proposed here are expected to be useful for 
addressing a wide range of research questions regarding temporal changes in biodiversity, especially studies using traditional 
individual-tracked forest monitoring data.
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Introduction

The concept of beta-diversity was introduced by Whittaker 
(1960, 1972) to define the variation in community compo-
sition among sites in a region. Several other beta-diversity 
indices have subsequently been proposed (reviewed by 
Koleff et al. 2003; Anderson et al. 2011; Jost et al. 2011; 

Legendre and De Cáceres 2013). Recent studies have 
focused on temporal changes in community composition at 
both single sites and multiple sites surveyed repeatedly over 
time (Magurran 2011; Legendre and Condit 2019). Tem-
poral changes in community composition are referred to as 
“temporal beta-diversity” (Hatosy et al. 2013; Legendre and 
Gauthier 2014; Shimadzu et al. 2015), which is simply an 
extension of spatial beta-diversity. Only a few studies have 
focused on methodological developments of temporal beta-
diversity (Shimadzu et al. 2015; Legendre 2019; Nakadai 
2020). The persistence and turnover of individuals over time 
is a key feature of temporal beta-diversity (Magurran et al. 
2019; Nakadai 2020). The speed and frequency of composi-
tional change over time is associated with the speed of indi-
vidual turnover, and must be considered in community com-
parisons because even randomly high individual turnover 
can result in high temporal beta-diversity (Nakadai 2020).

To address this issue, Nakadai (2020) proposed the “indi-
vidual-based beta-diversity” concept, and provided novel 
indices to evaluate individual turnover and compositional 
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shift by comparing individual turnover between two periods 
at a given site. Specifically, I developed an individual-based 
temporal beta-diversity approach for the Bray–Curtis dis-
similarity index (i.e., an abundance-based temporal beta-
diversity index) (Nakadai 2020). Over time, some individu-
als replace others, and therefore, ecological communities 
are dynamic and vary to some degree both spatially and 
temporally (Mori et al. 2018; Tatsumi et al. 2019). In addi-
tion, some individuals of long-lived species (e.g., trees and 
vertebrates) persist over the long term, whereas individuals 
of short-lived species are replaced with conspecifics or indi-
viduals of other species (Nakadai 2020).

The average values of pairwise dissimilarity have been 
widely used to evaluate compositional heterogeneity among 
multiple sites but cannot accurately reflect the overall com-
positional heterogeneity within a pool of more than two sites 
(Baselga 2013a). Diserud and Ødegaard (2007) first pro-
posed a multiple-site (or more generally, a multiple-unit) 
similarity measure, which has conceptual and methodologi-
cal advantages over conventional approaches based on aver-
age pairwise similarities (Koleff and Gaston 2002; Gaston 
et al. 2007; Baselga et al. 2007). Many dissimilarity indices 
have been extended to multiple-unit indices (Baselga 2013b, 
2017). Multiple-unit dissimilarity indices can take into 
account components shared among more than three units 
(i.e., sites or temporal units) (Baselga et al. 2007). The pair-
wise individual-based indices proposed by Nakadai (2020) 
may be limited by the typical problems associated with the 
application of multiple-unit datasets. In particular, even if 
the numbers of mortal and recruited individuals are same, 
the presence of long-lived individuals could result in under-
estimates of individual turnover when the average values of 
the pairwise indices were used. Extending individual-based 
indices to multiple-temporal datasets may allow accurate 
assessment of the temporal variability of community com-
position based on individual turnover.

A null model is a pattern-generating model based on ran-
domization of ecological data and is designed to produce a 
pattern that would be expected in the absence of a particular 
ecological mechanism (Gotelli and Graves 1996; Gotelli and 
McGill 2006). Null models for temporal patterns in eco-
logical communities have been evaluated previously (e.g., 
cyclic shift permutations; Hallett et al. 2014, 2016). Such 
models use a matrix of the abundance, presence or absence, 
or biomass of species over multiple-temporal units (e.g., 
years) as an input. In each realization of the algorithm, the 
time series of every species is shifted forward by a random 
number of units, independently of other species (Kalyuzhny 
2020). However, no null model approach using individual 
randomization has been developed for community dynam-
ics, and no research has been conducted on the patterns of 
individual persistence using either beta-diversity indices or 
null models.

Therefore, the purpose of this paper was to develop new 
multiple-unit indices that can quantify compositional vari-
ability across time according to the speed of individual 
turnover, as well as novel random permutation criteria 
to evaluate the deviation in individual persistence from 
the perspective of ecological drift. In the present study, I 
extended individual-based beta-diversity indices to multi-
ple units after briefly reviewing the history of pairwise and 
multiple-unit indices and also introduced a newly devel-
oped null model. Then, I applied these indices to data from 
a 50-ha forest dynamics plot on Barro Colorado Island 
(BCI) in Panama (Condit et al. 2019), as a case study to 
demonstrate the usage and properties of indices compared 
to average pairwise measures. Using both novel indices 
and a null model provides opportunities to answer the fol-
lowing questions pertaining to the BCI plot. Are differ-
ences in the degree of compositional variability explained 
only by differences in the degree of individual turnover? 
Does the degree of deviation in individual persistence 
from each expected value of ecological drift lead to dif-
ferences in compositional variability among forest plots?

Materials and methods

Conventional incidence‑based 
and abundance‑based indices and novel 
individual‑based indices

Two types of dissimilarity indices have been proposed in 
previous studies: incidence-based and abundance-based 
dissimilarity indices (Baselga 2013b; Nakadai, 2020). 
Specifically, the widely used Bray–Curtis dissimilarity 
index is an abundance-based extension of the Sørensen 
index (Legendre and Legendre 2012; Baselga 2013b). The 
Bray–Curtis dissimilarity index was originally proposed 
as a percentage difference index by Odum (1950), yet it is 
commonly misattributed to Bray and Curtis (1957). The 
incidence-based and abundance-based methods target the 
number of species and the number of individuals, respec-
tively. Conventional beta-diversity indices are based on 
intersection (A, a) and relative complement (B, b and C, 
c) components. For example, the Sørensen dissimilarity 
index (dsor; Sørensen 1948) is formulated as follows:

where a is the number of species common to both units 
(i.e., sites or temporal units), b is the number of species 
that occur in the first but not the second unit, and c is the 
number of species that occur in the second but not the first 

(1)dsor =
b + c

2a + b + c
,
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unit. Similarity, the Bray–Curtis dissimilarity index (Odum 
1950) is formulated as follows:

The abundance-based components are as follows:

where xij is the abundance of species i at unit (i.e., site or 
time) j, and xik is the abundance of species i at unit (i.e., 
site or time) k. Therefore, A is the number of individuals of 
each species common to both units j and k, whereas B and 
C are the numbers of individuals unique to units j and k, 
respectively.

Therefore, it should be possible to distinguish the com-
munity dynamics component of persistence (P) from those 
that change over time, i.e., mortality and recruitment (M and 
R, respectively). M refers to individuals occurring at time 
1 (abbreviated T1) that die before time 2 (abbreviated T2), 
thereby representing the death of individuals during the time 
between T1 and T2. R identifies individuals that were not 
alive at T1 (or were not yet in the size class counted, e.g., 
diameter breast height ≥ 1 cm) but were subsequently alive 
and counted at T2, thereby representing R between T1 and 
T2. Here, the term “recruitment (R)” is used because I have 
tree communities in mind. “Colonization” in the sense of 
Tatsumi et al. (2021) could be employed when the approach 
introduced in this study is applied to studies on taxa other 
than trees (e.g., bird ringing data). Component P refers to 
the persistence of individuals from T1 to T2. Although P, M, 
and R relate to components A, B, and C, respectively, here 
I have used different characters to emphasize the processes 
represented by each component. The respective abundances 
are calculated as follows:

where zo1 is individual o at time T1, and zo2 is individual 
o at time T2. Both zo1 and zo2 take a value only of 1 or 

(2)dBC =
B + C

2A + B + C
.

(3a)A =
∑

i

min(xij, xik),

(3b)B =
∑

i

[

xij −min(xij, xik)
]

,

(3c)C =
∑

i

[

xik −min(xij, xik)
]

,

(4a)P =
∑

o

min(zo1, zo2),

(4b)M =
∑

o

[

zo1 −min(zo1, zo2)
]

,

(4c)R =
∑

o

[

zo2 −min(zo1, zo2)
]

,

0 (presence and absence, respectively). Therefore, P is 
the total number of individuals present at both T1 and T2, 
whereas M and R are the numbers of individuals unique to 
T1 and T2, respectively (Nakadai 2020).

T1 and T2 can be generalized as unit j (Tj) and unit k 
(Tk), and generalized versions of P, M, and R for units j and 
k are simply formulated as follows:

which are used for the main analysis of this study.
This formulation of the individual-based temporal beta-

diversity index for Bray–Curtis (dMR) dissimilarity can be 
expressed as follows:

In some cases, there is turnover of different individu-
als belonging to the same species even when the commu-
nity composition is stable over time, which contributes to 
a dynamic compositional equilibrium across time periods. 
Therefore, the components that change over time (M and 
R) are re-organized into two further components: compo-
sitional equilibrium (E) and shift (B and C), respectively 
(Nakadai 2020; Fig. 1). Component M can be partitioned 
into lost individuals that contribute to compositional change 
in a community (B) and lost individuals replaced by con-
specifics, contributing substantially to equilibrium in com-
munity composition (Eloss) (Fig. 1). Similarly, component 
R can be partitioned into gained individuals that contribute 
to compositional change in a community (C) and gained 
individuals replacing conspecifics, thereby contributing sub-
stantially to equilibrium in community composition (Egain) 
(Fig. 1). By definition, the numbers of Eloss and Egain indi-
viduals are identical; hence, I replaced both Eloss and Egain 
with the coefficient E, i.e., the component that contributes 
to dynamic compositional equilibrium (Nakadai 2020). Fur-
thermore, components M and R can also be analyzed in the 
same manner as community data (Nakadai 2020). Therefore, 
the Bray–Curtis dissimilarity between communities can be 
calculated based on M and R as follows:

where vs indicates the speed of compositional shifts in a 
community relative to the total speed of individual turnover 

(5a)P =
∑

o

min(zoj, zok),

(5b)M =
∑

o

[

zoj −min(zoj, zok)
]

,

(5c)R =
∑

o

[

zok −min(zoj, zok)
]

,

(6)dMR =
M + R

2P +M + R
,

(7)vs =
B + C

2E + B + C
=

B + C

M + R
,
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Fig. 1  Comparison of species 
composition and individuals 
(20 individuals of four species 
total) among temporal units, 
showing the components (A, 
B, C, M, R, P, Eloss, and Egain) 
used for assessing composi-
tional variability over time. The 
squares, circles, pentagons, and 
hexagons indicate species 1, 2, 
3, and 4, respectively. The num-
bers under each element (e.g., 
12) represent the corresponding 
time step. For components A 
and P, the number 123 is also 
shown, indicating the shared 
species and individuals across 
the three time steps, respec-
tively. Detailed explanations of 
each component are provided 
in Table 1. The dashed lines 
with numbers (i.e., a denomina-
tor and a numerator) indicate 
that the numerator chosen from 
among candidates of the same 
species (i.e., the number in the 
denominator) will be Eloss or 
Egain because the components 
of Eloss and Egain do not require 
individual identity information
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Table 1  Explanations of 
the components used in the 
conventional and novel indices 
of beta-diversity

A visualization of those components is provided in Fig. 1

Component Explanation

A The number of individuals of a species common to both units j and k
B The number of individuals of a species unique to unit j, absent from unit k (j < k)
C The number of individuals of a species unique to unit k, absent from unit j (j < k)
M The total number of individuals unique to unit j, absent from unit k (j < k)
R The total number of individuals unique to unit k, absent from unit j (j < k)
P The total number of individuals common to both units j and k
Eloss The total number of lost individuals that were replaced by conspecifics, calculated as M–B
Egain The total number of gained individuals replacing conspecifics, calculated as R–C
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associated with M and R. If vs is 0, then individual turnover 
would not contribute to compositional shifts in a commu-
nity; i.e., M and R are identical, and an equilibrium state 
exists. If vs is 1, all individual turnovers contribute to com-
positional shifts, and M and R are completely different. It 
is also possible to calculate vs as dBC divided by dMR, as 
follows:

Conventional multiple‑unit beta‑diversity indices

Multiple-site dissimilarity indices were first proposed by 
Diserud and Ødegaard (2007), which made it possible to con-
sider species information shared among more than three units 
using the inclusion–exclusion principle (Erickson 1996). Since 
then, various multiple-unit beta-diversity indices have been 
proposed (Baselga et al. 2007; Baselga, 2013b), including sev-
eral new multiple-unit indices based on pairwise dissimilar-
ity indices (Baselga et al. 2007; Baselga 2010, 2012, 2017). 
Specifically, these multiple-unit dissimilarity indices share the 
A (a), B (b), and C (c) components of indices based on abun-
dance (incidence). amu, bmu, and cmu correspond to a, b, and c, 
respectively, of incidence-based pairwise dissimilarity indices.

Although both bmu and cmu are simply sums of all com-
ponents divided into two parts in the pairwise indices, amu is 
based on the inclusion–exclusion principle described above 
and is difficult to understand intuitively. For example, in the 
case of three units, the component amu can be calculated as 
follows (Baselga et al. 2007; Baselga, 2010):

where ajk is the number of species common to both units. 
Considering a general case with n units, the component amu 
can be formulated as follows:

Equation 9 can be converted based on the inclusion–exclu-
sion principle, and the resulting components are as follows:

(8)

d
BC

÷ d
MR

=
B + C

2A + B + C
÷

M + R

2P +M + R

=
B + C

2(P + E) + B + C
÷

M + R

2P +M + R

=
B + C

2P +M + R
÷

M + R

2P +M + R

=
B + C

2E + B + C
= v

s
.

(9)a12 + a23 + a13 −min
(

a12, a23, a13
)

=
∑

j<k

ajk − a123,

(10)
∑

j<k

ajk −
∑

j<k<l

ajkl +
∑

j<k<l<m

ajklm − ∙ ∙ ∙.

where Sj is the total number of species at site j, ST is the total 
number of species at all sites considered together, and pjk 
and pkj are the numbers of species exclusive to units j and 
k, respectively, when compared pairwise (Baselga 2010). 
Specifically, pjk is the number of individuals included in unit 
j but not in unit k, and vice versa.

Similar to the case of amu described above, the component 
Amu can be calculated for n units as follows (Baselga 2010):

Applying the inclusion–exclusion principle allows the 
Amu component to be simplified. Amu, Bmu, and Cmu corre-
spond to A, B, and C, respectively, from abundance-based 
pairwise dissimilarity indices:

where TAB is the total abundance in the data set (details see 
Baselga, 2017).

Multiple-unit indices for Sørensen and Bray–Curtis are 
formulated as follows (Baselga 2010, 2013b):

(11a)amu =
∑

j

Sj − ST

(11b)bmu =
∑

j<k

min
(

pjk, pkj
)

(11c)cmu =
∑

j<k

max
(

pjk, pkj
)

(12)

∑S

i

[

∑

j<k

min(xij, xik) −
∑

j<k<l

min
(

xij, xik, xil
)

+
∑

j<k<l<m

min
(

xij, xik, xil, xim
)

−
∑

j<k<l<m<n

min
(

xij, xik, xil, xim, xin
)

∙ ∙ ∙,

]

.

(13a)Amu = TAB −
∑S

i
max(xij, xik, xil, xim, xin …)

(13b)

Bmu =
∑

j<k

min
(

∑S

i

[

xij −min(xij, xik)
]

,
∑S

i

[

xik −min(xij, xik)
]

)

(13c)

Cmu =
∑

j<k

max
(

∑S

i

[

xij −min(xij, xik)
]

,
∑S

i

[

xik −min(xij, xik)
]

)

(14)dsor.mu =
bmu + cmu

2amu + bmu + cmu

(15)dBC.mu =
Bmu + Cmu

2Amu + Bmu + Cmu

.
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Novel individual‑based multiple‑unit beta‑diversity 
indices

In this study, I developed individual-based components and 
novel indices for multiple-unit data sets. In accordance with 
existing methods for the calculation of multiple-unit dissimi-
larity, the persistence (Pmu) component can be calculated for 
three time steps as follows:

Considering a general case with n units, the component 
Pmu can be formulated as

Using the inclusion–exclusion principle, Pmu can be sim-
plified and the components Pmu, Mmu and Rmu reformulated 
as follows:

 where Ij is the total number of individuals in a unit j, IT is the 
total number of individuals in all units considered together, 
and qjk and qkj are the numbers of individuals exclusive to 
units j and k, respectively, when compared pairwise.

The multiple-unit individual-based index is formulated 
as follows:

Furthermore, as an extension of Eq. 8, I also introduced 
vs.mu, which indicates the compositional variability in a com-
munity relative to the individual turnover, as follows:

(16)
min

(

zo1, zo2
)

+min
(

zo2, zo3
)

+min
(

zo1, zo3
)

−min
(

zo1, zo2, zo3
)

.

(17)

∑I

o

[

∑

j<k

min(zoj, zok) −
∑

j<k<l

min
(

zoj, zok, zol
)

+
∑

j<k<l<m

min
(

zoj, zok, zol, zom
)

−
∑

j<k<l<m<n

min
(

zoj, zok, zol, zom, zon
)

∙ ∙ ∙,

]

.

(18a)Pmu =
∑

j

Ij − IT

(18b)Mmu =
∑

j<k

min
(

qjk, qkj
)

(18c)Rmu =
∑

j<k

max
(

qjk, qkj
)

.

(19)dMR.mu =
Mmu + Rmu

2Pmu +Mmu + Rmu

.

(20)vs.mu = dBC.mu ÷ dMR.mu.

Novel randomization criteria to construct a null 
model of individual‑tracked monitoring data

Here, I introduce a novel method for constructing a null 
model to evaluate the degree of individual persistence over 
time. Figure 2 is a conceptual diagram outlining the basis 
of the new null model. Cases (i) and (ii) shown in Fig. 2 
illustrate the patterns of individual persistence of two indi-
viduals. The degree of individual persistence differs between 
the two cases, even if the numbers of individuals involved in 

Time 1 Time 2 Time 3 Time 4

z1

z2

z1

z2

(a) Case (i)

(b) Case (ii)

Identical individual between time 1 and 4

Different individuals between time 1 and 4

Fig. 2  Conceptual diagram showing the basis of the new null model. 
Both (a) case (i) and (b) case (ii) showed patterns of individual per-
sistence for two individuals. The pattern of individual persistence 
differed between the two cases, even if the numbers of individuals 
affected by recruitment and mortality were the same at each time 
step. Here, in both cases, one individual was recruited, and one 
individual died. Specifically, in case (i), individual z1 persisted over 
time, but individual z2 was recruited between times 1 and 2 and died 
between times 2 and 3. On the other hand, in case (ii), individual z1 
died between times 2 and 3, and individual z2 was recruited between 
times 1 and 2 and continued to persist at least until time 4. The aver-
age value of the individual-based temporal beta-diversity index 
( d

MR
 ), which indicates the degree of individual turnover, may be the 

same in both cases, but the newly developed multiple-unit dissimilar-
ity index will have different values (dMR.mu) because the component 
Pmu can account for differences in the pattern of individual persis-
tence. Specifically, Pmu decreases, and the index dMR.mu increases, 
when the number of long-lived individuals (i.e., those persisting for 
more than three time steps) increases. The sprout and the skull and 
crossbones symbols indicate recruitment and mortality, respectively
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recruitment and mortality were equal across the time steps. 
In both cases, one individual was recruited, and one indi-
vidual died. Specifically, in case (i), the individual z1 persists 
over time, whereas individual z2 was recruited between T1 
and T2 and died between T2 and T3. On the other hand, in 
case (ii) described below, individual z1 died between T2 and 
T3, and z2 was recruited between T1 and T2 and persisted, at 
least until the end of observation at T4. Such differences in 
the patterns of individual persistence lead to differences in 
the value of the newly developed individual-based temporal 
multiple-unit dissimilarity index (dMR.mu), even when the 
numbers of individuals undergoing mortality and recruit-
ment are equal. The component Pmu can account for differ-
ences in the pattern of individual persistence. Specifically, 
Pmu decreases, and the index dMR.mu increases, when the 
number of long-lived individuals (i.e., more than three time 
steps) increases, and vice versa. The null model approach 
introduced here uses those properties of the component and 
the index.

In the novel null model, the simulations use the original 
numbers of recruited and mortal individuals, but mortal indi-
viduals are randomly selected at each time step. The simula-
tions were repeated (e.g., 100 times) for each plot. The index 
dMR.mu can be calculated from each repeated simulation. By 
comparing the observed and simulated values of the index 
dMR.mu, the standardized effect size of the degree of deviation 
in individual persistence from the null model (Pses.all) can be 
calculated as the observed value minus the mean of the null 
distribution, divided by the standard deviation in the null 
distribution. Calculating the deviation from the null model 
is commonly performed to express biological differences 
regardless of the units of the indices (e.g., McCabe et al. 
2012; Nakadai and Kawakita 2016). The value of Pses.all is 
close to 0, indicating random deaths of individuals (i.e., eco-
logical drift). In cases in which the value of Pses.all is greater 
than 0, the proportion of long-lived individuals (more than 
three time steps) is larger than that in the null model.

Case study: the permanent 50‑ha forest dynamics 
plot on BCI in Panama

To demonstrate the use of the new individual-based mul-
tiple-unit indices, I analyzed the data from Condit et al. 
(2019). The permanent 50-ha forest dynamics project plot 
on BCI in Panama was established in 1981 by Robin Fos-
ter and Stephen Hubbell (Hubbell and Foster 1983). Data 
from this plot have been used in many scientific papers, and 
descriptions of the area and survey methods are widely avail-
able (e.g., Legendre and Condit 2019). This 50-ha plot has 
been subjected to eight detailed surveys since its inception: 
in 1982, 1985, 1990, 1995, 2000, 2005, 2010, and 2015. The 
BCI data were divided into 1,250 quadrats (20 m × 20 m). 
Harms et al. (2001) classified quadrats into six habitat zones 

and a zone of mixed habitats (Fig. 3a, Table S1). The six 
habitat zones are grouped 1–6 and the mixed habitat zone is 
group 7 (Harms et al. 2001). Detailed information on each 
group and a map are shown in Fig. 3a.

First, I calculated the values of the two individual-based 
beta-diversity indices for all possible pairs of time points 
and then determined their average values ( dMR , vs ) for each 
quadrat. In addition, I calculated the newly developed mul-
tiple-unit indices (dMR.mu, vs.mu) for each quadrat and tested 
their relationships using simple linear regression to charac-
terize the novel indices. I predicted that the calculated aver-
age values would always be lower than the novel multiple-
unit indices based on the results of Baselga (2013a), who 
compared the patterns of the average values of conventional 
beta-diversity indices and multiple-unit indices. Second, 
because high individual turnover can result in high com-
positional variability within a community, to explore how 
much the values deviate from predictions based on individ-
ual turnovers, I tested the relationship between newly devel-
oped multiple-unit indices (dMR.mu) and two previous ones 
(dBC.mu, dsor.mu). Third, I calculated the degree of deviation in 
individual persistence from the null model (Pses.all) based on 
100 randomizations via a novel random permutation method 
(details described above) for each quadrat. I analyzed dif-
ferences among habitat types in compositional variability 
(dBC.mu), the degree of individual turnover (dMR.mu), compo-
sitional variability in individuals undergoing turnover (vs.mu), 
and the degree of deviation in individual persistence from 
the null model (Pses.all) using the Wilcoxon rank sum test, 
which allows for pairwise comparisons between groups with 
correction for multiple testing. The p-values were adjusted 
by the Holm method. This analysis seeks to afford novel 
insights on how BCI data can be interpreted using indices 
based on individual identity information. Finally, because 
the patterns of individual turnover and persistence may 
affect community variability, to confirm the effect of indi-
vidual persistence on community compositional variability, 
I tested the relationship between the degree of deviation in 
individual persistence from the null model (Pses.all) and the 
conventional multiple-unit dissimilarity index (dBC.mu) using 
a generalized additive model fitted by the restricted maxi-
mum likelihood (REML) method. I predicted that the con-
ventional multiple-unit dissimilarity index (dBC.mu) would 
decrease with increasing deviation of individual persistence 
from that of the null model (Pses.all).

All analyses were conducted in R software (ver. 4.0.3; R 
Development Core Team, 2020). The betapart R package 
(Baselga and Orme 2012) was used to calculate multiple-
unit versions of the Bray–Curtis and Sørensen dissimilarity 
indices. The R package mgcv (Wood 2017) was used to fit 
the generalized additive model to the relationship between 
the degree of deviation in individual persistence from the 
null model (Pses.all) and the conventional multiple-unit 
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Fig. 3  Comparison of the conventional multiple-unit Bray–Curtis dis-
similarity (dBC.mu; b and f), individual-based temporal beta-diversity 
dissimilarity (dMR.mu; c and g), composition variability (vs.mu; d and 
h), and the degree of deviation in individual persistence from the 
null model (Pses.all; e and i) among habitat zones (a) using the pair-
wise Wilcoxon rank sum test, which allows for pairwise comparisons 
between groups with correction for multiple testing. Habitat types 

labeled with the same letter did not significantly differ in terms of that 
index based on the Wilcoxon rank sum test with Holm’s method for 
multiple comparisons. Detailed information about the habitat zones 
and results of the Wilcoxon rank sum test are shown in Tables S1 and 
S3, respectively. In (a–e), the horizontal and vertical axes indicate 
easting and northing, respectively
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dissimilarity index (dBC.mu). The function pairwise.wilcox.
test was used to compare the differences among the habitats.

Results

Simple linear regressions showed that dMR.mu increased 
significantly with increasing dMR  (adjusted R2 = 0.971, 
p < 0.0001; Fig. S1a) and vs.mu increased significantly with 
increasing vs (adjusted R2 = 0.899, p < 0.0001; Fig. S1b). 
Both multiple-unit indices were higher than the average 
values of the pairwise indices at all times. Both dBC.mu 
and dsor.mu increased significantly with increasing dMR.mu 
(adjusted R2 = 0.756, p < 0.0001; Fig. S2a and adjusted 
R2 = 0.444, p < 0.0001, respectively; Fig. S2b).

The value of dBC.mu was significantly higher in group 4 
(swamp) than in the other groups (Fig. 3b,f, Table S2a). In 
addition, no significant difference was found between groups 
1 and 3, while the value of group 2 differed significantly 
from those of groups 1 and 3 (Fig. 3b,f, Table S2a). The 
dMR.mu values showed a similar pattern to that of dBC.mu. 
dMR.mu was significantly higher in group 4 (swamp) than 
in the other groups (Fig. 3c,g, Table S2b). No clear differ-
ence was observed between groups 1 and 3, but the value 
of group 2 differed significantly from those of groups 1 and 
3 (Fig. 3c,g, Table S2b). The vs.mu value was considerably 
and significantly higher in group 4 (swamp) than in all other 
habitats (Fig. 3d,h, Table S2c). In addition, no significant 
difference in vs.mu was found between groups 1 (low plateau) 
and 2 (high plateau), but the value of group 3 (slope) differed 
from those of groups 1 and 2 (Fig. 3d,h, Table S2c). There 
were no significant differences in Pses.all, among groups 4 
(swamp), 5 (streamside), and 6 (young forest), but the values 
were significantly lower in groups 4 and 5 than in the other 
groups (i.e., groups 1, 2, 3, and 7) (Fig. 3e,i, Table S2d). 
Moreover, no significant difference was found between 
groups 1 (low plateau) and 2 (high plateau), but group 3 
(slope) differed significantly from groups 1 and 2 in terms 
of Pses.all (Fig. 3e,i, Table S2d).

In the generalized additive model, compositional vari-
ability (dBC.mu) showed a significant response to the degree 
of deviation in individual persistence from the null model 
(Pses.all: edf = 3.951, F = 31.59, adjusted R2 = 0.112, 
p < 0.0001), with the values of the compositional variability 
index constant from Pses.all of approximately 12–25 and tend-
ing to increase from Pses.all of approximately 12–0 (Fig. 4).

Discussion

Individual turnover is a major driver of compositional 
change and variability within a community, although it has 
rarely been discussed. Higher individual turnover clearly 

facilitates higher variability in community composition; 
thus, compositional variability over time can occur even 
when considering only ecological drift. Hubbell’s unified 
neutral theory of biodiversity (Hubbell 2001) postulates 
ecological neutrality among species within communities 
and emphasizes the role of ecological drift in shaping bio-
diversity patterns. To elucidate compositional variability, 
the impact of individual turnover (i.e., ecological drift) 
should be excluded. However, almost no methods exist to 
quantify the impact of individual turnover on compositional 
variability. The individual-based indices introduced herein 
can assess compositional variability considering the contri-
bution of individual turnover (Table 2). In addition, infor-
mation about individual identity across multiple time steps 
provides opportunities to test individual persistence. Within 
and among species, some individuals live longer (i.e., indi-
viduals persist in the community for a longer period) than 
others. The patterns of individual persistence can be tested 
for their degree of deviation from expected patterns due to 
stochastic drift using the novel null model introduced here. 
This model can add a new assessment axis to empirical stud-
ies of community dynamics.

In the present study, I applied both conventional and 
novel indices, as well as the degree of deviation based on the 
null model to the BCI plot. The average values of both dMR 
and vs across all pairs are always lower than multiple-unit 
indices (i.e., dMR.mu and vs.mu; Fig. S1), in accordance with 
the findings of Baselga (2013a). The results of the case study 
clearly demonstrated that the novel individual-based index 
was significantly correlated with conventional incidence- 
and abundance-based indices (Fig. S2); however, variations 
among communities still exist. The value of vs.mu, which 
represents compositional variability after considering indi-
vidual turnover, differed among habitat zones, especially for 
group 4 (swamp), which differed significantly from all other 
habitats (Fig. 3a,c, Table S1). Both the degree of composi-
tional variability (dBC.mu) and individual turnover (dMR.mu) 
were significantly higher in group 4 than in all other habitats. 
There was significant compositional variability in the swamp 
even after controlling for individual turnover. Thus, indi-
vidual turnover is a major driver, but a large component of 
variability remains unexplained by individual turnover. The 
environmental stability of each plot is a possible source of 
the unexplained effect. For example, Nakadai (2020) identi-
fied compositional changes after consideration of the indi-
vidual turnover that was clearly associated with the degree 
of climate change (i.e., rate of temperature change) across 
the Japanese Archipelago. Compositional change over time 
in this swamp habitat has also been reported in terms of 
responses to a drought event at the BCI plot (Legendre and 
Condit 2019). In addition, although dBC.mu and dMR.mu were 
significantly higher in groups 1 (low plateau) and 3 (slope) 
than in group 2 (high plateau), vs.mu did not follow the same 
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pattern. Instead, vs.mu was significantly lower in groups 1 
(low plateau) and 2 (high plateau) than in group 3 (slope). 
These results suggest that the high plateau (group 2) has 
lower individual turnover, probably because it is isolated 
and stable and consequently has lower compositional vari-
ability. However, when considering individual turnover, the 
slope (group 3) differs from both the low and high plateau 
(groups 1 and 2).

The degree of deviation in individual persistence was 
lower in group 4 (swamp) than in groups 1, 2, 3, and 7, but 
not group 5 (streamside) or 6 (young forest), suggesting that 
the three habitat types (i.e., swamp, streamside, and young 
forest) may be approaching their expected mortal patterns 

due to ecological drift. Moreover, based on the generalized 
additive model, compositional variability was associated 
with the degree of deviation in individual persistence from 
the null model (Fig. 4). This suggests that an increase in the 
proportion of the long-lived individuals (i.e., higher values 
of Pses.all) reduces compositional variability, even if the level 
of individual turnover remains the same. Both the results and 
the interpretation thereof indicate that the novel approach 
introduced in the present study affords new insights into 
the forest dynamics of community composition. In previ-
ous studies, individual persistence was recognized in com-
munity dynamics as a factor facilitating stable coexistence 
among species and buffering population growth (i.e., the 
storage effect) (Chesson and Warner 1981; Chesson 2000). 
The effect of buffered population growth is expected to be 
low compositional variability and turnover of individuals 
over time throughout the community. This prediction is 
consistent with the results related to Pses.all. In other words, 
habitat types with higher Pses.all (except groups 4, 5, and 6) 
were better stabilized by the storage effect.

The novel approaches introduced in the present study 
focus on datasets collected via individual tracking. I chose 
one of the most representative and widely employed data-
sets (the BCI forest plot; Hubbell and Foster 1983) as an 
example. It is difficult to apply the new methods to taxa in 
which individuals are not identified (e.g., aquatic plankton 
communities) unless they are all experimentally tracked. 
However, I emphasize that my approach can be applied 
in many other scenarios. For example, the Forest Global 
Earth Observatory (ForestGEO; https:// fores tgeo. si. edu/) 
is a global network of scientists and forest research sites 
including the BCI plot; data from 72 sites across 27 coun-
tries are available (Davis et al. 2021). On the regional scale, 
the Monitoring Sites 1,000 Project launched by the Ministry 
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Table 2  Summary of indices, formulae, and references citing both the indices developed in previous studies and the novel indices proposed in 
this study

Index Formula Reference

dBC B+C

2A+B+C
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∑

i

�

xij−min(xij ,xik)
�
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∑

i

�
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�
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�
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�
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i

�
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�

+
∑
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�
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�
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dMR M+R
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∑
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∑
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of the Environment, Japan (Ishihara et al. 2011) includes 
60 forest plots across the Japanese archipelago (Ishihara 
et al., 2011; Nakadai 2020). Both the ForestGEO and the 
monitoring 1000 projects feature individual tracking; my 
methods are applicable. In addition, recent developments 
in remote sensing techniques have rendered it possible to 
identify individual trees (e.g., Guillén-Escribà et al. 2021; 
Weinstein et al. 2021), although not (yet) to track individu-
als. In the near future, remote sensing will yield individual 
tracking datasets on a global scale. It is sometimes difficult 
to identify clonal plant species or individuals with multiple 
stems. However, if the target shifts from the individual to 
the stem, my methods are applicable. Therefore, depending 
on the purpose and status of a study, it may be possible to 
change the analytical resolution and the target. Finally, the 
concept of individual-based beta-diversity is applicable not 
only to plant community datasets but also to animal datasets 
(Nakadai 2020). Specifically, datasets on bird ringing, other 
classical mark–recapture procedures, and biologging, which 
record animal ranges and movements, can be analyzed using 
my methods because multiple time-series datasets collected 
from the same place can track individual turnover across 
time and space (Nakadai 2020).

Although temporal beta-diversity has attracted much 
attention, especially at large spatial scales (Gotelli et al. 
2017; Brice et al. 2019; Magurran et al. 2019), it is simply 
an extension of spatial beta-diversity. Both methodological 
and conceptual frameworks rooted in community dynamics 
should be used. Above all, information from “individuals” 
has been absent from empirical studies of temporal dynam-
ics in community ecology and biodiversity. On the other 
hand, recent advances in modern coexistence theory (Ches-
son 2000) suggest that the impact of individuals across gen-
erations (e.g., individual persistence of adult trees) is a stor-
age effect that facilitates species coexistence and stabilizes 
community dynamics. In this context, the methods proposed 
here are expected to be useful for addressing a wide range 
of research questions related to temporal changes in biodi-
versity, especially studies using forest monitoring data to 
track individuals, by bridging gaps between recent theoreti-
cal advances and accumulated empirical data.
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