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MOTIVATION RNA-seq in sparse populations of genetically defined neurons is essential for dissecting the
molecularmechanisms that control the development and plasticity of neural circuits. However, current tran-
scriptomic approaches are ill suited for detailed mechanistic studies in sparse neuronal populations, as
they either are technically complex and relatively expensive (e.g., single-cell RNA-seq) or require large
amounts of input material (e.g., traditional bulk RNA-seq). Thus, we sought to establish a simple, robust,
and cost-effective method for in-depth RNA-seq in multiple samples derived from ultra-sparse neuronal
populations in the brain.
SUMMARY
Profiling of gene expression in sparse populations of genetically defined neurons is essential for dissecting
the molecular mechanisms that control the development and plasticity of neural circuits. However, current
transcriptomic approaches are ill suited for detailed mechanistic studies in sparse neuronal populations,
as they either are technically complex and relatively expensive (e.g., single-cell RNA sequencing [RNA-
seq]) or require large amounts of input material (e.g., traditional bulk RNA-seq). Thus, we established
Meso-seq, a meso-scale protocol for identifying more than 10,000 robustly expressed genes in as little as
50 FACS-sorted neuronal nuclei. We demonstrate that Meso-seq works well for multiple neuroscience appli-
cations, including transcriptomics in antibody-labeled cortical neurons in mice and non-human primates, an-
alyses of experience-regulated gene programs, and RNA-seq from visual cortex neurons labeled ultra-
sparsely with viruses. Given its simplicity, robustness, and relatively low costs, Meso-seq is well suited for
molecular-mechanistic studies in ultra-sparse neuronal populations in the brain.
INTRODUCTION

The brain is built from hundreds of molecularly distinct cell types,

and key questions in neuroscience concern the cell-type-spe-

cific molecular mechanisms that control the developmental

assembly of different cell types into neural circuits and their

experience-dependent modulation, e.g., during learning. Cell-

type-specific profiling of gene expression by RNA sequencing

(RNA-seq) has revolutionized our understanding of these mech-

anisms by providing a precise census of the cell types in the

brain and by identifying a large number of candidate genes

and putative molecular mechanisms that may control the devel-

opment and function of specific neural circuits. Thus, major chal-

lenges now lie in testing the hypotheses emerging from tran-

scriptomic analyses via targeted molecular manipulations in
Cell Rep
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specific cell types acrossmultiple developmental and physiolog-

ical conditions. However, such mechanistic experiments are

technically challenging, since they often require in-depth tran-

scriptomic analyses in sparse genetically defined cell types

across multiple conditions (e.g., multiple genotypes, timepoints,

etc.). Thus, there is a need for a simple, robust, and cost-effec-

tive method to RNA-seq in-depth multiple samples derived

from sparse populations of genetically defined neurons.

RNA-seq from single cells or nuclei (single-cell RNA-seq

[scRNA-seq] or single-nucleus RNA-seq [snRNA-seq]) has

transformed neuroscience, since it allows for precise high-

throughput measurements of the cellular heterogeneity of neural

circuits, even from relatively sparse neuronal populations.

Indeed, scRNA-seq- and snRNA-seq-based approaches are

currently used in a wide range of neuroscience applications
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Figure 1. High-quality RNA-seq data can be obtained from 50–100 FACS-sorted neuronal nuclei

(A–C) Technical variability across RNA-seq libraries generated from increasing amounts of FACS-sorted nuclei of VIP INs and non-VIP cells in the cortex. (A)

Increasing amounts of FACS-sorted nuclei of VIP INs and non-VIP cells (i.e., nuclei of all cells that are not VIP INs) were collected and used for building RNA-seq

libraries in three technical replicates; plotted are percentage of uniquely mapped reads in each library. (B) Principal-component analysis (PCA) reveals that li-

braries prepared from the same FACS fraction and the same number of nuclei are most similar to each other. (C) Pairwise comparison of gene expression levels

across technical replicate libraries is shown (dot represents one gene).

(D) Number of genes identified when applying increasing expression thresholds in technical replicate RNA-seq libraries generated from nuclei of VIP INs and non-

VIP cells.

(E) Density scatterplot of the coefficient of variation (CV) (SD/mean) of normalized read counts as function of gene expression level (Log2 normalized read counts)

in three technical replicate libraries prepared from 50 or 500 FACS-sorted VIP IN nuclei.

(legend continued on next page)
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(Ecker et al., 2017; Habib et al., 2020; Jin et al., 2020; Keren-

Shaul et al., 2017) and have identified a wealth of genetically

defined neural cell types (Usoskin et al., 2015; Zeisel et al.,

2015). However, scRNA-seq and snRNA-seq still suffer from

important technical limitations, such as the relatively low number

of genes reliably identified, e.g., when using droplet-based ap-

proaches (2,000–4,000 genes per cell; Ding et al., 2020). Simi-

larly, even though the bioinformatic tools for analyzing scRNA-

seq and snRNA-seq data are becoming increasingly streamlined

(Andrews et al., 2021; Soneson and Robinson, 2018; Tian et al.,

2019; Vieth et al., 2019), proper analyses of such data still require

a very high level of expertise. Finally, scRNA-seq and snRNA-

seq experiments are relatively expensive, since typically, a large

number of cells and nuclei need to be sequenced to obtain

robust and reliable data. Thus, scRNA-seq and snRNA-seq are

not ideal for experiments that require transcriptomic analyses

of many samples.

Bulk-based approaches for RNA-seq are technically robust,

provide high transcriptomic coverage, and reliably identify up

to 15,000 genes in a given cell type (Mardinly et al., 2016);

furthermore, analyses of bulk RNA-seq data are well established

and are rather accessible even to non-experts (Love et al., 2014;

Robinson et al., 2010). However, a major drawback of bulk ap-

proaches is that they require relatively large amounts of input

material, usually at least several thousand cells or nuclei (Ama-

moto et al., 2020; Mardinly et al., 2016). These large amounts

of input material are a severe limitation when using bulk RNA-

seq for transcriptomic analyses in sparse neuronal populations,

since it is often not feasible to collect sufficient amounts of input

material in multiple experimental conditions. This limitation ap-

plies also to RNA-seq of hand-sorted labeled neurons (Sugino

et al., 2019), which is very labor intensive and can be applied

only to live tissue—thus, it is not well suited for routine parallel

processing of many biological samples. Taken together, there

is a need for a simple method that preserves the advantages

of bulk RNA-seq (deep coverage, robustness, and simple ana-

lyses) but that works for meso-scale amounts (i.e., several

dozen) of genetically defined cells or nuclei.

RESULTS

Our goal was to establish a simple and robust method for in-

depth RNA-seq from meso-scale amounts of genetically identi-

fied neurons (i.e., 50–100 cells per sample) that is applicable to

frozen tissues and that allows for the precise isolation and tran-

scriptomic profiling of genetically defined neurons via their label-

ing with antibodies, genetic tags, and/or viral constructs. Thus,

we decided to focus on the fluorescence-activated cell sorting

(FACS)-based isolation of nuclei rather than whole cells, since

nuclei—unlike whole cells—remain intact even after snap

freezing, thereby preserving the nuclei’s transcriptional state,

e.g., during precisely timed experiments.
(F) Density plots for the number of genes as a function of the CV across three tec

and non-VIP cells. Plots are presented for three read-count thresholds (R0, >10

(G) Number of genes with low, middle, and high variability (CV = 0–0.5, CV =

thresholds (R0, >10, and >20 reads).

(H) Pairwise comparison of gene expression levels across biological replicate lib
Robust in-depth RNA-seq from meso-scale amounts of
FACS-sorted nuclei
To establish our meso-scale method for RNA-seq in genetically

identified neurons, we focused on GABAergic interneurons (INs)

in the mouse visual cortex that express the vasoactive intestinal

peptide (VIP INs): these neurons are relatively sparse (1% to 2%

of all cortical neurons, mostly concentrated in layer 2/3 [L2/3] of

the cortex; Fishell and Kepecs, 2020; Tremblay et al., 2016) and

accessible with cell-type-specific genetic tools (He et al., 2016;

Taniguchi et al., 2011), and their transcriptome has been profiled

extensively (Hrvatin et al., 2018; Mardinly et al., 2016; Yao et al.,

2021). Thus, we generated transgenic mice in which all cortical

VIP INs are labeled by a nuclear-bound version of GFP (Vip-

Cre::INTACT, ‘‘VIP INTACT’’ mice; Mo et al., 2015; Figure S1A)

and validated that the GFP-labeled nuclei are found mainly in

L2/3 (Figure S1B). Finally, we prepared nuclei from the visual

cortices of these mice (using a modified protocol based on

Bakken et al., 2018) and validated by FACS that an appropriate

fraction of nuclei is GFP labeled (1.2% in VIP INTACT mice and

0% in wild-type control mice; Figure S1C).

Next, we sought to determine whether meso-scale amounts

(i.e., tens to hundreds) of FACS-sorted nuclei suffice for in-depth

transcriptomics. For this, we prepared nuclei from the visual cor-

tex of VIP INTACT mice, FACS sorted them into GFP-positive

and negative fractions (‘‘VIP INs’’ and ‘‘non-VIP cells,’’ respec-

tively), and collected samples of 50, 100, 200, 500, or 800 nuclei

from each fraction. To simplify the subsequent generation of

RNA-seq libraries, we collected the sorted nuclei into a lysis

buffer that is suitable for reverse transcription, thereby avoiding

a separate step of RNA purification. RNA-seq libraries were then

generated with a modified version of the SMART-Seq2 protocol

and sequenced at a depth of 5–10 million reads per library. After

an initial quality check, we mapped reads to the mm10 mouse

genome: this revealed that the majority of reads were uniquely

aligned (>80% uniquely mapped reads) and that libraries pre-

pared from 200 or less nuclei exhibit the highest percentage of

mapped reads (>90% uniquely mapped reads) (Figure 1A).

We then sought to characterize the variability between tech-

nical replicate libraries prepared from the same number of nuclei,

as this would help us to determine the number of nuclei that

yields libraries with the largest number of reliably identified

genes. Principal-component analysis (PCA) revealed that the li-

braries prepared from the same number of nuclei of the same

FACS fraction tended to cluster together (Figure 1B). Further-

more, pairwise comparisons of these technical replicates re-

vealed that libraries prepared from 50 and 100 VIP INs have

the highest correlation coefficient (CC) (0.87 and 0.88, respec-

tively; Figure 1C; Table S1). In contrast, libraries prepared from

500–800 VIP INs were the least similar to each other (CC =

0.80 and 0.81, respectively). In non-VIP cells, libraries prepared

from 200 or 500 nuclei were most similar to each other (CC =

0.91), followed by libraries prepared from 100, 800, and 50 nuclei
hnical replicate libraries generated from 50–800 FACS-sorted nuclei of VIP INs

, and >20 reads).

0.5–1, and CV = 1–2, respectively) when applying three different expression

raries generated from 100 FACS-sorted nuclei.

Cell Reports Methods 2, 100259, August 22, 2022 3
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(CC = 0.89, 0.88, and 0.86, respectively). We therefore conclude

that the technical variability of RNA-seq libraries prepared from

50–100 FACS-sorted GFP-labeled neuronal nuclei with our

meso-scale protocol is relatively low, especially when compared

with libraries derived from similar numbers of human cells (Wang

et al., 2019).

Next, we assessed the number of genes whose expression

can reliably be detected in the libraries prepared from different

amounts of nuclei. For this, we determined the number of genes

that cross increasing expression thresholds (i.e., number of

normalized reads; Figure 1D): this revealed that �22,000 genes

are identified when no threshold is applied and 15,000–17,000

genes with a threshold of 10 reads. Since one might expect

that using fewer input nuclei would yield more variable libraries,

we next analyzed the variance in gene expression across the

different libraries (Figures 1E–1G): for this, we first calculated

the coefficient of variation (CV) (standard deviation/mean) of

the expression of all genes in all conditions and then plotted

for each condition the CV of each gene as a function of its

expression. This revealed that libraries prepared from fewer

nuclei are less variable than libraries prepared from larger

amounts of nuclei (Figure 1E) and that the variable genes are

mostly expressed at low levels. Indeed, libraries prepared from

50 or 100 VIP IN nuclei contain more low variability genes than

the libraries prepared from 200–800 VIP IN nuclei, while the

optimal amount of non-VIP nuclei is between 200 and 500 (Fig-

ure 1F). Notably, applying an expression threshold of 10 or 20

reads greatly reduces the number of intermediate and high-vari-

ance genes, but not the number of low-variance genes (�10,000

genes). Based on these analyses, we then binned for each library

the genes into low,medium, and highly variable expression (CV =

0–0.5, CV = 0.5–1, and CV = 1–2, respectively) (Figure 1G). This

revealed that, by applying a threshold of 10 reads, we consis-

tently identify more than 10,000 low-variability genes in libraries

prepared from 50–100 VIP IN nuclei and an even higher number

of such genes in libraries prepared from 100–500 nuclei of non-

VIP cells; importantly, the number of low-confidence genes (with

CV = 0.5–1 and CV = 1–2) is relatively low under these settings.

Thus, we conclude that, for sparse neuronal populations, the

ideal number of nuclei collected for library preparation lies be-

tween 50 and 100 nuclei and that setting an expression threshold

of 10 reads greatly reduces the number of high-variability genes

without substantially affecting the number of low-variability

genes. Since 100 FACS-sorted nuclei yield high-quality libraries

also for non-VIP cells, we decided in subsequent experiments to

collect 100 nuclei for each condition and to apply a 10-read

expression threshold in our analyses.

Having determined the technical variability between the RNA-

seq libraries (Figures 1A–1C), we then assessed how this com-

pares with biological variability of such libraries (i.e., variability

between different biological samples). For this, we FACS iso-

lated 100 VIP and 100 non-VIP nuclei from the visual cortices

of two additional VIP INTACT mice, performed RNA-seq, and

calculated the correlation coefficients obtained by pairwise com-

parisons of the respective libraries (Figure 1H; Table S2). This

revealed that the variability between biological replicates is indis-

tinguishable from the variability between technical replicates.

We therefore conclude that our meso-scale protocol allows for
4 Cell Reports Methods 2, 100259, August 22, 2022
consistent in-depth transcriptomic comparisons of sparse,

genetically defined cell types across different animals.

Taken together, these experiments demonstrate that our

meso-scale protocol generates high-quality transcriptomic

data: using as little as 50 FACS-sorted nuclei, our protocol is

robust with regards to technical variability and allows for reliable

analyses of the expression levels of 10,000–12,000 genes, de-

pending on the heterogeneity of the cellular population profiled.

Notably, these numbers of identified genes are similar to the

numbers obtained with standard protocols for bulk RNA-seq.

Since our method uses meso-scale amounts of nuclei we call it

‘‘Meso-seq.’’

Meso-seq libraries are cell type specific
An intended key application of Meso-seq is cell-type-specific, in-

depth gene profiling in sparse populations of genetically defined

neurons. Thus, we next analyzed whether the Meso-seq data ob-

tained from VIP INs are cell type specific when compared with

non-VIP cells (Figure 2). Focusing on the biological replicate li-

braries (Figure 1H), we first analyzed the expression of well-

described housekeeping genes, pan-neuronal genes, and known

cell-type-specific genes (Figure 2A). Indeed, all these genes show

the expected expression patterns, with de-enrichment or enrich-

ment of the cell-type-specific genes in the anticipated fraction of

nuclei (e.g., Vip and Gad1 are enriched in VIP IN nuclei, while the

glutamatergic markers Neurod6 and Slc17a are de-enriched in

VIP IN nuclei). Consistent with this and similar to previous reports

(Hrvatin et al., 2018; Mardinly et al., 2016; Mo et al., 2015; Yao

et al., 2021), transcriptome-wide analyses revealed several hun-

dred genes that are de-enriched or enriched in VIP INs (406 and

223 genes, respectively; Figure 2B). Finally, we compared the

VIP-IN-enriched genes identified by our Meso-seq approach

with the VIP-IN-enriched genes identified in previous experiments

that used a large number of VIP IN nuclei purified from the cortices

of several VIP INTACTmice for standard bulk RNA-seq (Mo et al.,

2015; Figure 2C): indeed, most of the genes identified by Meso-

seq as VIP IN specific (i.e., >5-fold enriched) are VIP IN specific

also in these data (171 of 233 of the genes [71%]) or at least en-

riched in VIP INs (i.e., less than 5-fold; 53 of 233 of the genes

[23%]). We therefore conclude that Meso-seq allows for cell-

type-specificgeneprofiling fromsparsepopulationsof genetically

defined neurons.

Meso-seq is compatible with antibody labeling of nuclei
Thus far, we have demonstrated that Meso-seq is suitable for

profilingofultra-lowamountsofneuronal nuclei labeledwithexog-

enous fluorescent tags, such asGFP. However, for many applica-

tions—e.g., transcriptomic profiling of sparse cell populations in

the brains of humans or of non-human primates (NHPs)—it would

be useful to isolate and profile nuclei based on the endogenous

expression of cell-type-specific proteins. Thus, we next tested

whether Meso-seq can be used for transcriptomic profiling of ul-

tra-low amounts of antibody-labeled neuronal nuclei. For this,

weobtained frozen cortical tissueof an adult cynomolgusmonkey

(Macaca fascicularis), prepared a single-nuclei suspension, and

labeled the nuclei with antibodies against the nuclear proteins

RBFOX3 (i.e., anti-NeuN) and PROX1: since RBFOX3 is a pan-

neuronalmarkerandsinceexpressionofPROX1 ishighlyenriched
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Figure 2. Meso-seq is suitable for in-depth analyses of cell-type-specific gene programs

(A) Expression of cell-type-specific marker genes in nuclei of VIP INs (green) and non-VIP cells (gray). Error bars represent the standard error of the mean (SEM).

(B) Scatterplot of the expression levels of all expressed genes (black dots, genes enriched in non-VIP cells; green dots, genes enriched in VIP IN nuclei; small

dotted blue line, 5-fold enrichment).

(C) Comparison of VIP-IN-enriched genes identified by Meso-seq to VIP-IN-enriched genes identified by Mo et al. (2015). Meso-seq identifies 233 genes as

significantly enriched in cortical VIP INs; of these, 73% (171 genes) were also found to be significantly enriched in VIP INs by Mo et al. (2015). FC, fold change.
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in VIP INs (Miyoshi et al., 2015; Rubin and Kessaris, 2013), this la-

beling strategy should allow for collection and transcriptomic

comparison of VIP IN nuclei (PROX1+, NeuN+, and DAPI+) versus

all neuronal nuclei (PROX1�, NeuN+, and DAPI+) and all cortical

cells (DAPI+). Similar as with genetically labeled nuclei (Figure 2),

we find that Meso-seq reliably identifies over 12,000 genes in

each fraction of 100 FACS-sorted nuclei (Figure 3A) and that the

replicate libraries in each fraction are very similar to each other

(Figure 3B). Next, we assessed the cell type specificity of these li-

braries by comparing the libraries derived from NHP VIP INs with

those derived from all cortical NHP neurons (Figure 3C). Similar

as in VIP INs isolated fromVIP INTACTmice (Figure 2), we identify

a large number of genes that are de-enriched or enriched in VIP

INs, including expected VIP-IN-specific genes (e.g., VIP,
PROX1, IGF1, CRH, etc.). Finally, we asked whether the Meso-

seqapproachcanbeused for identifyinggenes thatareexpressed

in a cell-type-specific manner only in certain species. For this, we

prepared nuclei from the visual cortices of an adult wild-type

mouse and repeated the experiment as was done for the NHP

nuclei (i.e., antibody labeling, FACS, and Meso-seq). Comparing

the nuclei isolated from mice and NHPs, we find that 164 genes

are enriched 5-fold or more in NHP PROX1+ neurons while 109

genes are enriched in mouse PROX1+ neurons (Figure 3D); 10

genes are 5-fold or more enriched in cortical PROX1+ neurons in

both species (as compared with PROX1� nuclei). Since the num-

ber of genes that are enrichedonly inoneof the species inPROX1+

neurons is relatively high and includes some unexpected genes

(e.g., Vip, Prox1, Igf1, Crh, and Kit), we further validated these
Cell Reports Methods 2, 100259, August 22, 2022 5
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Figure 3. Meso-seq of antibody-labeled nuclei of sparse neuronal subtypes isolated frommice and non-human primate (NHP) cortices yields
high-quality RNA-seq libraries

Meso-seq in nuclei FACS sorted from the cortices of an adult mouse (Mus Musculus) or an adult cynomolgus monkey (Macaca fascicularis); nuclei were FACS

sorted based on antibody labeling for the pan-neuronal marker NeuN (i.e., RBFOX3) and the lineage marker PROX1.

(A–C)Meso-seq libraries prepared fromPROX1+/NeuN+ nuclei are cell type specific and highly enriched for VIP INs. (A) Quantification of the number of genes with

low,middle, and high variability (CV = 0–0.5, CV = 0.5–1, and CV = 1–2, respectively) in the different FACS fractions is shown. Using a threshold of >10 reads, more

than 12,000 genes can be identified reliably even in PROX1+/NeuN+ neurons in the cynomolgus monkey cortex. (B) Principal-component analysis reveals that

Meso-seq libraries prepared from the same nuclear fraction co-cluster. (C) Scatterplot of all genes expressed (>10 reads) in RNA-seq libraries prepared from

PROX1+/NeuN+ nuclei (i.e., enriched for VIP INs) or PROX1�/NeuN+ nuclei (i.e., all other neurons) isolated from the cortex of adult cynomolgus monkeys is shown

(dark gray dots, genes 5-fold enriched in PROX1�/NeuN+ nuclei; green dots, genes 5-fold enriched in PROX1+/NeuN+ nuclei; small dotted blue line, 5-fold enrich-

ment).

(D and E) Meso-seq of PROX1�/NeuN+ nuclei isolated from the mouse and cynomolgus monkey cortex reveals species-specific gene expression in VIP INs. (D)

Scatterplot of enrichment of expression in PROX1+/NeuN+ nuclei (as compared with expression in DAPI+ nuclei) in the cortex of cynomolgus monkey and mouse

is shown (expression threshold >10 reads; black dots, mouse genes significantly enriched 5-fold; green dots, monkey genes significantly enriched 5-fold; small

dotted blue line, 5-fold enrichment). (E) Examples of genes that are expressed selectively in VIP INs either in monkeys (ARHGAP28 andNPSR1) or in mice (Rgs10

and Tspan18) are shown (Prox1+, PROX1+/NeuN+ nuclei; input, DAPI+ nuclei; GFP+, VIP IN nuclei isolated from VIP INTACT mice). INT, INTACT; WT, wild type.
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findings by asking whether these genes are de-enriched or en-

riched in a similar manner also in VIP INs in the cortices of VIP

INTACT mice (Figure 2). This revealed that only for a few genes

the enrichment in PROX1+ neurons in NHP and mouse cortices

is consistent with the enrichment in VIP INs in the cortices of VIP

INTACT mice (Figure 3E): for example, ARHGAP28 and NPSR1

are highly enriched in PROX1+ neurons in the NHP cortex but

are essentially absent from these cells in the mouse cortex, while

Rgs10 and Tspan18 are highly enriched in mouse VIP INs but are
6 Cell Reports Methods 2, 100259, August 22, 2022
essentially absent fromPROX1+ neurons in the NHP cortex. Addi-

tional experiments will be required to fully establish the identifica-

tion of genes that are enriched in a species-specific manner in

cortical VIP INs. Nevertheless, our experiments demonstrate

that Meso-seq can be used in combination with antibody labeling

for deep profiling of sparse neuronal populations of frozen brain

tissue of mice and NHPs. Furthermore, using Meso-seq, we pro-

vide the first transcriptomic analyses of VIP INs in the cortex of

cynomolgus monkeys, thereby identifying genes that seem to be
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expressed in a species-specificmanner in cortical VIP INs inmice

and NHPs.

Meso-seq allows for in-depth analyses of experience-
regulated gene programs in sparse neuronal
populations
Next, we tested whether Meso-seq is suitable for analyzing

experience-regulated gene programs in sparse neuronal popula-

tions. Experience-induced transcription is a key molecular

mechanism for regulating the plasticity of neural circuits in a

cell-type-specific manner (Gray and Spiegel, 2019; Hrvatin

et al., 2018; Mardinly et al., 2016; Nord and West, 2020; Yap

and Greenberg, 2018), and mutations in or nearby experience-

regulated genes are associated with a variety of neurodevelop-

mental and psychiatric disorders (Ebert and Greenberg, 2013).

We hypothesized that Meso-seq is well suited for analyzing

experience-induced transcription in sparse neuronal popula-

tions, since such analyses often require that the respective tis-

sues are harvested at very precise time points post-stimulus

and Meso-seq works well on ultra-low numbers of nuclei FACS

isolated from snap-frozen tissue (Figures 1, 2, and 3). To test

this hypothesis, we analyzed the changes in gene expression

in VIP INs in the adult visual cortex upon dark housing/light expo-

sure (DH/LE): previous studies used the same stimulation para-

digm to identify sensory-induced transcriptomic changes in vi-

sual cortex VIP INs (either with RiboTag-seq [Mardinly et al.,

2016] or with scRNA-seq [Hrvatin et al., 2018]), thereby allowing

us to directly compare between Meso-seq data and these exist-

ing data. Thus, we housed adult VIP INTACT mice in complete

darkness for 1 week and dissected and snap froze their visual

cortices either in the dark or after exposure to light for 0.5, 1,

or 3 h (Figure 4A). First, we compared the kinetics of experi-

ence-induced gene expression in RNAs isolated from FACS-

sorted nuclei of non-VIP visual cortex cells with those isolated

from total visual cortices (i.e., nuclear versus total RNA) (Fig-

ure 4B). This revealed that DH/LE induces in both RNA prepara-

tions a rapid rise in the RNA levels of early-induced genes (e.g.,

Arc, Fos, and Npas4) and a slower increase in late-induced

effector genes (e.g., Bdnf and Nptx2). However, the kinetics of

the changes in RNA levels differ in the two preparations: in puri-

fied nuclei, the RNA levels of early-induced genes peak at 30min

after stimulus onset, while in whole-tissue lysates, they reach

their peak values after 1 h. Similarly, the RNA levels of late-

induced genes peak in purified nuclei at 1 h post-stimulus but

3 h in total RNA.

Next, we analyzed the sensory-induced gene program in VIP

INs (Figures 4C and 4D). As before, we observed rapid kinetics
Figure 4. Meso-seq allows for in-depth analyses of experience-regula

(A) Experimental strategy for dark housing/light exposure (DH/LE) in VIP INTACT

(B) Comparison of the kinetics of sensory-induced gene expression in total visual

(after FACS, measured by Meso-seq). Error bars represent the SEM.

(C and D) Sensory-driven gene programs in visual cortex VIP INs nuclei after DH

shown (one row represents one gene). (D) Line plots of expression of select sen

the SEM.

(E) Venn diagram comparing the number of sensory-regulated genes identified

sensory stimulation via DH/LE.

(F) Kdm5b and Zswim6 are ASD-associated genes newly identified as experienc
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of sensory-induced gene expression in these cells as well: spe-

cifically, we identified 76 genes with peak RNA levels at 30 min

post-stimulus (‘‘early-response genes,’’ including many well-

known early-induced transcription factors, e.g., Egr1 and Fos),

137 late-response genes with peak RNA levels at 1 h post-stim-

ulus (includingmanywell-described late-induced effector genes,

e.g., Igf1 and Pcsk1), and 122 very-late-response genes whose

RNA levels peak at 3 h after exposure to light. Interestingly,

whenwe compared the genes identified as experience regulated

in VIP INs by Meso-seq with those previously identified via

RiboTag-seq or scRNA-seq, we observed only a small overlap

(Figure 4E): the majority of the genes identified as experience

regulated by Meso-seq are not identified as regulated either in

the RiboTag-seq or scRNA-seq experiments (296 out of 335

genes), and most experience-regulated genes in the RiboTag-

seq data are not found to be regulated by Meso-seq data or

scRNA-seq (234 out of 274 genes). This relatively low overlap

might be due to (1) differences in the pools of RNAs assayed in

the different experiments (Meso-seq: nuclear RNA; RiboTag-

seq: ribosome-attached RNA; scRNA-seq: whole-cell RNA) or

(2) the higher sample-to-sample variability in the Meso-seq sam-

ples than in the RiboTag-seq samples (average CC between li-

braries is 0.83 in Meso-seq and 0.95 in RiboTag-seq). Indeed,

many genes that are called ‘‘regulated’’ in the RiboTag-seq

data seem also regulated in theMeso-seq data, but their expres-

sion levels are too variable to cross the significance threshold

(not shown). Our analyses cannot reveal the source of the higher

variability across Meso-seq samples, but they might be due to

different sampling strategies in these experiments (Meso-seq:

one mouse per library; RiboTag-seq: three mice per library).

Finally,weaskedwhether theexperience-regulatedgenes iden-

tified exclusively in our Meso-seq data include genes associated

with autism-spectrum disorders (ASDs)—if so, this might provide

novel insights into the etiology of ASDs. Indeed, we found that 10

of the genes identified by Meso-seq as experience regulated are

associated with ASDs (according to the SFARI database;

https://gene.sfari.org), including the high-confidence ASD-asso-

ciated genes Zswim6 and Kdm5b (Figure 4F). Thus, our experi-

ments demonstrate that Meso-seq is highly useful for analyzing

experience-regulated gene programs in sparse populations of

neurons and that this might reveal important aspects of the etiol-

ogy of neurodevelopmental and neuropsychiatric disorders.

Meso-seq for transcriptomics in ultra-sparse neuronal
subpopulations
Next, we tested whether Meso-seq can be used for profiling of

ultra-sparse neuronal populations. For this, we focused on
ted gene programs in sparse neuronal populations

mice and transcriptomic analyses in nuclei of VIP INs and all other nuclei.

cortex extracts (prior to FACS, measured via qPCR) and FACS-purified nuclei

/LE. (C) Heat plots of all sensory-regulated genes in visual cortex VIP INs are

sory-induced genes in visual cortex VIP INs are shown. Error bars represent

by different RNA-seq approaches in visual cortex VIP INs of adult mice upon

e regulated in VIP INs. Error bars represent the SEM.

https://gene.sfari.org
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Figure 5. Meso-seq is suitable for in-depth transcriptomics in ultra-sparse neuronal subtypes

Meso-seq of Ndnf-expressing GABAergic interneurons (NDNF INs) in the visual cortex.

(A) Experimental strategy for profiling of visual cortex NDNF INs.

(B) FACS strategy for isolating nuclei of NDNF INs and other cell types from the visual cortex of Ndnf-IRES-CreERT2::INTACT mice (NDNF INs, GFP+ and NeuN+;

endothelial cells, GFP+ and NeuN�; non-NDNF neurons, GFP� and NeuN+; all other cells, GFP� and NeuN�).
(C) Clustering analyses of Meso-seq data derived from all populations FACS purified in (B).

(D) Relative enrichment of cell-type-specific marker genes in the Meso-seq data derived from all populations FACS purified in (B).

(E) Number of genes reliably detected in NDNF INs by Meso-seq when applying different expression thresholds.

(F) Number of genes detected by scRNA-seq in Ndnf-expressing INs with a high-throughput, droplet-based technique (103 Genomics) or a low-throughput

method (SMART-Seq4).
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GABAergic interneurons in layer 1 of the cortex that express the

neuron-derived neurotrophic factor (L1 NDNF INs) and that are

less abundant than VIP INs by at least an order of magnitude.

For this, we generated mice that are double heterozygous for

Ndnf-IRES-CreERT2 (Abs et al., 2018) and INTACT and prepared

visual cortex nuclei for FACS (Figure 5A). Since Ndnf-IRES-

CreERT2 in combination with a Cre-reporter driven by the CAG

promoter labels also endothelial cells (Abs et al., 2018), we im-

muno-labeled the nuclei prior to FACS sorting with an antibody

against the pan-neuronal nuclear marker NeuN, as this allowed

us to Meso-seq nuclei of NDNF INs (GFP+/NeuN+; �0.1% of all

DAPI+ nuclei), endothelial cells (GFP+/NeuN�), non-NDNF neu-
rons (GFP�/NeuN+), and all other cells (GFP�/NeuN�) (Fig-

ure 5B). Indeed, we find that Meso-seq libraries prepared from

the same cell types co-cluster (Figure 5C) and that the expres-

sion of cell-type markers is enriched in the appropriate FACS

fractions (e.g., Ndnf expression is highly enriched in GFP+/

NeuN+ and in GFP+/NeuN� nuclei, while expression of Gad2

and Reln is highly enriched only in GFP+/NeuN+ nuclei) (Fig-

ure 5D). Furthermore, as in VIP INs, we identify also in NDNF

INs roughly 10,000 low-variance genes (Figure 5E)—this number

is similar to the total number of genes identified in NDNF INs via

scRNA-seq with the SMART-seq protocol (�11,000 genes) and

considerably higher than the number of genes identified by
Cell Reports Methods 2, 100259, August 22, 2022 9
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Figure 6. Meso-seq allows for in-depth transcriptomic profiling in virally transduced neurons

AAVs expressing an empty gRNA cassette and EYFP anchored to the nuclear membrane in a Cre-dependent manner (AAV-U6-gRNA-hSyn-DIO-EYFP-KASH)

were injected into the visual cortex of Vip-Cre mice, and 100 FACS-purified EYFP-labeled nuclei were analyzed by Meso-seq.

(A) FACS strategy for isolating the nuclei of AAV-infected visual cortex VIP INs.

(B) Quantification of the number of genes with low, middle, and high variability (CV = 0–0.5, CV = 0.5–1, and CV = 1–2, respectively; expression threshold = >10

reads).

(C) Scatterplot of all genes expressed (i.e., genes with >10 reads and CV R 0.5) in RNA-seq libraries prepared from FACS-sorted nuclei of VIP INs and non-VIP

cells (black dots, genes significantly 5-fold enriched in non-VIP cells; green dots, genes significantly 5-fold enriched in VIP IN nuclei; small dotted blue line, 5-fold

enrichment).

(D) Scatterplot comparing gene expression in AAV-labeled VIP INs and in INTACT-labeled VIP INs (black dots, genes significantly 5-fold enriched in AAV-labeled

VIP INs; green dots, genes significantly 5-fold enriched in INTACT-labeled VIP INs; small dotted blue line, 5-fold enrichment).
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droplet-based scRNA-seq (e.g., 103) in these neurons (�4,500

genes) (Figure 5F). Notably, while SMART-seq requires several

hundred single-cell libraries for robust gene-expression ana-

lyses, Meso-seq requires only three biological replicate libraries

to reliably identify�10,000 genes. Thus, Meso-seq is suitable for

profiling of very sparse genetically defined neuronal cell types

and can considerably reduce experimental costs.

Meso-seq for transcriptomics in neurons ultra-sparsely
labeled with viral constructs
Finally, we testedwhetherMeso-seq is suitable for in-depth tran-

scriptomic analyses in neurons infected with viral constructs:

this would be highly useful for molecular-mechanistic studies,

e.g., when testing in vivo how virally mediated genome editing

via CRISPR-Cas9 or gene knockdown via short hairpin RNAs

(shRNAs) affects gene expression in the infected cells. Thus,

we injected into the visual cortices of adult Vip-Cre mice an ad-

eno-associated viral (AAV) construct that drives the Cre-depen-

dent expression of a nuclear-bound version of EYFP (KASH-

EYFP) and the constitutive expression of a guide RNA (gRNA)

cassette (Figure S2). Two weeks after injection, we dissected
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the visual cortices, FACS isolated �100 GFP+ and GFP� nuclei

from each animal, performed Meso-seq, and assessed parame-

ters such as the number of reliably identified genes and the cell

type specificity of the RNA-seq libraries. Despite the sparsity of

AAV-mediated labeling (only 0.005%–0.02% of all DAPI+ nuclei

were EYFP labeled; Figure 6A), we reliably identify a comparable

number of genes in these neurons as in GFP-labeled visual cor-

tex VIP INs in VIP INTACT mice (Figure 6B). Similarly, the Meso-

seq libraries derived from AAV-infected VIP INs show a high

degree of cell type specificity, as evidenced by the cell-type-

specific expression of marker genes (Figure 6C). Furthermore,

when we compared the transcriptomes of the VIP INs in VIP

INTACT mice with those of the AAV-infected VIP INs (Figure 6D),

we found that they were very similar to each other and that they

differ primarily in lowly expressed genes. This transcriptomic

similarity of VIP INs labeled by INTACT and by AAV infection is

remarkable insofar as much fewer VIP INs are labeled by AAV in-

fections than by the genetically encoded INTACT allele, and

therefore, FACS isolation of 100 VIP INs took up to 80 times

longer in AAV-injected mice than in VIP INTACT mice (up to 3 h

versus �2 min)—this is consistent with our observation that the
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quality of RNA in our nuclear preps is not affected by the duration

of FACS (Figure S3). Taken together, these experiments demon-

strate that Meso-seq is suitable for transcriptomic profiling in

populations of genetically defined neurons ultra-sparsely labeled

by viral infection.

DISCUSSION

Profiling of genetically defined cell types by RNA-seq has pro-

vided unprecedented insight into the molecular and cellular het-

erogeneity of neural circuits and has generated a wealth of hy-

potheses about the molecular mechanisms that control the

development, plasticity, and pathology of these circuits. Now,

major challenges lie in testing these hypotheses experimentally,

for example, by manipulating specific genes and genomic re-

gions in vivo in sparse neuronal populations and by assessing

the molecular consequences of these molecular manipulations

via RNA-seq. However, current RNA-seq approaches are ill

suited for such mechanistic studies: snRNA-seq and scRNA-

seq are technically and analytically complicated and relatively

expensive, while methods for bulk RNA-seq require large

amounts of input material, which often cannot be obtained in

such mechanistic experiments. Here, we developed and vali-

dated Meso-seq: we demonstrate that this method (1) yields

RNA-seq libraries with high mappability from as little as 50

bulk-processed nuclei FACS isolated from snap-frozen tissue,

(2) routinely and robustly identifies more than 10,000 low-vari-

ance genes per RNA-seq library, (3) works well for genetically

and antibody-labeled nuclei, (4) can be used for cell-type-spe-

cific profiling in rodents and NHP brain, (5) is suitable for profiling

of stimulus-induced gene programs, and (6) can be used for

profiling of neurons ultra-sparsely labeled with viral constructs.

In the following, we discuss several points that are noticeable

about Meso-seq and the result we obtained with it.

Limitations of the study
Optimal number of nuclei per RNA-seq library

Unlike what we expected at the onset of our experiments, we

find that, for sparse neuronal populations, the libraries gener-

ated from low numbers of FACS-sorted nuclei are of higher

quality than the libraries generated from larger numbers of

nuclei with regards to percentage of uniquely mapped reads

and numbers of low-variability genes identified. This is probably

due to our use of a direct lysis protocol that eliminates the need

for purifying RNA in a separate step prior to library construction

but that requires the FACS-sorted nuclei to be collected in a

relatively low volume of lysis buffer (2.35 mL total, including

collected nuclei). Thus, since the concentration of the detergent

in this lysis buffer is relatively low, the volume of each nucleus-

containing FACS droplet is �3.3 nL in our FACS settings, and

the library preparation protocol originally foresees a volume of

330 nL of collected nuclei (i.e., 100 nuclei), our Meso-seq pro-

tocol probably works best for volumes of collected nuclei

approximately in this range. At higher volumes—i.e., when

more nuclei are collected—the protocol is expected to perform

worse, be it because the collected nuclei are not fully lysed or

the initial steps of the library preparation protocol are inhibited

by the additional debris generated by the larger number of
nuclei collected and/or the sub-optimal concentration of re-

agents in these conditions.

Intronic reads

Unlike RNA-seq data generated from RNA that was isolated from

whole cells or tissues and that is mostly fully processed cytosolic

RNA, the transcriptomic data generated byMeso-seq are derived

from nuclear RNA that is not yet fully processed and contains a

relatively large percentage of intronic reads (�70% of the reads).

This needs to be considered when aligning the sequenced reads

to the genome and quantifying RNA expression by our method.

Profiling of neurons ultra-sparsely labeled upon

infection with viral vectors

Acentral goal for uswas toestablish a robustmethod forRNA-seq

in populations of neurons that are ultra-sparsely labeled upon

infection with viral vectors—this would be highly useful for molec-

ular neuroscience applications, such as transcriptomic profiling

after acute gene knockout in sparse neuronal populations. As

demonstrated in Figures 5 and 6, Meso-seq is well suited for

such applications, even for neurons that are labeled so sparsely

by viral construct that FACS sorting can take up to several hours.

This is amajor advantage ofMeso-seq andwill be highly useful for

a variety of molecular neuroscience applications.

PROX1-positive neurons in cortex of mice and

cynomolgus monkeys

Our transcriptomic analyses of mouse and NHP cortical

PROX1+ neurons demonstrate that Meso-seq is suitable for

in-depth transcriptomic profiling of antibody-labeled neuronal

subtypes. Thus, since most types of neurons can be identified

by the expression of only a few transcription factors (Hobert,

2016; Zeisel et al., 2018) and since several antibodies can be

multiplexed in FACS, Meso-seq should be useful for deep

profiling of sparse neuronal subtypes in brain samples derived

from NHPs and humans. Notably, our identification of genes

highly enriched in the cortices and/or VIP INs of mice and cyn-

omolgus monkeys is suggestive, but not conclusive: our ana-

lyses in the cynomolgus monkey cortex are based on a single

biological replicate, and additional replicates are required to

strengthen our conclusions. Furthermore, PROX1 in the cortex

is highly enriched in VIP INs but is expressed also in a subpop-

ulation of oligodendrocytes (Yao et al., 2021)—thus, validation

with orthogonal methods (e.g., single-molecule fluorescent in

situ hybridization [smFISH]) is required to establish conclusively

that the genes identified by us are indeed expressed in a spe-

cies-specific manner.

Experience-regulated gene programs

Analyses of experience-regulated gene programs often require

RNA-seq at precise time points before and after stimuli and expe-

riences, and the ability to snap freeze thedissected tissuesprior to

transcriptomicanalysesgreatly improves the feasibility andquality

of such experiments. Thus, the fact that Meso-seq works well on

nuclei isolated from snap-frozen tissue is beneficial for such

studies, particularly when analyzing sparsely labeled cells. Inter-

estingly, Meso-seq identifies experience-induced changes in

gene expressionwith faster kinetics thanmethods based on cyto-

solic RNA. Likely, this is due to the fact that the nuclear

RNAs analyzed by Meso-seq are still not fully processed and

potentially nascent, which is different from cytosolic RNAs that

are fully processed and much more abundant (Lake et al., 2017;
Cell Reports Methods 2, 100259, August 22, 2022 11
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Zaghlool et al., 2021). This suggests that Meso-seq provides a

closer representation of the process of transcription than

RiboTag-seq, inwhich the levels of the sequencedRNAsare influ-

enced by transcription but also by many other molecular mecha-

nisms (e.g., recruitment of mRNAs to the ribosomes). Notably,

methods for directly measuring transcription (e.g., Run-OFF;

Greenberg et al., 1986) reveal even faster kinetics than Meso-

seq, indicating that Meso-seq does not assay transcription per

se but rather abundance of nuclear RNAs. These differences in

the pools of RNAs assayed by the different methods probably

contribute to the relatively low overlap in the number of genes

identified as ‘‘sensory induced’’ by these methods upon DH/LE

(Figure 5E). An additional factor contributing to this low overlap

probably lies in the higher sample-to-sample variability in the

Meso-seq data than in the RiboTag-seq data, and this might be

due to different sampling strategies and/or to the very different

amounts of input material used in the two approaches. Notably,

not all the differences in experience-regulated genes identified

by different methods can be ascribed to differences in sample-

to-sample variability: as evidenced by our identification of the

ASD-associated genes Kdm5b and Zswim6 as experience regu-

lated in VIP INs, different methods indeed reveal different pools

of experience-regulated genes, and this can be highly useful,

e.g., to gain insights into the etiology of neurodevelopmental

disorders.

In summary, we conclude that Meso-seq allows for robust in-

depth transcriptomics from ultra-low amounts of genetically

defined neurons in a large range of molecular neuroscience ap-

plications. We therefore expect that Meso-seq will be highly use-

ful for molecular-mechanistic experiments in sparse neuronal

populations and an important addition to the expanding toolbox

of molecular neuroscience.
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Zeisel, A., Muñoz-Manchado, A.B., Codeluppi, S., Lönnerberg, P., La Manno,
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Materials availability
With the exception of the newly sub-cloned AAV plasmid AAV-U6-sgRNA-hSyn1-DIO-EYFP-KASH, no new reagents were created in

this study. This newly created plasmid is available upon request from the lead contact until it will be deposited at Addgene.

Data and code availability
RNA-Seq data has been deposited at GEO (Accession number GSE185221) andwill bemade freely available upon acceptance of our

manuscript. This paper did not report original code. Any additional information required to reanalyze the data reported in this paper is

available from the lead contact upon reasonable request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals and DH/LE stimulation paradigm
All experiments, surgeries and procedures involving mice were conducted according to the procedures approved by the Institutional

Animal Care and Use Committee (IACUC) of the Weizmann institute of Science. Mice were housed under standard conditions in a

12-h light/dark cycle with food and water ad libitum. For all experiments and analyses, we used tissues/samples derived from

mice of both sexes and the tissues/samples of both sexes were processed and/or analyzed together (i.e. not separately for each

sex). For FACS-sorting of VIP IN nuclei, we used 2-month old mice that were double-heterozygous for Vip-IRES-Cre (Taniguchi

et al., 2011) and LSL-SUN1-2xsfGFP-6xMYC (INTACT; Mo et al., 2015) (JAX strains #010908 and #021039). For transcriptomic an-

alyses in NDNF INswe crossed INTACTmicewith Ndnf-IRES-CreERT2mice (JAX strain #034875); tamoxifen (10mg/mL) was admin-

istered at P35-P37 to induce Cre-activity and to label Ndnf-expressing cells (Abs et al., 2018). Visual cortices were collected at P56

and snap-frozen for Meso-Seq preparation.

For FACS purification and RNA-Seq of AAV-infected neurons, we used mice that were heterozygous for VIP-IRES-Cre in combi-

nation with stereotactic injection of AAV-U6-sgRNA-hSyn1-DIO-EYFP-KASH (see below).
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For dark-housing/light-exposure (DH/LE) experiments, we used the same procedure as previously described (Hrvatin et al., 2018;

Mardinly et al., 2016; Spiegel et al., 2014): 2-month old mice were housed in complete darkness for 7 days after which the visual

cortices were either dissected in the dark (using night vision goggles) or after turning on regular structured light for 0.5, 1 and 3 h.

Dissected tissues were snap-frozen and stored at �80C until further processing.

For analyzing the gene expression in NHP cortex, we used frozen tissue derived from the brain of an adult cynomolgus monkey

(Macaca fascicularis, male, 5 years old) and generously provided by Dr. Rony Paz at the Weizmann Institute of Science. The use

of frozen NHP brain tissue was approved by the IACUC of the Weizmann Institute of Science.

METHOD DETAILS

AAV constructs, AAV production, and stereotactic injections
AAV constructs for Cre-dependent expression of a nuclear-tagged YFP (EYFP-KASH) and expression of a gRNA cassette were

cloned using the NEBuilder HIFI DNA assembly master mix (New England BioLabs, catalog no. NEB-E2621) following standard pro-

cedures. The plasmid AAV-U6-sgRNA-hSyn1-DIO-EYFP-KASH was generated by replacing the EF1a promoter in the construct

AAV-Ef1a-DIO-EYFP-KASH (Addgene #27056) with a U6 driven gRNA cassette and a hSyn1 promoter.

AAV particles were produced essentially as described (Challis et al., 2019; Mardinly et al., 2016). HEK293T cells were grown in

DMEM supplemented with 5%FBS, penicillin-streptomycin, NEAA and sodium pyruvate andwere plated the day before transfection

at a density of 12 million cells on 15cm poly-L-lysine coated plates. On the next day, equal amounts of the pDJ, pHelper and the

expression cassette (13.33mg each) were transfected using PEI. Two days post-transfection, the medium containing the released

AAV virions was stored at 4C and replaced with fresh medium for an additional two days. Five days post transfection, the cells

and medium were collected for purification. PEG was used to precipitate AAV particles in the medium and subsequently added to

the cell lysate. Using a salt active nuclease (SRE0015, Sigma), the cells were lysed to release the AAV and pelleted by centrifugation.

The supernatant was loaded onto an iodixanol gradient and centrifuged for 2.25 h at 59.000 RPM (70 Ti rotor) in an ultracentrifuge.

4-5mL were collected from the clear 40% layer containing the AAV and further concentrated using Amicon filters to the desired vol-

ume. AAV titers were estimated using qPCR, after which the AAVs were aliquoted and kept at �80C for long-term storage.

Surgeries for stereotactic injections were done in 2-month old mice essentially as described (Cohen-Kashi Malina et al., 2021).

Mice were anesthetized by isoflurane and secured in the stereotaxic apparatus (Kopf) on a heating pad maintained at 37C. The scalp

was cleanedwith 70%ethanol and betadine three times before incision and exposure of the skull. The visual cortex was estimated by

stereotaxic coordinates (2.7mmanterior from lambda and 2.5mm lateral) and 2 burr holeswere drilled through the skull on either side.

A glass capillary filled with AAV was inserted to a depth of 300–400mm to reach layer 2/3 of the cortex. Two min after penetrating the

brain, 300nL was injected at a rate of 65 nL/min. Twominutes post-injection the pipette was retracted and repeated three more times

(two injections in each hemisphere). After the injections, the scalp was closed with Vetbond (3M) and the mouse was allowed to

recover on a heating pad until returned to the home cage. For pain management, animals were given buprenorphine systemically

and lidocaine locally during the surgery and an additional dose on the next day.

FACS: Preparation of nuclei, antibody staining, FACS-sorting and collection/lysis of sorted nuclei
Freshly dissected visual cortices were snap-frozen in liquid nitrogen and stored at �80C. Frozen tissue was placed in a pre-cooled

2mL Dounce homogenizer containing 0.5mL of freshly prepared homogenization buffer (10mM Tris pH 8.0, 250mM sucrose, 25mM

KCl, 5mM MgCl2, 0.1% Triton X-100, 0.5% RNasin Plus RNase inhibitor (Promega), 1X protease inhibitor (Promega), and 0.1mM

DTT). The tissue was homogenized with ten strokes of the loose Dounce pestle followed by 10 strokes with the tight pestle. The ho-

mogenate was then passed through a 50mm cell strainer and centrifuged at 7003 g for 8 min. The pellet was resuspended in 1mL

staining buffer (1X PBS, 0.8% nuclease-free BSA and 0.5% RNAsin Plus RNase inhibitor). For antibody staining, anti-Prox1 antibody

conjugated with Alexa Fluor 647 (Novusbio, NBP1-30045AF647) or anti-Neun conjugated to PE (Millimark, FCMAB317PE) was

added at a concentration of 1ug/mL and incubated for 30 min at 4C. After incubation the homogenate was centrifuged at 4003 g

for 8 min and resuspended in 1mL staining buffer. Prior to FACS-sorting, DAPI was added (20uM final concentration) and filtered

once more through a 50mm strainer to maintain a single nucleus suspension. A given number of nuclei were captured by gating

for DAPI+ events and excluding debris and doublets. Subsequently, the population of target nuclei were determined by fluorescence

and collected into 0.2mL low-bind tubes containing lysis buffer (0.2% Triton X-100 in ddW, dNTPs, Oligo-dT30VN primers, ERCC &

RNAse inhibitors) such that the final volume including the sorted nuclei was 2.35 mL.

Library preparation and RNA-Seq
Bulk RNA-seq libraries were prepared at the Crown Genomics institute of the Nancy and Stephen Grand Israel National Center for

Personalized Medicine, Weizmann Institute of Science (INCPM). Libraries were prepared based on the Smart-Seq2 protocol (Picelli

et al., 2014), with modifications. Briefly, 100 nuclei were collected directly into 2.03 mL lysis buffer (0.2% Triton X-100 in ddW) sup-

plemented with dNTPs (2mM each), SMART-dT30VN primers (1mM), ERCC (1:1.253 107), and RNAse inhibitor. Reverse transcrip-

tion was performed directly on isolated nuclei, followed by PCR-amplification (17 cycles). After cleanup with Agencourt Ampure XP

beads (Beckman Coulter), the amplified cDNA underwent library generation using Nextera XT (Illumina). Libraries were quantified by
e2 Cell Reports Methods 2, 100259, August 22, 2022
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Qubit (Thermo Fisher Scientific) and TapeStation (Agilent). Sequencing was done on a NextSeq 500 sequencer (Illumina) using a 75

cycles high output kit, allocating �10M reads per sample (single read sequencing).

Bioinformatic analyses
For the analysis of mouse RNA expression, Illumina adapter sequences were first removed from the raw read (fastq) files using Cu-

tadapt (Martin, 2011), and library quality was assessed with FastQC (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/).

Next, readswere aligned to themm10mouse genome using STAR (Dobin et al., 2013). Gene read counts were generated using Hom-

er (Heinz et al., 2010) with a gtf reference file containing whole-gene annotations (thus counting both exonic and intronic reads). On

average, �90% of mapped reads were uniquely mapped to the mm10 genome.

For the analysis of the NHP RNA expression, adapter removal and library quality assessment were performed as described above.

Next, reads were aligned to the Macaca fascicularis 6.0 monkey genome using STAR (Dobin et al., 2013). Gene read counts were

generated using Homer (Heinz et al., 2010) with a gtf reference file containing whole-gene annotations (thus counting both exonic

and intronic reads). On average, �70% of mapped reads were uniquely mapped to the Macaca fascicularis genome.

All subsequent analysis was performed in R. Normalization of expression levels, differential expression testing and principal

component analyses were performed using the DESeq2 package (Love et al., 2014).

To identify the optimal number of nuclei for collection, three technical replicates of 50/100/200/500/800 VIP IN and non-VIP cell

nuclei were collected (for a total of 30 samples) from adult mice visual cortices. R̂ 2 of the gene expression correlation between tech-

nical replicates is derived from a fitted linear model of the data. To identify the number of genes passing the basic expression

threshold, the average expression and the standard deviation were calculated for the three technical replicates of each cell type

and each nuclei amount collected. Genes were flagged as expressed if their average count was over 10 reads and their CV value

was <=0.5.

For comparing gene expression between biological replicates, three biological replicates of 100 VIP IN and non-VIP cell nuclei were

collected from adult mice visual cortices. Gene expression barplots show the average and standard error of the mean of three bio-

logical replicates. Genes were flagged as expressed if their average count was over 10 reads and their CV value was <=0.5. Genes

were classified as ‘‘cell-type-specific’’ if they were found to be 5-fold enriched in one cell type compared to the other with an adjusted

p-value <=0.05.

For comparing the gene expression between the VIP IN/non-VIP cell 100-nuclei samples and previously-published RNA

sequencing data of affinity-purified cortical VIP IN nuclei (Mo et al., 2015), fastq files of VIP IN and cortex samples were downloaded

viaGEO accessionGSM1541954 (SRR1647858, SRR1647859, SRR1647860, SRR1647861- 2 biological replicates of each cell type).

For these samples, 5 base pairs were removed from all 50 ends to remove possible adapter contamination, and reads were aligned

with STAR and counted with Homer as for the nuclear SmartSeq data. Genes were flagged as expressed if their average count was

over 10 reads and their CV value was <=0.5. Genes were classified as ‘‘cell-type-specific’’ if they were found to be 5-fold enriched in

one cell type compared to the other with an adjusted p-value <=0.05.

To find experience-regulated genes in VIP IN and non-VIP cell nuclei, three biological replicates of VIP IN and non-VIP cell samples

were collected from adult mice visual cortices after dark housing, followed by light exposure of either 0.5, 1 or 3 h. Genes were

flagged as expressed if their average count was over 10 reads and their CV value was <=0.5. Genes were classified as ‘‘cell-

type-specific’’ if they were found to be 5-fold enriched in one cell type compared to the other with an adjusted p-value <=0.05.

Then, expression at the 0.5, 1 and 3- h time points was compared to the expression in the dark condition. Genes were classified

as ‘‘experience-regulated’’ if they had a fold change of >=2 between the time points and a p-value of <=0.005. For genes that

were significantly enriched in more than one time point, the strongest regulated time point was selected as the regulation time point.

For comparing experience-regulated genes in VIP INs identified by Meso-Seq with those identified by scRNA-Seq, we used our

own Meso-Seq data and the relevant gene lists generated from a previously published scRNA-Seq study (Hrvatin et al., 2018)

(41593_2017_29_MOESM5_ESM.xlsx).

For comparing the list of experience-regulated genes in VIP INs identified by Meso-Seq with those identified by Ribotag-Seq, we

used our own Meso-Seq data and re-analyzed the relevant RiboTag-Seq data generated in a previous study (Mardinly et al., 2016).

For this, we downloaded the VIP-Cre IP sequencing samples (GEO accession GSE77243 [GSM2046545-GSM2046559], 3 biological

replicates of each of the time points standard/dark/1 h/3 h 7.5 h). Next, reads were aligned to the mm10 mouse genome using STAR

(Dobin et al., 2013) and gene read counts were generated using Homer (Heinz et al., 2010) with a gtf reference file containing whole-

gene annotations (thus counting both exonic and intronic reads). Geneswere flagged as expressed if their average count was over 10

reads and their CV value was <=0.5. Then, expression in the 1, 3 and 7.5- hour time points were compared to the expression in the

dark condition. Genes were classified as ‘‘experience-regulated’’ if they had a fold change of >=2 between the time points and a

p-value of <=0.005. For genes that were significantly enriched in more than one time point, the strongest regulated time point

was selected as the regulation time point.

For analyzing the gene expression in adult cynomolgus monkey (Macaca fascicularis), two technical replicates of each cell type

(PROX1+/NeuN+, PROX1-/NeuN+ and Input samples) were FACS-collected from the cortex and Meso-Seq’ed. Genes were flagged

as expressed if their average count was over 10 reads and their CV value was <=0.5. Genes were classified as ‘‘cell-type-specific’’ if

they were found to be 5-fold enriched in one cell type compared to the other with an adjusted p-value <=0.05. Expressed genes were

binned according to their CV value into 1 of 3 groups: CV<=0.5, 0.5 < CV < 1, CV>=1. For comparing gene expression between
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monkey and mouse, only one-to-one orthologs were selected. Expression level in each organism was normalized within the organ-

ism, and species-specific PROX1+/NeuN+-enriched genes were found, within in each species, as genes with a 5-fold enrichment and

an adjusted p-value <=0.05 when comparing PROX1+/NeuN+ vs. Input samples.

For comparing the gene expression between AAV-injected and non-injected VIP IN and non-VIP cell samples, three biological rep-

licates of 100 nuclei VIP IN and non-VIP cell nuclei were collected. Genes were flagged as expressed if their average count was over

10 reads and their CV value was <=0.5. Genes were classified as ‘‘cell-type-specific’’ if they were found to be 5-fold enriched in one

cell type compared to the other with an adjusted p-value <=0.05. Expressed genes were binned according to their CV value into 1 of 3

groups: CV<=0.5, 0.5 < CV < 1, C>=1.

To determine the specificity of FACS-sorting of NDNF IN nuclei, 2 biological replicates of 100 nuclei of distinct FACS fractions were

sorted from adult mice visual cortex for comparing gene expression between NDNF INs, non-NDNF neurons, endothelial cells and

other nuclei (Figures 5B–5D). To determine the number of genes expressed in NDNF IN nuclei (Figure 5E), three biological replicates

of NDNF IN nuclei were collected from adult mice visual cortices. Average expression as well as CV were calculated based on the

three samples, and expressed genes were binned according to their CV value into 1 of 3 groups: CV<=0.5, 0.5 < CV < 1, C>=1.

To determine the number of expressed genes identified in NDNF INs by single-cell RNA-Seq techniques, we used publicly available

single-cell datasets generatedwith 103 genomics and SMART-Seq4. For 103 genomics datawe retrieved the raw expressionmatrix

fromGEO (GSE185862) which contains all the counts for all the single-cell libraries in the study. Based on themetadata of this dataset

we extracted only the counts for the Lamp5-clustered libraries and subsequently selected all the single-cell libraries that contained

>1 read for Ndnf. The resulting libraries were then normalized together using the R-package Seurat (Hao et al., 2021) and gene

expression was analyzed as described above for Meso-Seq. For the SMART-Seq4 analysis, we used the raw fasta files from

GEO (GSE115746) of the libraries that clustered into the Lamp5 subtype based on the metadata (see SRR accession list in

Table S3). Paired-end reads were aligned to the mm10 genome using STAR and counted using HOMER as described above for

the Meso-Seq protocol. The resulting count matrix was subsequently filtered for libraries that contained >1 reads for Ndnf and finally

the libraries were normalized with the R-package SCnorm (Bacher et al., 2017), and gene expression was analyzed as described

above.

QUANTIFICATION AND STATISTICAL ANALYSES

For RNA-seq libraries, statistical tests for assessing differential gene expression were done with the Wald-test in the R-studio pack-

age Deseq2 (each experimental group/time-point contained three technical or biological replicates). Specific filtering parameters are

described in the text and the corresponding figure legends. Fold-changes in gene expression as measured by qPCR samples was

calculated with the Delta-Delta Ct method (three biological replicates per time point). In all the figures, the mean is depicted with the

standard error of the mean.
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