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The Mollicutes class encompasses wall-less microbes with a reduced genome. They

may infect plants, insects, humans, and animals including those on farms and in livestock.

Ureaplasma diversum is a mollicute associated with decreased reproductionmainly in the

conception rate in cattle, as well as weight loss and decreased quality in milk production.

Therefore, U. diversum infection contributes to important economic losses, mainly in

large cattle-producing countries such as the United States, China, Brazil, and India.

The characteristics of Mollicutes, virulence, and pathogenic variations make it difficult to

control their infections. Genomic analysis, prevalence studies, and immunomodulation

assays help better understand the pathogenesis of bovine ureaplasma. Here we present

the main features of transmission, virulence, immune response, and pathogenesis of U.

diversum in bovines.
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MOLLICUTES

The Mollicutes Class (phylum Tenericutes) comprises about 200 species. Generally, they are
miniscule and considered the smallest self-replicating free-living microorganisms (1–3). Fourteen
genera and their representatives are found widely in plants; for example, Candidatus Phytoplasma
asteris, Candidatus Phytoplasma australiense, Candidatus Phytoplasma trifolii- (4–9); in animals—
Mycoplasma bovis, Mycoplasma gallisepticum, U. diversum (10–12), and in humans—Mycoplasma
pneumoniae, Mycoplasma genitalium, Ureaplasma parvum, Ureaplasma urealyticum (13–15). The
genera Mycoplasma, Ureaplasma, and Acholeplasma are known to encompass species inhabiting
animals as commensals, saprophytes, or pathogens, as shown in Figures 1BII,III (1, 3, 17).

Lacking a cell wall, these bacteria, essentially have a trilaminated cell membrane with
incorporated sterols, ribosomes, and a circular double-stranded DNA molecules, as shown in
Figure 1BI (1, 2). They reproduce by binary fission and generate pleomorphic or filamentous
and multinucleated forms observed through electron microscopy (18, 19). Mycoplasmataceae
may be cultured in solid medium and in broth medium. Due to the small size growth
in broth, they do not cause turbidity, and bacterial growth is verified an alteration in the
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FIGURE 1 | Cellular representation of Mollicutes and some hosts. (A): Mollicutes cell membrane. Representation of LAMPs anchored to the outer membrane of

proteins. IMP, integral membrane protein; LAMPs, lipoproteins; PMP, peripheral membrane protein based on the representation of Chambaud et al. (16). (BI):

Single-cell structure of Mollicutes demonstrating cell membrane, ribosome, mRNA molecules, DNA molecule, and soluble cytoplasmic proteins. (BII, BIII): some

species that infect humans, animals and plants, and some of their respective hosts.

pH revealed by the colorimetric change of an acid-base indicator
present in the culture medium. In Agar medium, they produce
small fried-egg-shaped colonies ranging from 50 to 500µm (20).
Due to their lack of cell wall, Gram staining may allow them to be
observed in an optical microscope in a red colored mass.

It is important to highlight that some species produce a
polar bleb (21). This structure has been studied mainly for its
adherence and the ability of these bacterial cells to travel on
glass by caterpillar-like motions (22). In addition, the structure
of a complex of organized proteins in M. pneumoniae, a human
pneumonic species, has been well-described, elucidating how
such proteins are able to adhere to and cause pneumonia in
animals (22, 23).

The presence of filamentous wire and rod networks indicate
the presence of cytoskeleton-like structures and these may also
help in maintaining the morphology. Such filaments may also be
involved in division and sliding motility in some mycoplasmas
(2, 18, 20).

Mollicutemetabolism is quite variable. Species that metabolize
carbohydrates for energy production are classified as glucose
fermenters. Non-fermenting Mollicutes lack the arginine
dehydrolase pathway to obtain adenosine triphosphate
(ATP) (24, 25). In these bacteria, the tricarboxylic acid
cycle is incomplete, and they also lack quinones and
cytochromes. Consequently, the possibility of effective oxidative
phosphorylation as a power generating mechanism is ruled out
(2, 26). Some mycoplasmas may rely on fermentative or non-

fermentative metabolism depending on the conditions of the
microenvironment (27).Ureaplasma spp. present a differentiated
metabolism; they require urea to generate ATP. Figure 2 and
section 3.1 (urea production and modulation in prostaglandin
synthesis) provide more details on the production and toxicity of
urea produced by Ureaplasma spp. (29). All metabolic diversity
of Mollicutes contributes to the colonization of different niches
and hosts.

The genome size also permits classification of the
mycoplasmas into two groups. One is the genera Mycoplasma
and Ureaplasma, with about 580–1,350 kilobase pairs (Kbp), and
the others are the genera Acholeaplasma, Spiroplasma, and
Anaeroplasma with 790–2,200 Kbp (14, 30–32). The non-
essential genes were lost through genomic reduction. These
microorganisms have evolved from Gram-positive bacteria by
degenerative evolution to lose their peptidoglycan cell wall
and some metabolic genes (33). Therefore, Mollicutes require
additional supplements for laboratory growth. Thus, the uptake
of extracellular nutrients including many biosynthetic precursors
such as amino acids, nucleotides, and sterols are essential
(34, 35).

In humans,Mollicutes usually cause urogenital and respiratory
tract infections (36, 37). In animals, these bacteria prefer
to colonize the mucous surfaces of the respiratory, genital,
oropharyngeal, ophthalmic tract, as well as the mammary
gland, and joints. They usually cause subclinical symptoms or
can persist in healthy carrier animals maintaining a persistent
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FIGURE 2 | Equation of the conversion of urea to ammonia catalyzed by the enzyme urease present in U. diversum, based on the model by Marques et al. (28). The

accumulation of intracellular ammonia generates a gradient that is used to produce ATP. ATP is used as energy and ammonia causes damage to host tissues.

parasitic lifestyle (20, 38). Pathogenic infections rarely lead to
death; however, in some cases, the infection may be associated
with chronic conditions due to the immunomodulation process
in the affected region (18, 39, 40). The Mollicute cell membrane
has a range of protein structures (Figure 1A), including
lipid-associated membrane proteins (LAMPs) that represent
important virulence factors. These structures will be described
later in section: LAMPs and other surface molecules (41–43).

Mollicutes that infect herds are related to losses in farming,
mainly disrupting animal weight gain and reproduction of cows,
goats, pigs, chickens, and other species of agronomic interest
(44–46). U. diversum is an important mollicute isolated from
animals, and it induces a strong inflammatory response in the
bovine respiratory and genital tract and is related to reproductive
disorders. U. diversum has particular characteristics that make
it challenging to control in infectious diseases in beef and
dairy cattle, in addition to being a serious obstacle to artificial
insemination and embryo transfer (47, 48).

UREAPLASMA DIVERSUM

Bovine ureaplasmas (phylum Tenericutes, class Mollicutes, order
Mycoplasmatales, family Mycoplasmataceae genus Ureaplasma)
were first isolated in 1967 from tissue specimens of the vagina,
urethra, and bladder wall of cows (49). For some time, these
microorganisms were called Bovine tiny (T)-strain mycoplasma.
This denomination reflected the morphological similarities
with U. urealyticum cultures, at the time called human T-
strain mycoplasma due to photomicrographs of agar T colonies

published in the first report on these bacteria (50). In 1956,
the term T-strain was applied to distinguish these microbes
growing in solid medium with different morphology from other
mycoplasmas described at the time (51).

In an attempt to establish distinguishing features, several
studies were published comparing morphological characteristics
and protein band profiles, by electrophoresis, from T-strains
isolated from cattle with human isolates (52, 53). Serological
tests showed differences between strains; however, the differences
were not sufficiently marked to establish differences between
species (53, 54). The protein profiles of ureaplasma by
polyacrylamide gel electrophoresis showed non-shared peptides,
indicating that they were different microorganisms (54). The
confirmation was detailed in the DNA composition and the
guanine plus cytosine (G + C) content. The human T-
strain presented C+G 27.4 mol% (55) and bovine T-strains
had 29.3% (52). Other T-strains were isolated from different
animals including sheep and goats and the molecular methods
allowed for these to be differentiated from bovine isolates (53,
56).

In 1974, the perception that isolated T-strains differed from
conventional mycoplasmas prompted the creation of the genus
Ureaplasma to encompass Mollicutes possessing the enzyme
urease (51). “Bovine T-strains Mycoplasma” formed the species
U. diversum. The species-specific epithet (diversum, from Latin
meaning different) refers to the differences in polypeptides and
G + C content compared to U. urealyticum, and the differences
in the peptide profiles of the antigenic structures (determined by
electrophoresis) from different isolates (54).
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Many studies investigated serological grouping ofU. diversum
isolates. Initial studies using rabbit antisera, conducted in
different laboratories by Howard et al. (57) and Ogata et al. (58),
selected eight and seven strains, respectively, to represent the
totality of antigens synthesized by ureaplasmas. Later, the new
isolates, allowed for identifying expanding serotypes to eleven
(59). Rabbit-produced antisera showed three distinct groups, two
of which were serologically similar but not identical (57, 58). An
important step in serological clustering was taken byHoward and
Gourlay in 1981 when they selected one strain from each of the
three antigenic clusters for antiserum production in calves (60).
The antisera produced were tested in various U. diversum strains
from different countries (Denmark, the United States, Canada,
Ireland, England, and Japan), from symptomatic or healthy
animals, and isolated ureaplasma from different anatomical
regions (lung, foreskin, semen, urogenital tract, endometrium,
and eye). The strains reacted with at least one of the three bovine
antisera and were, therefore, classified into three clusters: cluster
A, which is represented by strain A417; cluster B, represented by
strain D48 or C, represented by strain T44 (59, 60).

Serotype distribution studies found that most strains were
type-B strains isolated from cows with vulvovaginitis and
infertility. However, there is no direct relationship between
serotype and a specific disease (61). In general, all three serotypes
are found in the reproductive tract of cattle (62). Despite
the possibility of allocating isolates in clusters A, B, or C,
Howard (63) previously warned that the serological relationship
of antigens possessed by bovine ureaplasma determined by
antisera or protein profile electrophoresis detect the relationship
of some selected strains and not the complete dissemination of
antigens present in U. diversum. In fact, studies by Marques
et al. (64) reported high variability in the sequence of 16S
rRNA gene fragments from ureaplasma isolated from healthy
and unhealthy cattle. The significant number of single nucleotide
polymorphisms (SNPs) found compared to the U. diversum
sequence deposited at GenBank indicated intraspecific variability
within these organisms. This variability may be translated
into antigenic diversity of different strains and, consequently,
generates different forms of interaction with the host (42, 64–66).

In morphological terms, U. diversum share the general
characteristics of the Mollicute Class. They are pleomorphic
(coccoid or coccobacillary), approximately ranging from 400 to
500 nm in diameter, microaerophilic (28, 54), with an optimal
growth temperature of 37◦C, but can grow between 33 and
37◦C. The ideal growth pH ranges from 6.0 to 7.0. In a
solid medium, they produce colonies of relatively small size
like other microorganisms classified in the genus Ureaplasma
(54). Observations from photomicrographs indicate that these
colonies can range from 100 to 175µm in diameter (67).
Urea is an absolute requirement for growth. Hydrolysis of
urea leads to ammonia formation; therefore, it increases in
vitro pH (68), which is a striking feature of ureaplasmas
differentiating them from other Mollicutes (2, 69). Although
they also do not have a cell wall, they have a polysaccharide
coating on the membrane forming a capsule 11–17 nm in
diameter consisting of arabinose, xylose, mannose, galactose and
glucose (28).

Host Interaction With the Microorganism
and Pathogenicity
U. diversum colonizes cattle mainly by the respiratory and
genital/reproductive tract (47, 70–74). This microorganism
is considered an opportunistic pathogen found in mucous
membranes and secretions of the vulva, vagina, and udder
of cows, causing severe granular vulvovaginitis, salpingitis,
endometritis, mastitis, placentitis, and fetal alveolitis that may
result in miscarriage or birth of weak calves (10, 31, 68, 75–
77). The risk of infections is higher in younger cows, resulting
in fewer births (78). Nevertheless, the infection is not dependent
upon the presence of clinical symptoms, since the first isolates
were, apparently, in the genital/reproductive tract of healthy
cows (49). U. diversum was also isolated from the nasal cavity of
asymptomatic calves (68). The presence of these microorganisms
in healthy cattle herds makes it difficult to identify risk factors for
infection, which makes establishing infection control strategies
more difficult.

U. diversum can be sexually transmitted, and there is
significant potential for horizontal and, in some cases,
vertical transmission between animals (62, 79). One of
the main forms of transmission is through coitus (natural
reproduction), but infected bulls also spread ureaplasma through
artificial insemination and breeding. The Mycoplasma spp. and
Ureaplasma spp. are present in secretions, especially semen,
preputial and vaginal mucus, conjunctival secretion, and milk
(80, 81). Artificial insemination and embryo transfer are also
potential sources of contamination (47, 80).

Pathogenicity in Cows
Granular vulvitis is common in ureaplasma-infected cows (82–
85). The disease appears 1–3 days after vulvar inoculation in
heifers (82, 83). Initially, acute infection involves mucopurulent
discharge andmild vulvar epithelium hyperemia. The granularity
can be classified as mild or severe. The mild granularity, usually
starting from 24 to 48 h, appears laterally to the clitoris, with
granules smaller than 1mm in diameter and with light coloring.
They are usually best observed with an oblique light source.
Severe granularity is readily apparent without the need for
additional light and usually involves the lateral vulvar wall
as well as the clitoris area. The granules are usually red and
larger, 1–2mm in diameter (82, 83, 85). Heifers with severe
granularity also have slightly edematous vulvar lips and purulent
or mucoid discharge. Ureaplasmas are easily recovered from
vulvar cultures of infected cows, fetuses, and calves after autopsy
(47). Histological slides are characterized by focal and/or diffuse
lymphocyte infiltrates both inside and just below the vulva
mucosa, thus confirming vulvitis (47, 82, 83). In the vagina, vulva,
and clitoris there are usually very serious lesions characteristic of
Granular Vulvovaginitis Syndrome (GVS) (47, 85, 86).

During infection, the Fallopian tubes, uterus, cervix, vagina,
and vulva fragments, as well as the lower reproductive tract,
are slightly disturbed and present acute inflammatory process
(82, 83). The histopathological findings of the reproductive tract
of naturally infected U. diversum females are consistent with
lesions that hinder fertilization (47, 87). Therefore, animals
with GVS should be identified initially in the herds because, in
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addition to reduced fertility rates caused by tissue damage, they
may contribute to spreading the microorganism (85). Chronic
infection is also possible and can cause a variety of harm to
animals (82, 83). Asymptomatic cows may chronically carry U.
diversum and function as pathogen reservoirs and are, therefore,
a major source of infection. Bovine ureaplasmas have surface
compounds, such as variable surface lipoproteins (VSPs) that
allow them to evade the host’s immune system, invade cells, and
help develop chronic infection (28, 42, 88–90).

Chronic GVS due to U. diversum if not diagnosed,
may progress to endometritis (ascending route) and results
in miscarriage or infertility (81, 91, 92). The descending
pathway was also demonstrated by intrauterine and cervical
inoculation in heifers. Inoculating these ureaplasmal strains
in the uterus induces granulous vulvitis, endometritis, and
salpingitis. Cervicitis can occur between 2 and 5 days after
inoculation. Cervical damage alters the pH of the local mucus
and provides an adverse environment for sperm survival
(82, 83). Thus, the pathogenesis in the reproductive tract of
cows should be considered significant, as granular vulvitis,
endometritis, salpingitis, or cervicitis may result in reproductive
losses (92). In oviduct tissue specimens, the most frequent
lesions observed histologically are epithelial desquamation
with basement membrane exposure, lumen clot formation,
curvature, or absence of cilia, as well as a cytoplasmic
projection of many epithelial cells toward the lumen (82, 83).
In the cervix and uterine body, the lesions are also severe,
destroying the epithelial cell cilia and resulting in ulcerated
areas. Epithelial lesions such as vacuolization of epithelial
cells, spongiosis, loss of epithelium with basement membrane
exposure, and lymphocyte accumulation are observed in fornix
tissue specimens histologically (85, 92).

Because ureaplasmas have no rigid cell wall and require
a microaerophilic environment to grow, the survival of these
organisms is compromised in the womb (93). However, more
favorable situations, such as in the estrous cycle, when the
cervix is open, or during artificial insemination, the infection
becomes more probable. U. diversum seeks whole cells for
parasitism since adherence and parasitism of epithelial cells
are essential conditions for their survival. Supporting these
findings Lingwood et al. (94) showed that U. diversum is able
to bind to the surface of male sperm and in endometrial
cells. Later Kim et al. (95) established an in vitro model of
endometrial infection. These early studies supported the growth
of ureaplasmas within uterine endoemetric cells. The local
effect of infection is likely to occur through the process of
constant reinfection rather than the release of other opportunistic
organisms (85). In humans Ureaplasma spp. were also detected
by next-generation sequencing (in a study that also used PCR and
culture for detection) as the most prevalent uterine colonizer in
pregnant womenwith andwithout chorioamnionitis, specifically,
individuals in premature births with severe chorioamnionitis
had high abundance of U. parvum (96). There is also a
positive association between the detection of U. parvum in
samples of placental tissue and abortion (97). Therefore, these
studies suggest that ureaplasmas that infects humans or animals
can colonize/infect the placenta and amniotic fluid for long

periods during pregnancy in the absence or presence of
adverse outcomes.

U. diversum infection/colonization in fetal lungs or after the
endobronchial inoculation of this ureaplasma is associated with
abortion and newborn death in cows. The death of calves may
be linked to the development of catarrhal lobular pneumonia
(98–100). A high prevalence of U. diversum has been detected in
cases of abortion, calf morbidity (Table 1). Pulmonary pathology
in fetuses usually presents with lymphocyte infiltration and
conjunctivitis (92, 100, 104, 106, 107, 111, 112). Also, typical
features of an abortion caused by U. diversum include a relatively
fresh fetus and frequently retained and inflamed placenta (113).
Postmortem examinations performed on fetuses, late abortion,
and weak-born calves tested positive for U. diversum in tissue
specimens collected from the placenta, lungs and abomasal
fetal fluid. These findings were accompanied by diagnoses of
placentitis, conjunctivitis, and pulmonary pathology, suggesting
the establishment of an immune-mediated response. In these
animals, the presence of neutrophilic bronchopneumonia may
range from moderate to severe and may be diffuse or acute (47).

Milk production is also affected mainly due to the
development of bovine mastitis, inflammation of the mammary
gland, which is one of the main diseases in dairy herds (114).
Bovine ureaplasma produces clinical mastitis along with visible
changes in milk and udders (115). Mastitis caused by Mollicutes
is less common than mastitis caused by other bacteria, but
results in severe udder disease (116), in dairy herds, Mollicutes
can cause clinical, subclinical or chronic mastitis (117). When
experimentally inoculated in the udder of cows U. diversum
excretion and an increase in the number of cells in milk were
detected. In some cases, milk secretion ceases completely.
Histopathological examination of the udder sections reveals
neutrophil infiltration along with interstitial hyperemia (115),
This is a major problem for milk production and animal welfare
in large dairy herds (114).

Pathogenicity in Bulls
In bulls, U. diversum is involved in cases of seminal vesiculitis,
balanoposthitis, epididymitis and other pathologies caused by
morphological and functional changes in sperm (88, 91, 102).
Ureaplasmas can colonize both the proximal and distal portions
of the urethra and the preputial cavity, which allows for semen
contamination (102, 118). The preputial cavity and urethra
appear to be the main means of semen contamination. Thus,
procedures to reduce the number of microorganisms in the
foreskin may not be effective enough in preventing semen
contamination (119). Several studies have identified U. diversum
in bull reproductive tract fluids including fresh semen (120,
121), preputial mucus samples and distal urethral secretion
(74). Microorganism adherence interferes with spermatogenesis,
sperm transport, capacitation, and fertilization (102).

Bulls positive for U. diversum but without genital lesions
may have abnormally-tailed (folded and coiled) sperm, as well
as sperm surface abnormalities (small bulges). They also have
irregularities and infection of bacteria in the entire length of their
bodies from head to tail. This suggests impaired sperm function
and possibly infertility (74, 102).
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TABLE 1 | U. diversum prevalence in countries, animal health, anatomical site, and detection method.

Country Animal Animal Status Specimen Prevalence

(%)

Method References

Argentina Bulls Healthy Penis Foreskin 64.7 PCR (74)

Australia Cows and

Bulls

Asymptomatic or with a genital

lesion

Penile mucosa swabs

Swabs of the clitoral fossa and

vaginal mucosa

35.2 PCR (101)

Australia Cows and

Bulls

Asymptomatic or with a genital

lesion

Penile mucosa swabs

Swabs of the clitoral fossa and

vaginal mucosa

15 Culture /PCR (70)

Australia Bulls Asymptomatic or with penile

and preputial lesions

Semen 31.03 Culture /PCR (102)

Austria Cows Vaginitis Cervical or vaginal swab 35.5 Culture (77)

Brazil Cows With vulvovaginitis or healthy Vulvovaginal swab 46.42 qPCR (68)

Brazil Cows With vulvovaginitis or healthy Vaginal Mucus Swabs 41.1 Culture (103)

Brazil Cows and

heifer

With granular vulvitis Vulvovaginal Swabs 38.8 Culture (10)

Brazil Calves Sick or healthy Respiratory tract 20 PCR (104)

Brazil Cows Vulvovaginal Injuries Vaginal Mucosa 64.0 PCR (87)

Brazil Cows Asymptomatic Vaginal Mucus Swabs 18 PCR (87)

Brazil Cows and

heifer

With vulvovaginitis Vaginal swabs 83.9 Nested-PCR (105)

Belgium Calves Recurrent respiratory disease or

other diseases

Lungs sample 14 Culture (106)

Canada Calves Dead or euthanized for the first

60 days

Necropsies: lung tissue 25 Culture (107)

Canada Swine With mycoplasma-type cough Lung, trachea and other tissues 3.85 qPCR (108)

Cuba Swine Pneumonic Pneumonic lung samples 6.6 PCR (72)

Finland Calves Miscarriages, stillbirths or

neonatal deaths

Necropsy 13 Culture (109)

Poland Calves Stillbirths Lung 0 PCR (110)

Interference With Artificial Insemination (AI) and

Embryo Transfer
Some viral, bacterial, protozoan and parasitic organisms may be
transmitted through bovine semen. In some cases, the presence
of infectious agents is sufficient for their transmission to heifers
or cows through natural reproduction or artificial insemination
(AI) (122).

Le Grand et al. (121) demonstrated a high frequency (74%) of
ureaplasma in the semen of bulls intended for AI. In this sense,
U. diversum infects semen destined for AI, colonizes blastocysts
and fetuses and induces gestational losses or birth of weak
calves. In studies by Crane and Hughes, (47) the losses between
suspected or confirmed embryogenic pregnancies for infection
with this bacterium were 67%. In these studies heifers did not
have fertility problems, rather pregnancy loss and stillbirths were
the prominent clinical problems. This suggests that embryos are
the source of the U. diversum infection, abortions, stillbirths, and
in weak neonates could be how the disease manifests.

In AI, it is important to control the population of
microorganisms in the semen and, thus, prevent the introduction
of diseases in individual animals or herds (123). However,
foreskin in healthy semen donors contains numerous bacterial
species that can mix with semen during ejaculation and during

collection. Some of these bacteria can pose a significant risk for
inseminated females. Therefore, it is important that control is
achieved through the use of antibiotics and appropriate hygiene
techniques (124). Along with the advent of AI techniques,
embryo processing techniques have been developed to reduce
the risk of transfer of infectious diseases by bovine embryos
derived from this technique (125). Ureaplasmas are recognized
as one of the few potential pathogens that are not removed
from embryos through the IETS (International Embryo Transfer
Society) recommended washing and cleaning procedures (113,
126).

Penicillin and streptomycin as well as gentamicin are the
most common antibiotics used to control microorganisms in
embryo transfer techniques, without any apparent effect on
the development of embryos of domestic animals. They are
effective against a variety of Gram-positive and Gram negative
bacteria. Generally these antibiotics are used in combination with
each other (124, 127). Despite this, for structural (as already
discussed) and resistance issues, standard antibiotics present in
embryo processing media are not effective against Mollicutes
(124). Therefore, antibiotics that act on the cell wall, such as
penicillins, do not act agaisntU. diversum (due to the absence of a
cell wal in these bacteria). In theory, antibiotics that are unable to
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penetrate biological membranes (such as gentamicin) would also
not be 100% effective against bovine ureaplasmas because these
microorganisms are capable of embedding themselves in sperm
and blastocysts (42, 102). Some alternatives to fight mycoplasmas
are being developed, such as an enzymatic treatment (128),
immunological methods (with the use of specific antibodies
against the infectious agent) and photosensitive dyes and
chemical compounds with germicidal effects (124, 127, 129).
All of these alternatives can contribute to the development of
effective control methods against molicutes that infect semen and
embryos destined for AI and embryo transfer.

Forms of contamination during the embryo transfer
procedure are also possible. U. diversum present in the vulva of
donor cows (cows from which the embryos will be removed)
can contaminate the catheter or discharge solutions and remain
in recovered bovine embryos. U. diversum can also be carried
in the vulva of donor cows or recipient cows (cows that will
have an embryo inserted in their uterus) to the animal’s uterus
during AI and embryo transfer (47). Veterinary diagnostic
laboratories generally do not use polymerase chain reaction
(PCR) methodologies to detect Ureaplasma spp.; most of the
time the culture method is used. Therefore, some abortions
caused by U. diversum can be misdiagnosed. Colonization of the
reproductive system at the time of embryo collection allows U.
diversum to adhere and disturb embryo development (47).

Gaeti et al. (87) found by PCR methodology a conception rate
for embryo transfer of 64.8% in heifers positive for ureaplasma,
including those with vulvar lesions. This prevalence is similar
to the average conception rates of embryo transfer programs
in cattle ranging from 50 to 60.4% (130, 131). Indeed, these
percentages suggest initially that U. diversum does not affect
conception rates and that embryo transfer does not appear
to increase the risk of infertility among infected heifers (87).
However, a good conception rate may not correlate with the
absence of miscarriages and the birth of healthy calves. In
humans the infection by Ureaplasma species was associated with
chorioamnionitis (regardless of gestational age), spontaneous
abortions or miscarriages, and neonatal respiratory diseases. The
presence of these microorganisms in the upper genital tract
of non-pregnant women suggests that these microorganisms
may infect the embryo at the time of implantation and can
adversely affect the health of the pregnancy and neonate (132–
134). U. diversum may remain in cells internalized at early fetal
development, such as in the blastocyst, without cytopathic effects
(42). Thus, placenta, ocular conjunctiva, and lung tissue could
be colonized at late stages of development or after calving; thus
causing pulmonary placentitis, conjunctivitis, and pathology in
calves (47).

Emerging Pig Isolation Cases
Mollicutes usually exhibit high specificity to host tissues.
However, someMycoplasma ssp. have been isolated from unusual
hosts (18, 135, 136). It is possible that by overcoming the
species barrier,Mollicutes have colonized other hosts and become
pathogenic regardless of their phylogenetic distance (135).

For many years now, U. diversum has been isolated from
cattle and associated with various diseases in the genital and

respiratory tract, but the ability of these bacteria to colonize swine
has recently aroused interest in the scientific community. In 2013,
Lobo et al. (71) isolated Ureaplasma spp. of pig lung with typical
lesions of enzootic pneumonia. The association of ureaplasma
with porcine lung lesions led to studying U. diversum in these
hosts. In 2014, the first study reported thatU. diversummay infect
swine and be associated with pneumonia. However, unlike cattle,
these bacteria were only isolated from sick animals (72).

In swine, U. diversum showed a higher affinity to lung tissue
(72, 108). In Canada, a study in tissues/organs of swine detected
U. diversum only in lung tissue. In the same study a coinfection
with other mycoplasma and ureaplasma species such as M.
hyopneumoniae, M. hyorhinis was also identified (108). The role
of U. diversum in swine remains unknown. The main techniques
used to identify U. diversum in pigs have been conventional PCR
or qPCR. Although these techniques have high sensitivity and
specificity, the inclusion of serological tests can contribute to
a better characterization and knowledge of the swine isolates.
Therefore, it is not yet possible to determine whether this species
is an opportunistic pathogen or a primary agent involved in
Swine Respiratory Complex diseases (71, 72, 108).

Impacts on the Livestock
Reproductive disorders, animal development and positive
cultures to U. diversum or association with other bacteria and
viruses, makes this ureaplasma an important threat to raising
cattle for large producers (86, 118). This requires special care
and quality control for meat production and dairy activity
in countries such as Brazil, the United States, China, and
India (137–141).

Artificial insemination, embryo transfer, in vitro embryo
production and the use of somatic cell nuclear transfer or
cloning has delivered several benefits to herd productivity (142).
However, these techniques do not eliminate the occurrence of
Mollicutes and reproductive disorders in cattle (143, 144).

Several Mollicutes have been isolated in the bovine urogenital
and respiratory tract or aborted fetuses, including M. bovis,
M. bovigenitalium, U. diversum, among others (11, 93, 104,
110, 114, 145). U. diversum is related to reproductive disorders,
weight loss and reduced milk yield in cattle. These disorders
also increase veterinarian and pharmaceutical costs causing
significant economic losses in the livestock sector (79, 146, 147).

Diagnosis
The first techniques used for U. diversum diagnosis were
culturing and producing typical colonies, urea hydrolysis, specific
serology, and DNA or protein profiles. The medium, known as
Hayflick’s medium, presently used in most diagnostic labs for
U. diversum identification has undergone few changes over the
years. Hayflick’s medium contains a combination of mycoplasma
broth, yeast extract, horse serum, urea crystals, phenyl red,
and penicillin (42, 59). The urease activity and ammonia
production raises the pH of specific broths. In solid medium
the precipitation of cations Mn, due to urease activity, produces
brown-colored colonies (10, 148). Usually with lysed isolates and
the immunodiffusion methodology, ureaplasma are serologically
characterized with polyclonal antisera, usually rabbit or calves
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(79). Some studies have shown that molecular diagnosis methods
provide better results to detect bovine ureaplasma. PCR assays
have shown high specificity and several recently published studies
have used the rRNA 16S gene as a basis for primer construction
(68, 79, 149).

Conventional PCR using primers UD1 (forward: 5′-CCGGAT
AAT AAC ATT TTG-3′) and UD2 (reverse: 5′-CCT TGC GGT
AGC ATC GA-3′) as well as nested PCR using UD3 (5′-AAT
GTC GGC TCG CTT ATG AG-3′) and UD4 (5′ -CCT GTC
ATA TTG TTA ACC TCC GC-3′) were tested to identify U.
diversum in animals with signs and symptoms of granular vulvitis
or reproductive dysfunction. Nested PCR diagnosis showed high
specificity (73.1%), efficiency (82.7%), and sensitivity (100.0%)
compared with culture method: metabolites and serological tests
(79). This PCR methodology, with use of the same pairs of
primers targeting the gene encoding 16S rRNA, was used by
Buzinhani et al. (86) for detecting U. diversum in isolates from
different Brazilian farms and also showed a higher sensitivity
compared to culture techniques.

Marques et al. (68) developed primers and TaqMan probes
based on the 16S rRNA gene for quantitative detection of U.
diversum by real-time PCR (qPCR). The test that was developed
demonstrated high sensitivity and specificity for ureaplasmal
detection and quantification in swab samples, being able to detect
quantities as low as only 10 copies of the genome/reaction.
The qPCR methodology was 100 times more sensitive than
conventional PCR, and there was no cross-reactivity with other
Mollicutes or eubacteria. In fact, the qPCR sensitivity and
specificity make this technique useful for the diagnosis of U.
diversum as also mentioned in other studies, as shown in Table 1

(108, 149).
Mollicutes in general are fastidious bacteria and difficult to

culture and detect; this hinders the collection of epidemiological
data and understanding of pathogenesis (10). The importance of
U. diversum infections in cattle, the use of PCR in diagnosis, and
sharp detection of this mollicute in clinical materials will help
better control this microorganism (10, 68, 79, 86, 149).

Prevalence
The prevalence varies according to several factors (Table 1)
including several important ones that follow: (1) the cattle
population size in a country studied. In Brazil, which has one
of the largest cattle herds in the world (150), prevalence may
even vary between different regions; (2) health status of the
host animal (healthy or unhealthy); (3) sex and stage of animal
development (cow, bull, young calf, calf, fetus); (4) anatomical
area studied (regions of the lower or upper reproductive
tract, respiratory tract, eye conjunctiva) and (5) the diagnostic
technique used (culture, PCR). The variations and prevalence of
U. diversum are presented in Table 1, which compiles some data
on the recent infection prevalence in cattle and swine.

VIRULENCE OF U. DIVERSUM

Mollicutes have virulence mechanisms and also use host cell
nutrients. Virulence factors include the following: (1) the
production of toxic primary metabolic compounds such as

ammonia or oxygen hydroxide (2) Adhesion and invasion in host
cells; (3) LAMP compounds, and (4) modulation of apoptosis
mechanisms. Many of these mechanisms have been studied in
U. diversum; however, some virulence and pathogenic factors
remain unexplored (28, 42).

Urea Production and Modulation in
Prostaglandin Synthesis
Ureaplasma do not have a complete arginine dehydrolase
pathway (151). Thus, urea hydrolysis plays an important role in
energy metabolism of ureaplasmas and is an important energy
source through the production of ATP (152–154) as shown
in Figure 2. Ajello et al. (155) showed that ammonia can be
produced by the degrading L-histidine. This substance can
also be produced by the activity of L-histidine ammonialyase
detected in ureaplasmas. There is no data in the literature on
the pathogenic effects of the expression of the urease gene by U.
diversum; however, in these bacteria, the urease genomic cluster
was identified, with more than 90% homology to the human
Ureaplasma spp. coding sequence (CDS) (28, 90). Hydrolysis
of urea in ureaplasma generates an electrochemical gradient
through accumulation of intracellular ammonia/ammonium.
The gradient fosters a chemiosmotic potential that generates ATP
(156). Thus ATP production is associated with three enzymatic
components: urease, (three-subunit urease+ accessory proteins),
an ammonia/ammonium transporter, and a FOF1-ATPase–
Figure 2—(28, 153, 154).

Ureaplasmal ammonia release in a tissue irritates the mucous
membranes of the urogenital and respiratory tracts. The
mucosal cells also have targets for adhesion and colonization of
ureaplasma strains (153, 154, 157, 158). In addition, the ammonia
may also intoxicate adjacent tissues.

Another virulence factor is the significant decrease in
prostaglandin E2 and F2a by endometrial cells after ureaplasmal
infection (95). Prostaglandins are necessary for implantation
of embryos and maintenance of pregnancy in cattle (95,
159). Ureaplasmas interfere with prostaglandin biosynthesis due
to their phospholipases in membranes (160). The genes for
phospholipase D family proteins and triacylglycerol lipases in
bovine ureaplasmas may increase the release of arachidonic acid
and inhibit the substrate for prostaglandin synthesis (28). The
phospholipase D gene was found in 40% of 45 U. diversum
isolates from different regions of Brazil (65). The presence of
prostaglandins in humans and other animals has also been
associated with otherMollicutes. These molecules were observed
in human fetal membranes infected by U. parvum (161).

Prostaglandins are strong regulators of cellular activities
in reproductive processes. Prostaglandins are necessary for
implantation of embryos and maintenance of pregnancy (160).
Alteration of this context by ureaplasmas, probably by the
activity of phospholipases, can induce labor (153). Prostaglandins
can have a pro-inflammatory action on the host’s reproductive
system; inflammation ultimately initiates preterm labor (162).
This is in line with several studies associating bovine U.
diversum with premature births (47, 86). Despite this, the role of
phospholipases inU. diversum needs to be studied in more detail.
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LAMPs and Other Surface Molecules
Structurally the cell membrane of Ureaplasma spp. has the
following three layers: two border electron-dense layers with
a middle less dense layer, which interacts with the external
environment, as shown in Figure 1 (163, 164). LAMPs represent
a mixture of cell surface-expressed mycoplasmal lipoproteins
interacting with the host cells and are the major molecular
patterns associated with pathogens in various mollicute species
(16, 164, 165). They are attached to the membrane mainly by
electrostatic interactions and thus can be easily released (16,
166). A large number of expressed lipoproteins account for a
significant portion of the membrane mass (16, 167–169). These
LAMPs play an important role at the site of infection causing
inflammation by activating or inhibiting apoptosis: Probably
through the breakdown of extracellular ATP into adenosine,
this inhibits the growth of various types of cells and even
induces apoptosis (170, 171); in the ATP-binding cassette (ABC)
transport system (172); in the virulence of different strains,
mainly due to the fact that many LAMPs act as VSPs (173,
174), in cell adhesion, as described in section Cell adhesion
and invasion (175, 176), and in immunomodulation of the
host response, as described in the section Inflammation and
Immunomodulation (42).

In the bovine ureaplasma genome, genes encoding 37
unknown lipoproteins were found, as well as one VSP with
36% identity with the M. pulmonis variable surface antigen
lipoproteins (VsA) (28, 90). VSPs undergo constant variations
(16, 177). A variety of mechanisms may be involved in these
antigenic variations, including phase variation (178), variation
in the number of tandem repeats at the carboxylic terminus
(179, 180), masking by another surface antigen (181), and (177).
Studies with other Mollicutes show that VSPs are related to
cell adhesion (182, 183), and induce proinflammatory or anti-
inflammatory response (175).

The presence of multiple band antigen (MBA) coding genes in
U. diversum plays a role in antigenic variation as mechanisms for
rapid adaptation to changes in the microenvironment (28). The
MBA contains a signal peptide and an acylation site in the N-
terminus. The C-terminus is composed of multiple serial repeats
(184, 185). Uchida et al. (186) demonstrated that MBA from U.
parvum is a potential virulence factor and causes intrauterine
fetal death and preterm delivery after injection into the uterus
on day 15 of gestation in pregnant mice. This study also showed
that the N-terminus diacylated lipopeptide is essential for the
onset of inflammation that causes reproductive disorders (186).
Antigenic variation of MBA has not yet been investigated in
U. diversum, but in U. parvum these variations are correlated
with the severity of the infection. Knox et al. (187), using a
pregnant sheep model, showed that larger numbers ofmba/MBA
size variants generate low inflammation response within the
chorioamnion and little or no chorioamnionitis. In ureaplasma
isolated from human placentas, the variation in the size of
mba/MBAwas associated with a reduced incidence of histological
chorioamnionitis and significantly lower levels of the cord blood
proinflammatory cytokines (134). In this way, by avoiding the
immune recognition of the host through antigenic variations, so
that ureaplasmas collaborate for a less severe infectious pattern

that would cause choriomyionitis, and on the other hand, these
microorganisms are established as an asymptomatic chronic
infection (188). In the intrauterine fetus, this establishment may
cause chorioamnionitis, preterm birth or fetal death (134, 186,
188).

In the U. diversum genome, genes encoding hemolysin
were found, being an enzyme that causes blood cell lysis, and
MIB-MIP system genes (MIB: Mycoplasma Ig binding protein;
MIP: Mycoplasma Ig protease). MIB acts as an IgG-binding
protein, while MIP cleaves the IgG heavy chain (28, 90). U.
diversum genome has several CDS for potentially immunogenic
molecules (LAMPs, VSPs, MBA, hemolysin, and MIB-MIP
system); however, the role of most of these molecules has
not yet been thoroughly investigated. Identifying the function
of these immunogenic molecules may represent a significant
advance in the understanding of the pathogenesis caused
by ureaplasmas. Modification of some membrane antigens
can provide an effective strategy to evade the host immune
system (189).

Cell Adhesion and Invasion
U. diversum is a facultative intracellular microorganism (88).
The adhesins are responsible for adhesion and facilitate the
process of cell invasion. These molecules also enable the
ureaplasmas to use the host cell nutrients and facilitate the
cell invasion process. Invasion is a complex process involving
mollicute adhesins and cell receptors (190). Once adhered, these
bacteria interact with membrane receptors or interfere with the
transport mechanism of host cells rendering them vulnerable
to cytotoxic metabolites and cytolytic enzyme activities (190,
191).

Macromolecules of different Mollicutes have been identified
and related to cell adhesion. Among the most commonly studied
are M. pneumonia P1 and P30 proteins (23, 192), and M.
gallisepticum GapA and CrmA proteins: cytadherence-related
molecules (193). In M. bovis proteins P26 (194), α-enolase,
adhesion-related factor (195), and members of the VSPs family
with adhesion function were identified (175). The CDS for
various surface proteins have been found in the U. diversum
genome. In addition, the presence of capsules and LAMPs were
associated with increased virulence and promote adhesion to the
host cell (28).

The invasiveness is closely related to cell adhesion (31, 36).
The invasion has already been described for several species
of Mollicutes including cellular invasion by M. penetrans,
M. genitalium (196) and, M. gallisepticum (197). Cellular
internalization by U. diversum was first described by Marques
et al. (198) using Confocal Laser Scanning Microscopy.
Internalization in Hep-2 cells was detected 1min after infection.
The microorganisms after 3, 8, and 24 h were detected
around the perinuclear regions; however, the nuclear invasion
was not verified (198). The invasion in the bovine sperm
described by Buzinhani et al. (88) emphasizes the role of
these microorganisms in reducing sperm motility and in
causing seminal vesiculitis, and epididymitis. Regarding the
reduction of reproductive efficiency, Santos-Junior et al. (42)
demonstrated that U. diversum is able to embed within
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blastocysts and induce higher gene expression of interleukin
1 beta (IL-1β) and tumor necrosis factor alpha (TNF-
α) compared to uninfected blastocysts. This suggests the
existence of an early signaling system to respond to bacterial
infections capable of protecting embryos against mollicute
infections (199).

Cell invasion is an important virulence factor in
Mollicutes and can be considered a strategy for persistence
in immunocompetent hosts. These hosts also provide essential
nutrients for Mollicutes (89, 198, 200, 201). Intracellular
localization also protectsMollicutes from antibiotics and hinders
their elimination from the infected cell cultures (2). Gentamicin
is an example of an antibiotic that cannot penetrate mammalian
cells when in low concentrations, therefore, this antibiotic
is not effective against U. diversum and other internalized
Mollicutes in mammalian cells (198). The mechanisms inherent
in the adhesion process have not been completely elucidated in
Mollicutes. Some approaches show that plasminogen plays an
important role in M. fermentans invasion. When M. fermentans
is exposed to plasminogen, they are able to invade HeLa cells;
however, the unexposed cells lose their invasive abilities, showing
the plasminogen dependence on the invasion process (202).
Phospholipases are also related to cell invasion; these enzymes,
already identified in U. diversum, are able to cleave membrane
phospholipids and gain access to the host cell cytoplasm
(191, 198, 200, 203).

Apoptosis
The LAMPs of Mollicutes may also modulate apoptosis
mechanisms (171). Mycoplasma bovis induces apoptotic death
of bovine lymphocytes through a mechanism in which
lipoproteins play an important role (204). Several other
Mollicutes demonstrate the ability to modulate apoptosis in
different cell lines (205–207).

The ability of U. diversum to induce cellular apoptosis
was found after inoculation in Hep-2 cells. The number of
apoptotic cells was higher than uninfected cells. However, the
number of apoptotic cells decreased over time. Such reduction
may be related to the persistence of this microorganism in
the intracellular environment where it can be protected from
host immune factors (89). In infectious diseases, apoptosis can
be characterized as a defense mechanism against intracellular
microbes that do not necessarily have any mechanism to impede
them. However, excessive apoptosis of immune cells can affect
the immune response at the primary site of infection and thus
facilitate the diffusion of mycoplasma (205, 208).

INFLAMMATION AND
IMMUNOMODULATION

The immune reaction against Mollicutes is mediated by T and
B lymphocytes (209). Therefore, it is suggested that a chronic
adaptive response develops with consequent immunoglobulin
secretion, antibody opsonization, complement system activation
and infiltration of neutrophils and macrophages (85, 210).

U. diversum in bovine vaginal lesions revealed epithelial
necrosis, infiltration and cell proliferation (85). In uterine tissue
specimens, the glandular epithelium is damaged by infiltrating
leukocytes and eosinophils in the submucosa. Edema, connective
tissue proliferation, muscle fiber necrosis, and small areas of
epithelial ulceration may be observed histologically (82, 83).
Pulmonary histopathology of fetuses and calves is characterized
by significant infiltration and accumulation of lymphocytes
throughout the lung, near the vessels and bronchioles, as well as
in the alveolar tissue (47).

Ureaplasma spp. surface proteins are the main initiators
of the inflammatory response during infection (28, 42, 164,
183). The interaction between LAMPs and toll-like receptors
(TLRs) initiates signal transduction pathways that promote
inflammation-related gene transcription (211). However, an anti-
inflammatory profile can also be established. The ureaplasma
strains may induce the production of different cytokine profiles
depending on the surface antigens (41, 43).

Proinflammatory Profile Induction
In several Mollicutes the production of proinflammatory
cytokines is associated with interactions of LAMPs with TLRs
(41). The signaling pattern differs among Mollicutes and the
TLRs are part of the signaling process (41, 212, 213). Therefore,
intracellular recruitment of myeloid differentiation factor 88
(MyD88), activation of nuclear factor-κB (NF-κB) and activator
protein 1 (AP-1) occurs (41, 211). These transcription factors play
a central role in the induction of cytokine and chemokine profiles
(214, 215), such as interleukin (IL-8), Monocyte Chemoattractant
Protein-1 (MCP-1), Macrophage-1a Inflammatory Protein (MIP-
1a), Macrophage and Granulocyte Colony-Stimulating Factor
(GM-SFs), as well as prostaglandin and nitric oxide (18, 216).
These molecules are associated with a strong inflammatory
response (217–219).

Inoculation of viable or inactivated U. diversum in bovine
macrophages increases TLR gene expression and association
with IL-1β and TNF-α production, and induction of a strong
inflammatory state (28). These findings are consistent with the
clinical status of cow infections. These cytokines appear to play
a central role in the response to Mollicutes. Several studies have
described their involvement both in vivo (220) and in vitro (41,
221, 222). Human mononuclear cells infected with Mycoplasma
pneumoniae, M. hyorhinis, M. arginine, M. salivarium, M. orale,
M. gallisepticum also have increased expression of IL-1β and
TNF-α (169).

Silva et al. (223) found that U. diversum intrauterine infection
in a mouse model induced TNF-α production. U. diversum
was also able to induce TNF-α, IL-1β, and IL-6 production
in macrophage culture (224). Inoculation of viable or inactive
strains and different concentrations of LAMPs induced higher
expression of IL-1β, TNF-α, TLR2, and TLR4 gene in bovine
macrophages (42). A common feature of these studies was the
dose-dependent relationship (even to microbial load or LAMP
amount). Thus, as suggested by Marques et al. (68), The higher
bacterial load of U. diversum may be directly related to the
intensity of the clinical conditions of infected cows.
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FIGURE 3 | Proinflammatory response induction mechanism by U. diversum. The interaction of U. diversum or LAMPs activates NF-kB. Once activated, NF-kB

translocates to the nucleus and acts as a transcription factor for IL-1β and TNF-α.

In infections due toMollicutes, the signal transduction leading
to the production of proinflammatory cytokines indicated is
dependent on NF-kB or AP-1 (225). Many studies show that
stimulation of TLR1, TLR2, and TLR6 by LAMPs results
in the activation of these transcription factors. TLR2 is

known to form heterodimers with TLR1 (TLR2/TLR1) and
TLR6 (TLR2/TLR6), thereby distinguishing different microbial
components, including Mollicutes LAMPs (226–228). LAMPs
derived fromM. genitalium can activate NF-kB via TLR1, TLR2,
and TLR6 (211). The same occurs in THP-1 cells infected
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with M. pneumoniae (229) and in macrophages infected with
U. parvum LAMPs (164, 230). Wang et al. (41) found that
overexpression of TLR2 and MyD88 in bovine embryo lung
cells depends on the stimulation by M. bovis LAMPs and that
these lipoproteins activate IL-1β production via NF-kB via TLR2
and MyD88.

U. diversum also induces high TLR2 expression in murine and
bovinemacrophages (28, 42). This demonstrates the fundamental
role of this receptor in signaling pathways that lead to the
production of a proinflammatory cytokine profile. However,
studies evaluating the expression of TLR 2 and TLR 4, as well
as the use of TLR4, TLR2/4, and NFK-B blockers associated with
TLR2 (Pam3CysSK4) and TLR4 (LPS) ligand, have shown that
TLR4 has an important function in signaling that leads to the
expression of IL-1β and TNF-α. In this case, the TLR4 blockade
inhibited the expression of these cytokines, suggesting that U.
diversum and its lipoproteins interact with TLR4 in signaling
that acts via NF-kB to stimulate the inflammatory response, as
shown in Figure 3 (42). However, due to the antigenic variety of
U. diversum, it is possible to suggest that other signaling pathways
may coexist.

Other studies have investigated TLR4 signaling in Mollicutes.
Shimizu et al. (231) showed that M. pneumoniae induces
strong inflammatory responses in TLR2 knockout mouse
macrophages and the inhibited response in TLR4 inhibitor
treated macrophages suggesting the establishment of TLR4
mediated inflammatory response. Both TLR2 and 4 may be
involved in signaling by some Mollicutes. It has been found
in Mycoplasma arthritidis that TLR 2 and TLR4 interact with
HLA-DR by increasing the binding and antigen presentation
of this mollicute to murine T cells (213). Furthermore, U.
urealyticum LAMPs interact with TLR-2 and TLR-4 leading
to immunomodulation with the release of proinflammatory
mediators (212).

Induction of an Anti-inflammatory Profile
LAMPs can also downregulate the immune system. M.
fermentans lipoproteins have been shown to induce IL-10
production in human monocytes (232). CombiningM. flocculare
with M. hyopneumoniae also increases the ability of bone-
marrow-derived dendritic cells (BM-DC) to secrete IL-10 (233).
IL-10 may act as an anti-inflammatory cytokine necessary to
maintain cellular homeostasis or favor the Th2 pathway by
inhibiting IL-12 production (31, 234).

Andrade et al. (65) noted that some U. diversum strains
induced significant expression of IL-10 and IL-17 when
inoculated into bovine macrophages. The expression of IL-
17 does not prevent anti-inflammatory modulation. Thus,
the high antigen variability contributes to U. diversum
modulating the immune system in different ways. This
type of signaling is common in some Mollicutes; M.
bovis-infected bovine monocytes, with increased IL-10
secretion (235).

Despite the role of IL-17 in neutrophil recruitment, it
can also act synergistically with IL-10. Corroborating this
theory Jimbo et al. (236) showed that IL-17 does not increase
bovine neutrophil survival after M. bovis infection. Thus,
the increase in IL-10 and IL-17, reported in U. diversum
infected bovine macrophages (65), may be responsible for the
extended time of infections since this cytokine prevents the
activation of effector mechanisms for pathogen destruction (233,
237).

PERSPECTIVES

The economic loss from U. diversum infection is reflected
in bovine meat, milk, and semen production and marketing
industries. In veterinary research, PCR technology for U.
diversum diagnosis is a new paradigm for detecting this
infectious agent. The early, rapid diagnosis and control of bovine
ureaplasmal infections must be consolidated soon to reduce the
costs in keeping cattle healthy.

The sequencing of the U. diversum genome has provided
more information about the species, especially regarding the
antigenic variation (28, 90). Now CDS for various LAMPs,
VSPs, and other antigens are available. An alternative that
seems promising for future studies would be to review the
heterologous expression of these antigens by recombinant
DNA technology, immunomodulation, and antibody
production assays.

Studies of U. diversum LAMPs showed their potential to
increase the host proinflammatory cytokines (42). However,
molecular cloning and expression in heterologous systems of
these proteins should provide a better understanding of this
ureaplasma virulence. However, the culturing techniques for
U. diversum must also be improved, as the high nutritional
requirements make laboratory isolation and cultivation
difficult. This aspect, added to the high specificity of
ureaplasmas to host tissues, also limits studies of pathogen-
host interaction. This limitation has been solved in other
fastidious microorganisms through the cultures of organoids
from target tissues of infection (238). However, use of this
technology is not yet a reality for studying mollicutes. The
heterologous protein expression in Escherichia coli is already
known and this should facilitate more specific studies. The
other approach should include the ability to better understand
the effects of purified antigens. These technologies have
already been applied in other Mollicutes and should help
improve understanding of the pathogenesis and virulence of
bovine ureaplasma.
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