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Abstract Although face processing has been studied extensively, the dynamics of how face-

selective cortical areas are engaged remains unclear. Here, we uncovered the timing of activation in

core face-selective regions using functional Magnetic Resonance Imaging and

Magnetoencephalography in humans. Processing of normal faces started in the posterior occipital

areas and then proceeded to anterior regions. This bottom-up processing sequence was also

observed even when internal facial features were misarranged. However, processing of two-tone

Mooney faces lacking explicit prototypical facial features engaged top-down projection from the

right posterior fusiform face area to right occipital face area. Further, face-specific responses

elicited by contextual cues alone emerged simultaneously in the right ventral face-selective regions,

suggesting parallel contextual facilitation. Together, our findings chronicle the precise timing of

bottom-up, top-down, as well as context-facilitated processing sequences in the occipital-temporal

face network, highlighting the importance of the top-down operations especially when faced with

incomplete or ambiguous input.

Introduction
There is ample evidence to show that the processing of face information involves a distributed neural

network of face-sensitive areas in the occipitotemporal cortex and beyond (Duchaine and Yovel,

2015; Haxby et al., 2000). Three bilateral face-selective areas are considered as the core face-proc-

essing system, defined in functional Magnetic Resonance Imaging (fMRI) studies as regions showing

significantly higher response to faces than objects, which are Occipital Face Area (OFA) in the infe-

rior occipital gyrus (Gauthier et al., 2000; Haxby et al., 1999), Fusiform Face Area (FFA) in the fusi-

form gyrus (Kanwisher et al., 1997; Grill-Spector et al., 2004) and a face-sensitive area in the

posterior superior temporal sulcus (pSTS) (Hoffman and Haxby, 2000; Puce et al., 1998). Similarly,

a number of so-called face patches have been identified in macaque monkeys along the superior

temporal sulcus (Tsao et al., 2003; Tsao et al., 2006; Tsao et al., 2008). Although the functional

properties of these areas have been studied extensively, we do not yet have a comprehensive under-

standing of how the face-processing network functions in a dynamic manner. Hierarchical models

postulate that face specific processes are initiated in the OFA based on local facial features, then the

information is forwarded to higher level regions, such as FFA, for holistic processing (Haxby et al.,

2000; Fairhall and Ishai, 2007; Liu et al., 2002). This model is supported by neuroimaging studies

showing functional properties of face-selective areas and is consistent with generic local-to-global

views of object processing. However, it has been challenged by results from studies in which patients

with damaged OFA can still showed FFA activation to faces (Rossion et al., 2003; Steeves et al.,

2006). Further, it was reported that during the perception of faces with minimal local facial features,
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FFA could still show face-preferential activation without face-selective inputs from OFA

(Rossion et al., 2011). Thus a non-hierarchical model was proposed postulating that face detection

is initiated at the FFA followed by a fine analysis in the OFA (Rossion et al., 2011; Gentile et al.,

2017). These competing models may reflect different modes of operation of the face network under

different demands. To reconcile these models, a comprehensive dynamic picture of face processing

under different conditions with more detailed temporal information is needed.

In the current study, we investigated the dynamics of face processing in the ‘core face processing

system’ using Magnetoencephalography (MEG) and fMRI. We designed the face-related stimuli spe-

cifically to reveal mechanisms for processing 1) normal faces, 2) Mooney faces with very little explicit

facial features, 3) distorted faces with internal facial features spatially misarranged, and 4) contextu-

ally induced face representations with internal facial features completely missing. During the experi-

ment, subjects were presented with various types of face pictures while MEG signals were recorded.

The key effort in this study was in reconstructing the source signals from the MEG sensor data, to

obtain a dynamic depiction of cortical responses to faces and other types of stimuli. With the timing

of activation revealed in each face-selective area in the ‘core face processing system’, we could

uncover when and where face information is processed in the human brain.

The main findings are briefly summarized here. First, we revealed the basic, mainly bottom-up,

processing sequence along ventral temporal cortex by presenting face pictures of famous individuals

to subjects. Face processing was initiated in the posterior areas and then proceeded forward to

anterior regions. Right OFA (rOFA) and right posterior FFA (rpFFA) were activated very close in

time, peaking around 120 ms, while right anterior FFA (raFFA) reached its peak at about 150 ms.

The right pSTS (rpSTS) in the dorsal pathway showed a weaker and temporally more variable

response, participating in face processing within a time window from 130 to 180 ms. Then, we

highlighted the top-down operation in face processing by using two-tone Mooney face images

(Mooney, 1957) lacking prototypical local facial features. According to the predictive coding theory

(Rao and Ballard, 1999; Murray et al., 2004; Mumford, 1992), face prediction created at FFA

based on impoverished information of Mooney faces and prior knowledge is poorly matched with

the input representation at OFA due to the lack of explicit local facial features. The activity in OFA,

representing ‘residual error’ between top-down prediction and bottom-up input, is then expected

to increase subsequently. Consistent with this model, rOFA was activated later than rpFFA, and

rpFFA exerted extensive directional influence onto rOFA when processing Mooney faces, suggesting

a cortical analysis dominated by rpFFA to rOFA projection. However, when explicit internal facial

features were available but misarranged within a normal face contour, a temporal pattern similar to

that of normal faces was observed. Finally, we further investigated the temporal dynamics when

face-specific responses were driven by contextual cues alone with the internal face features entirely

missing (Cox et al., 2004). In this case, rOFA, rpFFA and raFFA were activated somewhat late and

almost simultaneously, corresponding to contextual modulation that parallelly facilitated the proc-

essing of the core face-processing network.

Results

Face induced MEG signals in the source space
Subjects were presented with famous faces and familiar objects and instructed to perform a simple

classification task (face or object) while their brain activity was recorded using MEG. After a rest

period, each subject was scanned with fMRI viewing the same group of face and object images pre-

sented in separate blocks. Since each subject underwent both fMRI and MEG measurements, we

could compare the face-selective regions defined by fMRI with the reconstructed MEG signals

evoked by faces in the source space.

Subjects’ face-selective regions in the occipitotemporal cortex were localized with fMRI contrast-

ing responses to faces with that to objects. MEG signals at different time points were reconstructed

in the source space by computing LCMV beamformer solution on evoked data after preprocessing

(Van Veen et al., 1997). The estimated activities for the whole cortical surface can be viewed as a

3D spatial distribution of LCMV value (power normalized with noise) at each time point

(Sekihara and Nagarajan, 2008).
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Figure 1. Face-selective areas identified by fMRI localizer and face-evoked MEG source activation displayed on an

inflated right hemisphere of a typical subject. (A) Face-selective statistical map (faces>objects) showing four face-

selective regions (rOFA, rpFFA, raFFA and rpSTS). (B) Face-evoked MEG source activation patterns represented as

Figure 1 continued on next page
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Figure 1 shows the fMRI identified face regions and MEG measured face-evoked signals in a typi-

cal subject, displayed in ventral and lateral views of an inflated right hemisphere (Source localization

results and fMRI localization results are shown in Figure 1—figure supplement 1–4 for more individ-

ual subjects). Face-selective regions rOFA, rpFFA, raFFA and rpSTS were identified by fMRI localizer

(Figure 1A). MEG responses evoked by faces are shown in 10 ms steps from 120 ms to 160 ms in

source space (cortical surface) (Figure 1B). It could be seen in the MEG signal that the location of a

cluster of activation in the right occipital cortex at about 120 ms after stimulus onset is consistent

with rOFA. At about 150–160 ms, a cluster of activation was found in posterior part of superior tem-

poral sulcus, overlapping with rpSTS. Two temporally separated clusters of MEG source activation

were found in the right fusiform gyrus, one consistent with the location of pFFA (about 130 ms) and

another with aFFA (about 150 ms) (see Video 1). Similar spatiotemporal patterns of activation could

be seen across the 13 subjects tested. These results show that face response areas identified by

MEG are highly consistent with that defined by fMRI, thus it is a reasonable approach to extract the

MEG time courses based on fMRI-guided region of interest (ROI). In this paper, with the understand-

ing that the sources of MEG signals were constrained by the fMRI defined ROIs, we use the fMRI

terms (OFA, FFA and pSTS) to indicate the corresponding cortical area in MEG data.

Bottom-up processing sequence induced by normal faces
We investigated the typical dynamic sequence for processing faces in the ventral occipitotemporal

cortex investigated by presenting subjects with face images of well-known individuals. We analyzed

the time courses of face-selective areas identified in the source space. Seven face-selective areas

(lOFA, rOFA, lpFFA, rpFFA, raFFA, lpSTS, rpSTS) were identified, guided by fMRI face localizer

results from each individual subject, and they were used to extract the face-response time courses of

the MEG source data. We averaged the resulting time courses across subjects and the waveforms

are shown in Figure 2A. Face images induced stronger responses compared to objects in face-selec-

tive areas, especially for the right hemisphere. The timing of peak responses for individual ROIs are

summarized in Figure 2B and C, revealing the fundamental temporal characteristics of the neural

processing of faces. In the right hemisphere,

face-evoked responses emerged earlier in the

posterior areas than in the anterior areas, the

peak responses occurred at 116 ± 6 ms, 125 ± 5

ms and 150 ± 10 ms for rOFA, rpFFA and raFFA,

respectively. Although there is no significant dif-

ference between rOFA and rpFFA (t12 = 1.57,

p=0.43, Bonferroni corrected), the peak

response timing of raFFA is significantly delayed

compared with rpFFA (t11 = 3.21, p=0.025, Bon-

ferroni corrected), suggesting a bottom-up pro-

cess. Similarly, OFA reached its peak response

earlier than pFFA in the left hemisphere

(lOFA:122 ± 5 ms, lpFFA:126 ± 6 ms), although

this trend is not statistically significant

Figure 1 continued

LCMV value maps at different time points (120-160 ms) after the stimulus onset. LCMV values represent signal

power normalized by noise.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Face-selective areas identified by fMRI localizer and face-evoked MEG source activation

displayed on an inflated right hemisphere of typical subject one.

Figure supplement 2. Face-selective areas identified by fMRI localizer and face-evoked MEG source activation

displayed on an inflated right hemisphere of typical subject two.

Figure supplement 3. Face-selective areas identified by fMRI localizer and face-evoked MEG source activation

displayed on an inflated right hemisphere of typical subject three.

Figure supplement 4. Face-selective areas identified by fMRI localizer and face-evoked MEG source activation

displayed on an inflated right hemisphere of typical subject four.

Video 1. MEG activation of a typical subject.

https://elifesciences.org/articles/48764#video1
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(t11 = 0.64, p>0.05, Bonferroni corrected). Responses from the left anterior FFA was not shown

because the corresponding activation cluster was not observed clearly in most subjects. In addition,

dorsal face-selective region pSTS showed weaker and temporally broader responses, involved in

face processing roughly from 130 to 180 ms. The sequential progression from posterior to anterior

regions along the ventral occipitotemporal cortex, especially the significantly delayed activation of

raFFA, indicates a bottom-up hierarchical functional structure of the ventral face pathway.

In addition to famous faces, we also presented unfamiliar faces to subjects and analyzed the data

in the same way. Results showed essentially similar hierarchical dynamic sequences of face process-

ing regardless of face familiarity (Figure 2—figure supplement 1). Thus, unfamiliar face images

were used in the next experiment reported below.

Top-down operation in face processing highlighted by viewing Mooney
faces
While the processing of normal (famous or unfamiliar) faces mainly followed the posterior to anterior

(bottom-up) face processing sequence, we further investigated the possibility that under certain

stimulus conditions, top-down modulation of face processing could become more prominent.

According to the predictive coding theory, when the representation of sensory input in lower areas

is poorly matched with the predictions generated from higher level areas, the activity in lower areas
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Figure 2. Temporal response characteristics of face-selective ROIs. (A) The time courses of face (solid line) and object (dotted line) induced responses

averaged across subjects, for the seven face-selective ROIs. Shaded area means SEM. The green bar indicates significant difference between face and

object. Significance was assessed by cluster-based permutation test (cluster-defining threshold p<0.05, significance level p<0.05) for each ROI. (B) The

peak latency averaged across subjects for each ROI (mean ± SEM). The peak latency of raFFA is significantly later than rpFFA (t11 = 3.21, p=0.025,

Bonferroni corrected) (C) The mean peak latencies for the face-selective ROIs were shown on inflated cortical surfaces of both hemispheres at

corresponding locations.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Temporal response characteristics of face-selective ROIs for unfamiliar faces.
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representing residual error would be increased (Rao and Ballard, 1999; Murray et al., 2004; Mum-

ford, 1992). Hence, we adopted the two-tone Mooney face images (Figure 3A), which could be rec-

ognized as faces but lack prototypical local facial features, as the main stimuli in this experiment.

Our hypothesis was that when processing Mooney faces which could activate the FFA based on the

global configuration, the top-down modulation from FFA to OFA (prediction of facial parts) would

be more prominent.

In this experiment, subjects (n = 28) were presented with normal unfamiliar faces and Mooney

faces, they performed a one-back task, indicating the repetition of the same images. Verbal survey

after the MEG experiment indicated that subjects could perceive at least 90% of the Mooney images

as faces. In all face-selective areas except rOFA, similar peak latencies were observed during the

perception of normal and Mooney faces. Strikingly, Mooney face elicited a response with signifi-

cantly longer latency in rOFA than normal face (paired t test, t23 = 4.009, p=0.001) (Figure 3B). The

temporal relationship of signals in the face-selective areas was quite different during the perception

of Mooney faces compared with that of normal ones (Figure 3C). Similar to Experiment 1, OFA were

activated slightly earlier than pFFA in response to normal faces (lOFA:124 ± 9 ms, lpFFA: 133 ± 9

ms, Paired permutation test p>0.9; rOFA: 107 ± 4 ms, rpFFA:120 ± 6 ms, Paired permutation test

p=0.37. Bonferroni corrected for multiple comparisons). However, when processing Mooney faces,

rOFA was engaged significantly later than rpFFA (rOFA:144 ± 8 ms, rpFFA: 117 ± 8 ms. Paired per-

mutation test p=0.02. Bonferroni corrected). The response curve of rOFA was temporally shifted to

a later point while the temporal characteristics of rpFFA was not much different from its response to

normal faces (Figure 3C). The temporal relationship between OFA and pFFA in left hemisphere is

similar to normal face condition (lOFA:127 ± 10 ms, lpFFA: 133 ± 10 ms. Paired permutation test

p>0.9, Bonferroni corrected).

To further analyze the dynamic causal relationship between OFA and pFFA, we performed

Granger causality analysis over sliding time windows of 50 ms duration from 75 to 230 ms after stim-

ulus presentation which covers the periods of essential activation in OFA and pFFA. The significant

directed connectivity in each time window is shown in Figure 3D. There were much more extensive

directed influences from pFFA to OFA during the processing of Mooney than normal faces. In partic-

ular, rpFFA influenced rOFA in Mooney face condition continuously from 75 to 170 ms, which was

more sparsely observed in normal face condition. Thus response time courses and Granger causality

analysis together show that, compared with processing of normal faces, the cortical processing of

Mooney faces is more dominated by the top-down rpFFA to rOFA projection.

Primarily feedforward processing of face-like stimuli with misarranged
internal features
We also investigated the processing dynamics of face-like stimuli with internal features clearly avail-

able but spatially misarranged, to contrast with the processing of normal as well as Mooney faces.

The normal external features (hair, chin, face outline) and the locally normal internal features led to

the engagement of the face-sensitive areas. Results show that the rOFA, rpFFA and raFFA were acti-

vated sequentially (rOFA: 132 ± 7 ms, rpFFA: 133 ± 5 ms, raFFA: 169 ± 12 ms. Figure 4B). Com-

pared with the responses to normal faces, the activations in the rOFA and rpFFA were somewhat

delayed in the case of the distorted faces. However, unlike the Mooney faces, the distorted faces still

engaged the OFA earlier than the FFA, presumably because of the explicitly available local facial

features. While the dominant signals are consistent with a feedforward processing from OFA to FFA,

there was a hint of a predictive error signal, possibly related to the misarranged spatial configura-

tions, that produced a low activity in rOFA at a later stage.

Parallel facilitation of face-processing network from contextual cues
alone
In real life, facial features are not always available. Previous studies showed that face-specific

responses could be elicited by contextual body cues (Cox et al., 2004; Chen and Whitney, 2019;

Martinez, 2019). Here we further investigated the dynamics of contextual facilitation of face proc-

essing when face perception was supported by contextual cues alone without explicit facial features

using the same experimental paradigm and data analysis procedures as before.
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Figure 3. Temporal response characteristics and granger causality analysis for face-selective ROIs during perception of Mooney and normal faces. (A)

Normal and Mooney face images. (B) The peak latency averaged across subjects for each face-selective ROI (mean ± SEM). Mooney faces elicited a

response with significantly longer latency in rOFA than normal faces (paired t test, t23 = 4.009, p=0.001). (C) Time courses averaged across subjects for

bilateral OFA and pFFA. Gray line is OFA and red line is pFFA. Shaded areas denote SEM. The circles above time courses represent peak latencies of

individual subjects. rOFA was engaged significantly later than rpFFA when processing Mooney faces (Paired permutation test p=0.02. Bonferroni

Figure 3 continued on next page
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Figure 3 continued

corrected). (D) Granger causality analysis performed within a series of 50 ms time windows. Arrows represent statistically significant causal effects

(p<0.05, FDR corrected, F test. See Materials and methods for details).
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Figure 4. Temporal response characteristics for face-selective ROIs in response to distorted face. (A) Example

stimuli and averaged time courses for each face-selective ROI. The green horizontal bar indicates significant

difference between distorted face and object (cluster-defining threshold p<0.01, corrected significance level

p<0.05). (B) Peak latency averaged across subjects for each ROI. The peak latency of raFFA is significant later than

rpFFA (paired t test, p=0.019, t8 = 2.92).
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Three types of stimuli were presented to subjects: (i) images of highly degraded faces (no internal

facial features) with contextual body cues that imply the presence of faces, (ii) similar to images in (i)

but with body cues arranged in an incorrect configuration and thus do not imply the presence of

faces, (iii) images of objects (Figure 5A). Activation in rOFA, rpFFA and raFFA were significantly

higher for the condition in which faces were clearly implied due to the contextual cues compared to

the condition when objects were presented (Figure 5B). However, when contextual cues were mis-

arranged so that faces were not strongly implied, only the rOFA showed stronger activation than

objects at a late stage (Figure 5B). Furthermore, peak latency analysis revealed that during the per-

ception of ‘faces’ generated from contextual cues alone, the rOFA, rpFFA and raFFA were all

engaged at about the same and relatively late time (rOFA: 149 ± 12 ms, rpFFA: 149 ± 14 ms, raFFA:

155 ± 11 ms) rather than activated sequentially (Figure 5C). Thus when the presence of a face was

facilitated by external cues alone, the evoked responses in the core face-processing network

emerged slowly and almost simultaneously.

Discussion
Using a combined fMRI and MEG source localization approach, our results systematically revealed

an intricately detailed dynamic picture of face information processing. Within the ventral occipito-

temporal face processing network, normal faces were processed mainly in a bottom-up manner

through the hierarchical pathway where input information was processed sequentially from posterior

to anterior ventral temporal cortex. This temporal order was also observed when processing face-

like stimuli with misarranged internal facial features. In contrast, during the processing of Mooney

faces in the absence of prototypical facial features, top-down modulation was more prominent in

which the dominant information flow was from the rpFFA to rOFA. Moreover, face-specific

responses from contextual cues alone were evoked late and simultaneously across the rOFA, rpFFA

and raFFA, suggesting that contextual facilitation acted parallelly on the core face-processing net-

work. These results advance our understanding of the hierarchical and non-hierarchical models of

face perception, especially underscoring the stimulus- and context-dependent nature of the process-

ing sequences.

During the perception of 2-tone Mooney faces, it is necessary to discount shadows and recover

3D surface structure from 2D images (Grützner et al., 2010). Interestingly, only familiar objects, like

faces, can be interpreted to be volumetric easily from 2-tone representations (Moore and Cava-

nagh, 1998; Hegde et al., 2007). Thus it is supposed that prior knowledge should play an important

role in the recovery of 3D shape from Mooney images (Braje et al., 1998; Gerardin et al., 2010). A

top-down model emphasized the guidance of prior experience at higher levels (Cavanagh, 1991).

This model is supported by evidence from experiments showing that early visual processing is

affected by high-level attributes in both human and monkey (Lee et al., 2002; Humphrey et al.,

1997; Issa et al., 2018). As briefly mentioned in the results section, the dynamics of MEG signals

associated with processing Mooney faces, which highlights the top-down modulation, is consistent

with the explanation based on predictive coding model. It proposed that hypotheses or predictions

made at higher cortical areas are compared with, through feedback, representations at lower areas

to generate residual error, which is then forwarded to higher stages as ‘neural activity’ (Rao and Bal-

lard, 1999; Murray et al., 2004; Friston, 2005; Friston, 2010). Specifically, the face model/predic-

tion is generated at the rpFFA based on the global configuration of Mooney faces using prior

knowledge about 3D faces, illumination, and cast shadows. This prediction of expected facial fea-

tures is then poorly matched with the input representation at the rOFA which lacks the explicit pro-

totypical facial features due to the mixed illumination-invariant and illumination-dependent features,

generating an increased signal at rOFA. Thus, the dominant signal at the rOFA (residual) necessarily

lags behind the signal at the rpFFA (hypothesis). However, when processing normal faces or face

with misarranged facial features, the prominent signal in the early stage of rOFA is mainly due to the

strong feedforward input from early visual cortex as rOFA is robustly responsive to the clear facial

components. The prediction feedback from rpFFA would be consistent with representation at the

rOFA in the case of the normal faces, resulting in little error signal; with the misarranged facial fea-

tures, there was a hint of a late increase of rOFA signal, possibly indicating that the feedback signal

could contain some spatial information as well.
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Figure 5. Temporal response characteristics for face-selective ROIs in response to contextual cues. (A) Example

stimuli. (B) Time courses averaged across subjects for each condition. For each ROI, Blue horizontal bars indicate

significant difference between degraded faces with relevant body cues and objects, and red horizontal bars

indicate significant difference between degraded faces with irrelevant body cues and objects (cluster-defining

Figure 5 continued on next page
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The timing of face induced neural activation has been studied for a long time with various techni-

ques, such as the combination of MEG and fMRI using representational similarities (Cichy et al.,

2014; Cichy et al., 2016), MEG source localization and intracranial EEG (Kadipasaoglu et al., 2017;

Keller et al., 2017; Ghuman et al., 2014). An early MEG study suggested two stages ( early catego-

rization and late identification) were involved in face processing (Liu et al., 2002). Combined with

the fMRI observation that OFA is responsible for identifying facial parts while FFA for holistic config-

uration (Rotshtein et al., 2005; Liu et al., 2010; Pitcher et al., 2011b; Arcurio et al., 2012;

Pitcher et al., 2007; Schiltz, 2010), OFA is expected to respond earlier than FFA. An simultaneous

electroencephalogram (EEG)-fMRI study also showed that OFA responded to faces earlier than FFA

(OFA: 110 ms; FFA: 170 ms) (Sadeh et al., 2010). Using transient stimulation to temporally disrupt

local neural processing, Transcranial Magnetic Stimulation (TMS) experiments suggested that OFA

processes facial information at about 100/110 ms, while pSTS begins processing face at about 100/

140 ms (Pitcher et al., 2012; Pitcher et al., 2014). However, the sources of N/M170 face selective

component remain controversial, it is suggested to come from fusiform gyrus in some studies

(Deffke et al., 2007; Kume et al., 2016; Perry and Singh, 2014). While some other studies empha-

sized the contribution of inferior occipital gyrus besides fusiform gyrus (Itier et al., 2006;

Gao et al., 2013) or even of pSTS (Nguyen and Cunnington, 2014). Our results provide more pre-

cise and detailed timing information of the core face network under various stimulus and contextual

conditions, especially the temporal relationship between rpFFA and raFFA. raFFA is engaged signif-

icantly later, about 20 ms after the rpFFA, suggesting that the raFFA likely plays a different func-

tional role from rpFFA. This idea is supported by previous anatomical evidence showing that pFFA

and aFFA have different cellular architectures (Weiner et al., 2017).

Our results also shed light on the role of internal and external features in face perception.

Although when assembling into a whole face, facial features are processed holistically and the repre-

sentation of internal features are influenced by external features (Andrews et al., 2010), eyes in iso-

lation elicit a later but larger N170 (Bentin et al., 1996; Rossion and Jacques, 2011) and can drive

face-selective neurons as well as full-face images (Issa and DiCarlo, 2012) in monkeys. In our results,

the somewhat slower but still sequential progression of face responses elicited by face-like stimuli

with clear but misarranged internal features in face outline further supports that facial features are

sufficient to trigger the bottom-up face processing sequence. In addition, certain stimulus manipula-

tions, such as face inversion (Bentin et al., 1996), contrast reversal, Mooney transformation or

removal of facial features produced comparable (or even increased amplitude) but delayed N170

responses (Rossion and Jacques, 2011). Thus it is suggested that as long as the impoverished stim-

uli is perceived as a face, inferior temporal cortex areas would be activated (McKeeff and Tong,

2007; Grützner et al., 2010). Our results provide further more details for this explanation by show-

ing the top-down rpFFA to rOFA projection when the prototypical facial features are lack.

Besides facial features, contextual information is also important for face interpretation (Chen and

Whitney, 2019; Martinez, 2019). Interestingly, FFA can be activated by the perceived presence of

faces from contextual body cues alone (Cox et al., 2004). Here our MEG data showed that the face-

selective areas in ventral core face network were indeed activated by the contextual cues for faces,

but they were not activated in any order, instead, they became active together at a late stage. This

is similar to the temporal dynamics observed in visual imagery, a top-down process given the

absence of visual inputs (Dijkstra et al., 2018). Future studies are needed to elucidate how core

face network interacts with other brain regions to trigger the face perception. For example, accord-

ing to a MEG study using fast periodic visual stimulation approach (Rossion et al., 2012;

Rossion et al., 2015; de Heering and Rossion, 2015), top-down attention increase the response in

FFA by gamma synchrony between the inferior frontal junction and FFA (Baldauf and Desimone,

2014).

Face perception is shaped by long-term visual experience, for example, familiar faces are proc-

essed more efficiently than unfamiliar ones (Landi and Freiwald, 2017; Schwartz and Yovel, 2016;

Dobs et al., 2019; Gobbini and Haxby, 2006). In terms of the dynamics in the ventral

Figure 5 continued

threshold p < 0.05, corrected significance level p < 0.05). (C) The peak latency averaged across subjects for each

face-selective ROI (mean± SEM).

Fan et al. eLife 2020;9:e48764. DOI: https://doi.org/10.7554/eLife.48764 11 of 21

Research article Computational and Systems Biology

https://doi.org/10.7554/eLife.48764


occipitotemporal areas, the present results showed little differences between processing famous

and unfamiliar faces. This could be due to several reasons. First, many studies suggested that

regions in the anterior temporal lobe rather than OFA and FFA represent face familiarity

(Gobbini and Haxby, 2007; Pourtois et al., 2005; Sugiura et al., 2011). However, extended face

system is beyond the scope of our current study because some areas in the extended system are

too deep to obtain a good MEG source signal. Second, some subjects might not be familiar with all

the famous faces we used. Third, familiarity may affect face recognition via high gamma frequency

band activity (Anaki et al., 2007), which is not included in our data analysis.

Bilateral pSTS showed weak and multi-peaked responses during both famous and unfamiliar face

processing despite the task differences. One possible reason for the multiple peaks of responses is

that as a hub for integrating information from multiple sources (e.g., face, body, and voice), STS con-

tains regions that respond to different types of information (Grossman et al., 2005; Bernstein and

Yovel, 2015). A lot of studies have suggested diverse functional role of pSTS in representing

changeable aspects of faces, such as expression, lip movement and eye-gaze (Baseler et al., 2014;

Engell and Haxby, 2007). Specifically, pSTS is involved in the analysis of facial muscle articulations

which are combined to produce facial expressions (Srinivasan et al., 2016; Martinez, 2017). In addi-

tion, pSTS may respond to dynamic motion information conveyed through faces (O’Toole et al.,

2002).

Previous studies showed that left and right fusiform gyrus are differentially involved in face/non-

face judgements (Meng et al., 2012; Goold and Meng, 2017), ‘low-level’ face semblance and per-

ceptual learning of face (Bi et al., 2014; Feng et al., 2011; McGugin et al., 2018). Interestingly, in

our results, the peak latency of the left pFFA was later than that of the right pFFA in all conditions

except famous face. Responses evoked from distorted faces with misarranged features had the larg-

est lateral difference (20 ms). One possible reason is that the signal attributed to the left pFFA is in

fact a mixture of signals from pFFA and aFFA.

Although the exact correspondence between human and macaque face-selective areas are still

unclear (Tsao et al., 2003; Tsao et al., 2006; Tsao et al., 2008), the dynamic picture of normal face

processing revealed in our study is generally similar to that in macaques. Single-unit recording stud-

ies showed that activity begins slightly earlier in posterior face patches than anterior ones, reaching

peak levels around 126, 133, and 145 ms for middle lateral (ML)/middle fundus (MF), anterior lat-

eral (AL), and anterior medial (AM) ( Freiwald and Tsao, 2010) , respectively. Interestingly, there is

a discrepancy in response to Mooney faces in high level face patch AM between two monkeys. One

of them showed nearly the same peak latency as normal faces but with more sustained activation,

while the other did not response to Mooney faces (Moeller et al., 2017). This may imply that the

processing of Mooney faces is related to individual face detection ability or life experience and face

processing is not a simple feedforward process from low level to high level areas. Consistent with

that, a more recent study showed a rapid and more sustained response in high level face area (aIT)

and an early rising then quickly decreased activity in low level areas in monkeys, a signature of pre-

dictive coding model (Issa et al., 2018).

Our study is obviously limited in scope. There are many types of cues and tasks relevant for face

perception that could be investigated. In addition to facial features and context, many low level cues

contribute to face recognition, such as illumination direction, pigmentation (surface appearance) and

contrast polarity (one region brighter than another) (Russell et al., 2007; Sinha et al., 2006). In par-

ticular, neurons tuned for contrast polarity were found in macaque inferotemporal cortex, supporting

the notion that low-level image properties are encoded in face regions (Ohayon et al., 2012;

Weibert et al., 2018). We purposely avoided the complication of color cues in this study by using

gray-scale images, but we are aware the importance of color in face perception (Yip and Sinha,

2002; Benitez-Quiroz et al., 2018). Moreover, the temporal dynamics of face processing could

very well be influenced by different tasks. In our results, there is little difference between the tempo-

ral patterns in response to unfamiliar faces under face category task (Figure 2—figure supplement

1) and image identity one-back task (Figure 3). Future studies are needed to more comprehensively

investigate the role of behavioral tasks, especially during the relatively late stages of face

processing.

In summary, our study delineated the precise timing of bottom-up, top-down, as well as context-

facilitated processing sequences in the occipital-temporal face network. These results provide a way

to understand and reconcile previous discrepant findings, revealing the dominant bottom-up
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processing when explicit facial features were present, and highlighting the importance of the top-

down feedback operations when faced with impoverished inputs with unclear or ambiguous facial

features.

Materials and methods

Participants
All subjects (age range 19–31) provided written informed consent and consent to publish before the

experiments, and experimental protocols were approved by the Institutional Review Board of the

Institute of Biophysics, Chinese Academy of Sciences (#2017-IRB-004). The image used in Figure 3 is

a photograph of one of the authors and The Consent to Publish Form was obtained.

Experiment 1 (normal famous and unfamiliar face)
Fifteen subjects were presented with famous faces (popular film actors, 50% female) and objects

(houses, scenery and small manmade objects) and were instructed to perform a category classifica-

tion task (face or object) while their brain activity was recorded using MEG. Two subjects with exces-

sive head motion (>5 mm) were excluded from further analysis. Each type of image includes 50

exemplars and all faces are own race faces. All images used were equated for contrast and mean

luminance using the SHINE toolbox (Willenbockel et al., 2010). Each trial was initiated with a fixa-

tion with a jittered duration (800–1000 ms), then a grayscale visual image (face or object, 8 � 6 ˚)

was presented at the center of screen for 500 ms, followed by a response period. Subjects were

asked to maintain fixation and report whether the image was a face or an object using button press

as soon as possible. There were 120 trials for each condition. Nine of the thirteen subjects partici-

pated in an additional experiment in which unfamiliar faces were used.

Experiment 2 (normal unfamiliar face and Mooney face)
Experiment two was conducted similar to Experiment 1, except that unfamiliar faces and two-tone

Mooney faces were presented to subjects (n = 28) in separate blocks (15 trials each) during which

subjects performed a one-back task. Two subjects with excessive head motion (>5 mm) were

excluded from further analysis.

Experiment 3 (face-like images with spatially misarranged internal
features)
Experiment three was conducted similar to Experiment 1, except that distorted face and object

images were presented to subjects (n = 9). Distorted face images were created by rearranging the

eyes, mouth and nose into a nonface configuration (Liu et al., 2002).

Experiment 4 (contextual cues defined the presence of faces without
internal features)
Experiment four was conducted similar to Experiment 2. Three types of stimuli (Figure 5A) were cre-

ated as described in previous study (Cox et al., 2004): (i) images of highly degraded faces (no inter-

nal facial features) with contextual body cues that imply the presence of faces, (ii) similar to images

in (i) but with body cues arranged in an incorrect configuration and thus do not imply the presence

of faces, (iii) images of objects. Fifteen subjects participated in this experiment and one of them was

excluded from further data analysis due to excessive head motion (>5 mm).

MEG data acquisition and analysis
MEG data were recorded continuously using a 275-channel CTF system. Three coils were attached

on the head, one close to nasion, and the other two close to left and right preauricular points

respectively. fMRI scanning was performed shortly after MEG data collection, and the locations of

coils were marked with vitamin E caplets to align with MEG frames. MEG data analysis was per-

formed using MATLAB ( RRID: SCR_001622) and Fieldtrip toolbox ( Oostenveld et al., 2011) (RRID:

SCR_004849) for artifact detection and MNE-python ( RRID: SCR_005972) for source analysis

(Gramfort et al., 2013; Gramfort et al., 2014).
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Preprocessing
After acquisition, we first conducted time correction as there was time delay (measured with a pho-

todiode) between the stimulus onset on the screen and the trigger signal in the recorded MEG data.

Then the data were bandpass filtered with a frequency range of 2–80 Hz and epoched from 250 ms

before to 550 ms after the stimulus onset. Bad channels and trials contaminated by artifacts includ-

ing eye blinks, muscle activities and SQUID jumps were removed before further analysis.

Source localization
Source localization can be generally divided into two steps, forward solution and inverse solution.

Boundary-element model (BEM) which describes the geometry of the head and conductivities of the

different tissues, coregistration information between MEG and MRI, and volume source space which

defines the position of the source locations (10242 sources per hemisphere and the source spacing

is 3.1 mm) were used to calculate forward solution. For inverse solution, we first estimated noise and

data covariance matrix from �250 to 0 ms epochs and 100 to 350 ms epochs respectively. After-

wards, the Linearly Constrained Minimum Variance (LCMV) beamformer was calculated using covari-

ance matrix and forward solution (Van Veen et al., 1997). The regularization for the whitened data

covariance is 0.01. The source orientation which maximizes output source power is selected.

Time course analysis
To explore the time course, virtual sensors were computed on the 30 Hz low-pass filtered data using

the LCMV beamformer at the grid points within individual face-selective areas. The time course of

each face-selective area was extracted from the grid point showing max value of MEG response.

Subjects who did not show corresponding face-selective areas in fMRI localizer were excluded from

time course extraction (See Table 1 for details). To identify time-points of significant differences, we

performed non-parametric statistical tests with cluster-based multiple comparison correction

(Maris and Oostenveld, 2007).

Peak latency analysis
For each ROI of each subject, peak latency was defined as the timing of the largest peak within the

first 250 ms of averaged response. To avoid the influence of bad source data with weak signal, time

course without any time points showing response 5 SDs above the baseline (time average from

�250 to 0 ms) was eliminated from peak analysis. The numbers of subjects used in peak latency anal-

ysis are summarized in Table 2. Two-tailed paired t tests (subjects with missing values were

excluded) were used to compare the peak latencies between ROIs. While in Experiment 2, a more

rigorous statistical approach, two sample paired permutation test (10000 permutations), was used to

compare the peak latencies between pFFA and OFA (See results for details).

Granger causality analysis
To study the regional information flow between ROIs, we employed Granger causality analysis

(Granger, 1969) which is a statistical technique that based on the prediction of one time series on

another. Time courses used in this analysis were extracted from each ROI without low-passed

Table 1. Number of subjects showing fMRI defined face-selective areas.

Experiment 1 Experiment 2 Experiment 3 Experiment 4

famous face Unfamiliar face

IOFA 13/13 9/9 25/26 9/9 13/14

IpFFA 13/13 9/9 26/26 9/9 14/14

IpSTS 13/13 9/9 18/26 9/9 11/14

rOFA 13/13 9/9 26/26 9/9 14/14

rpFFA 13/13 9/9 26/26 9/9 14/14

raFFA 12/13 9/9 18/26 9/9 12/14

rpSTS 13/13 9/9 23/26 9/9 14/14
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filtering. Causality analysis was performed using Multivariate Granger Causality (MVGC) toolbox

(Barnett and Seth, 2014). Evoked response was removed from the data by linear regression before

further analysis because the time series is assumed to be stationary in Granger causality analysis and

this assumption is challenged in evoked brain responses (Wang et al., 2008). We conducted sepa-

rate analysis over a series of overlapping 50 ms time windows (based on a previous study

Ashrafulla et al., 2013) from 75 to 230 ms, which covers the period of face-induced activation in

both OFA and FFA. There is a trade-off between stationary, temporal resolution (shorter is better)

and accuracy of model fit (longer is better) when considering the size of time window. Moreover,

smaller window is not considered because activity beyond Beta-band is not strong according to the

power spectrum. First, the best model order was selected according to Bayesian information criteria

(BIC). Then the corresponding vector auto regressive (VAR) model parameters were estimated for

the selected model order and the autocovariance sequence for the VAR model was calculated. Then

the bidirectional Granger causality values for each pair ROI were obtained by calculating pairwise-

conditional time-domain MVGCs based on autocovariance sequence. Finally, to evaluate whether

causality values are significantly greater than zero (assume null hypothesis causality value = 0), we

performed significance test using F null distribution with FDR correction for multiple comparisons

(Benjamini and Hochberg, 1995).

fMRI data acquisition and analysis
Scanning was performed on a 3T Siemens Prisma scanner in the Beijing MRI Center for Brain

Research. We acquired high-resolution T1-weighed anatomical volumes first, and then performed a

run of functional face localizer (Pitcher et al., 2011a) with interleaved face and object blocks using a

gradient echo-planar sequence (20-channel head coil, TR = 2 s, TE = 30 ms, resolution

2.0 � 2.0 � 2.0 mm, 31 slices, matrix = 96 � 96). fMRI data were analyzed using FreeSurfer (RRID:

SCR_001847) and AFNI (RRID: SCR_005927). Face-selective areas were defined as regions that

responded more strongly to faces than to objects.
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Grützner C, Uhlhaas PJ, Genc E, Kohler A, Singer W, Wibral M. 2010. Neuroelectromagnetic correlates of
perceptual closure processes. Journal of Neuroscience 30:8342–8352. DOI: https://doi.org/10.1523/
JNEUROSCI.5434-09.2010, PMID: 20554885

Haxby JV, Ungerleider LG, Clark VP, Schouten JL, Hoffman EA, Martin A. 1999. The effect of face inversion on
activity in human neural systems for face and object perception. Neuron 22:189–199. DOI: https://doi.org/10.
1016/S0896-6273(00)80690-X

Haxby JV, Hoffman EA, Gobbini MI. 2000. The distributed human neural system for face perception. Trends in
Cognitive Sciences 4:223–233. DOI: https://doi.org/10.1016/S1364-6613(00)01482-0, PMID: 10827445

Hegde J, Thompson S, Kersten D. 2007. Identifying faces in two-tone (’Mooney’) images: A psychophysical and
fMRI study. Journal of Vision 7:624. DOI: https://doi.org/10.1167/7.9.624

Hoffman EA, Haxby JV. 2000. Distinct representations of eye gaze and identity in the distributed human neural
system for face perception. Nature Neuroscience 3:80–84. DOI: https://doi.org/10.1038/71152, PMID: 106073
99

Humphrey GK, Goodale MA, Bowen CV, Gati JS, Vilis T, Rutt BK, Menon RS. 1997. Differences in perceived
shape from shading correlate with activity in early visual Areas. Current Biology 7:144–147. DOI: https://doi.
org/10.1016/S0960-9822(06)00058-3, PMID: 9016702

Issa EB, Cadieu CF, DiCarlo JJ. 2018. Neural dynamics at successive stages of the ventral visual stream are
consistent with hierarchical error signals. eLife 7:e42870. DOI: https://doi.org/10.7554/eLife.42870, PMID: 304
84773

Issa EB, DiCarlo JJ. 2012. Precedence of the eye region in neural processing of faces. Journal of Neuroscience
32:16666–16682. DOI: https://doi.org/10.1523/JNEUROSCI.2391-12.2012, PMID: 23175821

Itier RJ, Herdman AT, George N, Cheyne D, Taylor MJ. 2006. Inversion and contrast-reversal effects on face
processing assessed by MEG. Brain Research 1115:108–120. DOI: https://doi.org/10.1016/j.brainres.2006.07.
072, PMID: 16930564

Fan et al. eLife 2020;9:e48764. DOI: https://doi.org/10.7554/eLife.48764 18 of 21

Research article Computational and Systems Biology

https://doi.org/10.1016/j.neuropsychologia.2011.09.031
https://doi.org/10.1016/j.neuropsychologia.2011.09.031
http://www.ncbi.nlm.nih.gov/pubmed/21971308
https://doi.org/10.1126/science.1194908
http://www.ncbi.nlm.nih.gov/pubmed/21051642
https://doi.org/10.1098/rstb.2005.1622
https://doi.org/10.1038/nrn2787
http://www.ncbi.nlm.nih.gov/pubmed/20068583
https://doi.org/10.1002/hbm.22028
http://www.ncbi.nlm.nih.gov/pubmed/22422432
https://doi.org/10.1162/089892900562165
http://www.ncbi.nlm.nih.gov/pubmed/10931774
https://doi.org/10.1002/hbm.23348
http://www.ncbi.nlm.nih.gov/pubmed/27585292
https://doi.org/10.1073/pnas.1006285107
http://www.ncbi.nlm.nih.gov/pubmed/20805488
https://doi.org/10.1038/ncomms6672
http://www.ncbi.nlm.nih.gov/pubmed/25482825
https://doi.org/10.1016/j.brainresbull.2006.08.003
http://www.ncbi.nlm.nih.gov/pubmed/17113931
https://doi.org/10.1016/j.neuropsychologia.2006.04.015
http://www.ncbi.nlm.nih.gov/pubmed/16797608
https://doi.org/10.1002/hbm.23620
http://www.ncbi.nlm.nih.gov/pubmed/28432767
https://doi.org/10.3389/fnins.2013.00267
http://www.ncbi.nlm.nih.gov/pubmed/24431986
https://doi.org/10.1016/j.neuroimage.2013.10.027
https://doi.org/10.1016/j.neuroimage.2013.10.027
http://www.ncbi.nlm.nih.gov/pubmed/24161808
https://doi.org/10.2307/1912791
https://doi.org/10.1038/nn1224
http://www.ncbi.nlm.nih.gov/pubmed/15077112
https://doi.org/10.1016/j.visres.2005.05.027
https://doi.org/10.1523/JNEUROSCI.5434-09.2010
https://doi.org/10.1523/JNEUROSCI.5434-09.2010
http://www.ncbi.nlm.nih.gov/pubmed/20554885
https://doi.org/10.1016/S0896-6273(00)80690-X
https://doi.org/10.1016/S0896-6273(00)80690-X
https://doi.org/10.1016/S1364-6613(00)01482-0
http://www.ncbi.nlm.nih.gov/pubmed/10827445
https://doi.org/10.1167/7.9.624
https://doi.org/10.1038/71152
http://www.ncbi.nlm.nih.gov/pubmed/10607399
http://www.ncbi.nlm.nih.gov/pubmed/10607399
https://doi.org/10.1016/S0960-9822(06)00058-3
https://doi.org/10.1016/S0960-9822(06)00058-3
http://www.ncbi.nlm.nih.gov/pubmed/9016702
https://doi.org/10.7554/eLife.42870
http://www.ncbi.nlm.nih.gov/pubmed/30484773
http://www.ncbi.nlm.nih.gov/pubmed/30484773
https://doi.org/10.1523/JNEUROSCI.2391-12.2012
http://www.ncbi.nlm.nih.gov/pubmed/23175821
https://doi.org/10.1016/j.brainres.2006.07.072
https://doi.org/10.1016/j.brainres.2006.07.072
http://www.ncbi.nlm.nih.gov/pubmed/16930564
https://doi.org/10.7554/eLife.48764


Kadipasaoglu CM, Conner CR, Baboyan VG, Rollo M, Pieters TA, Tandon N. 2017. Network dynamics of human
face perception. PLOS ONE 12:e0188834. DOI: https://doi.org/10.1371/journal.pone.0188834, PMID: 29190
811

Kanwisher N, McDermott J, Chun MM. 1997. The fusiform face area: a module in human extrastriate cortex
specialized for face perception. The Journal of Neuroscience 17:4302–4311. DOI: https://doi.org/10.1523/
JNEUROSCI.17-11-04302.1997, PMID: 9151747

Keller CJ, Davidesco I, Megevand P, Lado FA, Malach R, Mehta AD. 2017. Tuning face perception with electrical
stimulation of the fusiform gyrus. Human Brain Mapping 38:2830–2842. DOI: https://doi.org/10.1002/hbm.
23543, PMID: 28345189

Kume Y, Maekawa T, Urakawa T, Hironaga N, Ogata K, Shigyo M, Tobimatsu S. 2016. Neuromagnetic evidence
that the right fusiform face area is essential for human face awareness: an intermittent binocular rivalry study.
Neuroscience Research 109:54–62. DOI: https://doi.org/10.1016/j.neures.2016.02.004, PMID: 26907522

Landi SM, Freiwald WA. 2017. Two Areas for familiar face recognition in the primate brain. Science 357:591–595.
DOI: https://doi.org/10.1126/science.aan1139, PMID: 28798130

Lee TS, Yang CF, Romero RD, Mumford D. 2002. Neural activity in early visual cortex reflects behavioral
experience and higher-order perceptual saliency. Nature Neuroscience 5:589–597. DOI: https://doi.org/10.
1038/nn0602-860, PMID: 12021764

Liu J, Harris A, Kanwisher N. 2002. Stages of processing in face perception: an MEG study. Nature Neuroscience
5:910–916. DOI: https://doi.org/10.1038/nn909, PMID: 12195430

Liu J, Harris A, Kanwisher N. 2010. Perception of face parts and face configurations: an FMRI study. Journal of
Cognitive Neuroscience 22:203–211. DOI: https://doi.org/10.1162/jocn.2009.21203, PMID: 19302006

Maris E, Oostenveld R. 2007. Nonparametric statistical testing of EEG- and MEG-data. Journal of Neuroscience
Methods 164:177–190. DOI: https://doi.org/10.1016/j.jneumeth.2007.03.024, PMID: 17517438

Martinez AM. 2017. Visual perception of facial expressions of emotion. Current Opinion in Psychology 17:27–33.
DOI: https://doi.org/10.1016/j.copsyc.2017.06.009, PMID: 28950969

Martinez AM. 2019. Context may reveal how you feel PNAS. 116:7169–7171. DOI: https://doi.org/10.1073/
pnas.1902661116, PMID: 30898883

McGugin RW, Ryan KF, Tamber-Rosenau BJ, Gauthier I. 2018. The role of experience in the Face-Selective
response in right FFA. Cerebral Cortex 28:2071–2084. DOI: https://doi.org/10.1093/cercor/bhx113, PMID: 2
8472436

McKeeff TJ, Tong F. 2007. The timing of perceptual decisions for ambiguous face stimuli in the human ventral
visual cortex. Cerebral Cortex 17:669–678. DOI: https://doi.org/10.1093/cercor/bhk015, PMID: 16648454

Meng M, Cherian T, Singal G, Sinha P. 2012. Lateralization of face processing in the human brain. Proceedings of
the Royal Society B: Biological Sciences 279:2052–2061. DOI: https://doi.org/10.1098/rspb.2011.1784

Moeller S, Crapse T, Chang L, Tsao DY. 2017. The effect of face patch microstimulation on perception of faces
and objects. Nature Neuroscience 20:743–752. DOI: https://doi.org/10.1038/nn.4527, PMID: 28288127

Mooney CM. 1957. Age in the development of closure ability in children. Canadian Journal of Psychology/Revue
Canadienne De Psychologie 11:219–226. DOI: https://doi.org/10.1037/h0083717

Moore C, Cavanagh P. 1998. Recovery of 3D volume from 2-tone images of novel objects. Cognition 67:45–71.
DOI: https://doi.org/10.1016/S0010-0277(98)00014-6, PMID: 9735536

Mumford D. 1992. On the computational architecture of the neocortex. II. the role of cortico-cortical loops.
Biological Cybernetics 66:241–251. DOI: https://doi.org/10.1007/bf00198477, PMID: 1540675

Murray SO, Schrater P, Kersten D. 2004. Perceptual grouping and the interactions between visual cortical Areas.
Neural Networks 17:695–705. DOI: https://doi.org/10.1016/j.neunet.2004.03.010, PMID: 15288893

Nguyen VT, Cunnington R. 2014. The superior temporal sulcus and the N170 during face processing: single trial
analysis of concurrent EEG-fMRI. NeuroImage 86:492–502. DOI: https://doi.org/10.1016/j.neuroimage.2013.10.
047, PMID: 24185024

O’Toole AJ, Roark DA, Abdi H. 2002. Recognizing moving faces: a psychological and neural synthesis. Trends in
Cognitive Sciences 6:261–266. DOI: https://doi.org/10.1016/S1364-6613(02)01908-3, PMID: 12039608

Ohayon S, Freiwald WA, Tsao DY. 2012. What makes a cell face selective? the importance of contrast. Neuron
74:567–581. DOI: https://doi.org/10.1016/j.neuron.2012.03.024, PMID: 22578507

Oostenveld R, Fries P, Maris E, Schoffelen JM. 2011. FieldTrip: open source software for advanced analysis of
MEG, EEG, and invasive electrophysiological data. Computational Intelligence and Neuroscience 2011:1–9.
DOI: https://doi.org/10.1155/2011/156869, PMID: 21253357

Perry G, Singh KD. 2014. Localizing evoked and induced responses to faces using magnetoencephalography.
European Journal of Neuroscience 39:1517–1527. DOI: https://doi.org/10.1111/ejn.12520, PMID: 24617643

Pitcher D, Walsh V, Yovel G, Duchaine B. 2007. TMS evidence for the involvement of the right occipital face area
in early face processing. Current Biology 17:1568–1573. DOI: https://doi.org/10.1016/j.cub.2007.07.063,
PMID: 17764942

Pitcher D, Dilks DD, Saxe RR, Triantafyllou C, Kanwisher N. 2011a. Differential selectivity for dynamic versus
static information in face-selective cortical regions. NeuroImage 56:2356–2363. DOI: https://doi.org/10.1016/j.
neuroimage.2011.03.067, PMID: 21473921

Pitcher D, Walsh V, Duchaine B. 2011b. The role of the occipital face area in the cortical face perception network.
Experimental Brain Research 209:481–493. DOI: https://doi.org/10.1007/s00221-011-2579-1, PMID: 21318346

Pitcher D, Goldhaber T, Duchaine B, Walsh V, Kanwisher N. 2012. Two critical and functionally distinct stages of
face and body perception. Journal of Neuroscience 32:15877–15885. DOI: https://doi.org/10.1523/
JNEUROSCI.2624-12.2012, PMID: 23136426

Fan et al. eLife 2020;9:e48764. DOI: https://doi.org/10.7554/eLife.48764 19 of 21

Research article Computational and Systems Biology

https://doi.org/10.1371/journal.pone.0188834
http://www.ncbi.nlm.nih.gov/pubmed/29190811
http://www.ncbi.nlm.nih.gov/pubmed/29190811
https://doi.org/10.1523/JNEUROSCI.17-11-04302.1997
https://doi.org/10.1523/JNEUROSCI.17-11-04302.1997
http://www.ncbi.nlm.nih.gov/pubmed/9151747
https://doi.org/10.1002/hbm.23543
https://doi.org/10.1002/hbm.23543
http://www.ncbi.nlm.nih.gov/pubmed/28345189
https://doi.org/10.1016/j.neures.2016.02.004
http://www.ncbi.nlm.nih.gov/pubmed/26907522
https://doi.org/10.1126/science.aan1139
http://www.ncbi.nlm.nih.gov/pubmed/28798130
https://doi.org/10.1038/nn0602-860
https://doi.org/10.1038/nn0602-860
http://www.ncbi.nlm.nih.gov/pubmed/12021764
https://doi.org/10.1038/nn909
http://www.ncbi.nlm.nih.gov/pubmed/12195430
https://doi.org/10.1162/jocn.2009.21203
http://www.ncbi.nlm.nih.gov/pubmed/19302006
https://doi.org/10.1016/j.jneumeth.2007.03.024
http://www.ncbi.nlm.nih.gov/pubmed/17517438
https://doi.org/10.1016/j.copsyc.2017.06.009
http://www.ncbi.nlm.nih.gov/pubmed/28950969
https://doi.org/10.1073/pnas.1902661116
https://doi.org/10.1073/pnas.1902661116
http://www.ncbi.nlm.nih.gov/pubmed/30898883
https://doi.org/10.1093/cercor/bhx113
http://www.ncbi.nlm.nih.gov/pubmed/28472436
http://www.ncbi.nlm.nih.gov/pubmed/28472436
https://doi.org/10.1093/cercor/bhk015
http://www.ncbi.nlm.nih.gov/pubmed/16648454
https://doi.org/10.1098/rspb.2011.1784
https://doi.org/10.1038/nn.4527
http://www.ncbi.nlm.nih.gov/pubmed/28288127
https://doi.org/10.1037/h0083717
https://doi.org/10.1016/S0010-0277(98)00014-6
http://www.ncbi.nlm.nih.gov/pubmed/9735536
https://doi.org/10.1007/bf00198477
http://www.ncbi.nlm.nih.gov/pubmed/1540675
https://doi.org/10.1016/j.neunet.2004.03.010
http://www.ncbi.nlm.nih.gov/pubmed/15288893
https://doi.org/10.1016/j.neuroimage.2013.10.047
https://doi.org/10.1016/j.neuroimage.2013.10.047
http://www.ncbi.nlm.nih.gov/pubmed/24185024
https://doi.org/10.1016/S1364-6613(02)01908-3
http://www.ncbi.nlm.nih.gov/pubmed/12039608
https://doi.org/10.1016/j.neuron.2012.03.024
http://www.ncbi.nlm.nih.gov/pubmed/22578507
https://doi.org/10.1155/2011/156869
http://www.ncbi.nlm.nih.gov/pubmed/21253357
https://doi.org/10.1111/ejn.12520
http://www.ncbi.nlm.nih.gov/pubmed/24617643
https://doi.org/10.1016/j.cub.2007.07.063
http://www.ncbi.nlm.nih.gov/pubmed/17764942
https://doi.org/10.1016/j.neuroimage.2011.03.067
https://doi.org/10.1016/j.neuroimage.2011.03.067
http://www.ncbi.nlm.nih.gov/pubmed/21473921
https://doi.org/10.1007/s00221-011-2579-1
http://www.ncbi.nlm.nih.gov/pubmed/21318346
https://doi.org/10.1523/JNEUROSCI.2624-12.2012
https://doi.org/10.1523/JNEUROSCI.2624-12.2012
http://www.ncbi.nlm.nih.gov/pubmed/23136426
https://doi.org/10.7554/eLife.48764


Pitcher D, Duchaine B, Walsh V. 2014. Combined TMS and FMRI reveal dissociable cortical pathways for dynamic
and static face perception. Current Biology 24:2066–2070. DOI: https://doi.org/10.1016/j.cub.2014.07.060,
PMID: 25131678

Pourtois G, Schwartz S, Seghier ML, Lazeyras F, Vuilleumier P. 2005. View-independent coding of face identity in
frontal and temporal cortices is modulated by familiarity: an event-related fMRI study. NeuroImage 24:1214–
1224. DOI: https://doi.org/10.1016/j.neuroimage.2004.10.038, PMID: 15670699

Puce A, Allison T, Bentin S, Gore JC, McCarthy G. 1998. Temporal cortex activation in humans viewing eye and
mouth movements. The Journal of Neuroscience 18:2188–2199. DOI: https://doi.org/10.1523/JNEUROSCI.18-
06-02188.1998, PMID: 9482803

Rao R, Ballard DH. 1999. Predictive coding in the visual cortex: a functional interpretation of some extra-classical
receptive-field effects. Nature 2:79–87. DOI: https://doi.org/10.1038/4580

Rossion B, Caldara R, Seghier M, Schuller AM, Lazeyras F, Mayer E. 2003. A network of occipito-temporal face-
sensitive Areas besides the right middle fusiform gyrus is necessary for normal face processing. Brain 126:
2381–2395. DOI: https://doi.org/10.1093/brain/awg241, PMID: 12876150

Rossion B, Dricot L, Goebel R, Busigny T. 2011. Holistic face categorization in higher order visual Areas of the
normal and prosopagnosic brain: toward a non-hierarchical view of face perception. Frontiers in Human
Neuroscience 4:225. DOI: https://doi.org/10.3389/fnhum.2010.00225, PMID: 21267432

Rossion B, Prieto EA, Boremanse A, Kuefner D, Van Belle G. 2012. A steady-state visual evoked potential
approach to individual face perception: effect of Inversion, contrast-reversal and temporal dynamics.
NeuroImage 63:1585–1600. DOI: https://doi.org/10.1016/j.neuroimage.2012.08.033, PMID: 22917988

Rossion B, Torfs K, Jacques C, Liu-Shuang J. 2015. Fast periodic presentation of natural images reveals a robust
face-selective electrophysiological response in the human brain. Journal of Vision 15:18. DOI: https://doi.org/
10.1167/15.1.18, PMID: 25597037

Rossion B, Jacques C. 2011. The N170: understanding the time-course of face perception in the human brain. In:
Luck S. J, Kappenman E. S (Eds). The Oxford Handbook of Event-Related Potential Components. Oxford
University Press. p. 115–141. DOI: https://doi.org/10.1093/oxfordhb/9780195374148.013.0064

Rotshtein P, Henson RN, Treves A, Driver J, Dolan RJ. 2005. Morphing marilyn into Maggie dissociates physical
and identity face representations in the brain. Nature Neuroscience 8:107–113. DOI: https://doi.org/10.1038/
nn1370, PMID: 15592463

Russell R, Biederman I, Nederhouser M, Sinha P. 2007. The utility of surface reflectance for the recognition of
upright and inverted faces. Vision Research 47:157–165. DOI: https://doi.org/10.1016/j.visres.2006.11.002,
PMID: 17174375

Sadeh B, Podlipsky I, Zhdanov A, Yovel G. 2010. Event-related potential and functional MRI measures of face-
selectivity are highly correlated: a simultaneous ERP-fMRI investigation. Human Brain Mapping 31:1490–1501.
DOI: https://doi.org/10.1002/hbm.20952, PMID: 20127870

Schiltz C. 2010. Holistic perception of individual faces in the right middle fusiform gyrus as evidenced by the
composite face illusion. Journal of Vision 10:1–16. DOI: https://doi.org/10.1167/10.2.25

Schwartz L, Yovel G. 2016. The roles of perceptual and conceptual information in face recognition. Journal of
Experimental Psychology: General 145:1493–1511. DOI: https://doi.org/10.1037/xge0000220

Sekihara K, Nagarajan SS. 2008. Adaptive Spatial Filters for Electromagnetic Brain Imaging. Berlin, Heidelberg:
Springer. DOI: https://doi.org/10.1007/978-3-540-79370-0

Sinha P, Balas B, Ostrovsky Y, Russell R. 2006. Face recognition by humans: nineteen results all computer vision
researchers should know about. Proceedings of the IEEE 94:1948–1962. DOI: https://doi.org/10.1109/JPROC.
2006.884093

Srinivasan R, Golomb JD, Martinez AM. 2016. A neural basis of facial action recognition in humans. Journal of
Neuroscience 36:4434–4442. DOI: https://doi.org/10.1523/JNEUROSCI.1704-15.2016, PMID: 27098688

Steeves JK, Culham JC, Duchaine BC, Pratesi CC, Valyear KF, Schindler I, Humphrey GK, Milner AD, Goodale
MA. 2006. The fusiform face area is not sufficient for face recognition: evidence from a patient with dense
prosopagnosia and no occipital face area. Neuropsychologia 44:594–609. DOI: https://doi.org/10.1016/j.
neuropsychologia.2005.06.013, PMID: 16125741

Sugiura M, Mano Y, Sasaki A, Sadato N. 2011. Beyond the memory mechanism: person-selective and
nonselective processes in recognition of personally familiar faces. Journal of Cognitive Neuroscience 23:699–
715. DOI: https://doi.org/10.1162/jocn.2010.21469, PMID: 20350171

Tsao DY, Freiwald WA, Knutsen TA, Mandeville JB, Tootell RB. 2003. Faces and objects in macaque cerebral
cortex. Nature Neuroscience 6:989–995. DOI: https://doi.org/10.1038/nn1111, PMID: 12925854

Tsao DY, Freiwald WA, Tootell RB, Livingstone MS. 2006. A cortical region consisting entirely of face-selective
cells. Science 311:670–674. DOI: https://doi.org/10.1126/science.1119983, PMID: 16456083

Tsao DY, Moeller S, Freiwald WA. 2008. Comparing face patch systems in macaques and humans PNAS. 105:
19514–19519. DOI: https://doi.org/10.1073/pnas.0809662105, PMID: 19033466

Van Veen BD, van Drongelen W, Yuchtman M, Suzuki A. 1997. Localization of brain electrical activity via linearly
constrained minimum variance spatial filtering. IEEE Transactions on Biomedical Engineering 44:867–880.
DOI: https://doi.org/10.1109/10.623056, PMID: 9282479

Wang X, Chen Y, Ding M. 2008. Estimating Granger causality after stimulus onset: a cautionary note.
NeuroImage 41:767–776. DOI: https://doi.org/10.1016/j.neuroimage.2008.03.025, PMID: 18455441

Weibert K, Flack TR, Young AW, Andrews TJ. 2018. Patterns of neural response in face regions are predicted by
low-level image properties. Cortex 103:199–210. DOI: https://doi.org/10.1016/j.cortex.2018.03.009, PMID: 2
9655043

Fan et al. eLife 2020;9:e48764. DOI: https://doi.org/10.7554/eLife.48764 20 of 21

Research article Computational and Systems Biology

https://doi.org/10.1016/j.cub.2014.07.060
http://www.ncbi.nlm.nih.gov/pubmed/25131678
https://doi.org/10.1016/j.neuroimage.2004.10.038
http://www.ncbi.nlm.nih.gov/pubmed/15670699
https://doi.org/10.1523/JNEUROSCI.18-06-02188.1998
https://doi.org/10.1523/JNEUROSCI.18-06-02188.1998
http://www.ncbi.nlm.nih.gov/pubmed/9482803
https://doi.org/10.1038/4580
https://doi.org/10.1093/brain/awg241
http://www.ncbi.nlm.nih.gov/pubmed/12876150
https://doi.org/10.3389/fnhum.2010.00225
http://www.ncbi.nlm.nih.gov/pubmed/21267432
https://doi.org/10.1016/j.neuroimage.2012.08.033
http://www.ncbi.nlm.nih.gov/pubmed/22917988
https://doi.org/10.1167/15.1.18
https://doi.org/10.1167/15.1.18
http://www.ncbi.nlm.nih.gov/pubmed/25597037
https://doi.org/10.1093/oxfordhb/9780195374148.013.0064
https://doi.org/10.1038/nn1370
https://doi.org/10.1038/nn1370
http://www.ncbi.nlm.nih.gov/pubmed/15592463
https://doi.org/10.1016/j.visres.2006.11.002
http://www.ncbi.nlm.nih.gov/pubmed/17174375
https://doi.org/10.1002/hbm.20952
http://www.ncbi.nlm.nih.gov/pubmed/20127870
https://doi.org/10.1167/10.2.25
https://doi.org/10.1037/xge0000220
https://doi.org/10.1007/978-3-540-79370-0
https://doi.org/10.1109/JPROC.2006.884093
https://doi.org/10.1109/JPROC.2006.884093
https://doi.org/10.1523/JNEUROSCI.1704-15.2016
http://www.ncbi.nlm.nih.gov/pubmed/27098688
https://doi.org/10.1016/j.neuropsychologia.2005.06.013
https://doi.org/10.1016/j.neuropsychologia.2005.06.013
http://www.ncbi.nlm.nih.gov/pubmed/16125741
https://doi.org/10.1162/jocn.2010.21469
http://www.ncbi.nlm.nih.gov/pubmed/20350171
https://doi.org/10.1038/nn1111
http://www.ncbi.nlm.nih.gov/pubmed/12925854
https://doi.org/10.1126/science.1119983
http://www.ncbi.nlm.nih.gov/pubmed/16456083
https://doi.org/10.1073/pnas.0809662105
http://www.ncbi.nlm.nih.gov/pubmed/19033466
https://doi.org/10.1109/10.623056
http://www.ncbi.nlm.nih.gov/pubmed/9282479
https://doi.org/10.1016/j.neuroimage.2008.03.025
http://www.ncbi.nlm.nih.gov/pubmed/18455441
https://doi.org/10.1016/j.cortex.2018.03.009
http://www.ncbi.nlm.nih.gov/pubmed/29655043
http://www.ncbi.nlm.nih.gov/pubmed/29655043
https://doi.org/10.7554/eLife.48764


Weiner KS, Barnett MA, Lorenz S, Caspers J, Stigliani A, Amunts K, Zilles K, Fischl B, Grill-Spector K. 2017. The
cytoarchitecture of Domain-specific regions in human High-level visual cortex. Cerebral Cortex 27:146–161.
DOI: https://doi.org/10.1093/cercor/bhw361, PMID: 27909003

Willenbockel V, Sadr J, Fiset D, Horne GO, Gosselin F, Tanaka JW. 2010. Controlling low-level image properties:
the SHINE toolbox. Behavior Research Methods 42:671–684. DOI: https://doi.org/10.3758/BRM.42.3.671,
PMID: 20805589

Yip AW, Sinha P. 2002. Contribution of color to face recognition. Perception 31:995–1003. DOI: https://doi.org/
10.1068/p3376, PMID: 12269592

Fan et al. eLife 2020;9:e48764. DOI: https://doi.org/10.7554/eLife.48764 21 of 21

Research article Computational and Systems Biology

https://doi.org/10.1093/cercor/bhw361
http://www.ncbi.nlm.nih.gov/pubmed/27909003
https://doi.org/10.3758/BRM.42.3.671
http://www.ncbi.nlm.nih.gov/pubmed/20805589
https://doi.org/10.1068/p3376
https://doi.org/10.1068/p3376
http://www.ncbi.nlm.nih.gov/pubmed/12269592
https://doi.org/10.7554/eLife.48764

