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Abstract

Background: Gene expression-based profiling has been used to identify biomarkers for different breast cancer
subtypes. However, this technique has many limitations. IsomiRs are isoforms of miRNAs that have critical roles in
many biological processes and have been successfully used to distinguish various cancer types. Biomarker isomiRs for
identifying different breast cancer subtypes has not been investigated. For the first time, we aim to show that isomiRs
are better performing biomarkers and use them to explain molecular differences between breast cancer subtypes.

Results: In this study, a novel method is proposed to identify specific isomiRs that faithfully classify breast cancer
subtypes. First, as a null hypothesis method we removed the lowly expressed isomiRs from small sequencing data
generated from diverse breast cancers types. Second, we developed an improved mutual information-based feature
selection method to calculate the weight of each isomiR expression. The weight of isomiR measures the importance
of a given isomiR in classifying breast cancer subtypes. The improved mutual information enables to apply the dataset
in which the feature is continuous data and label is discrete data; whereby, the traditional mutual information cannot
be applied in this dataset. Finally, the support vector machine (SVM) classifier is applied to find isomiR biomarkers for
subtyping.

Conclusions: Here we demonstrate that isomiRs can be used as biomarkers in the identification of different breast
cancer subtypes, and in addition, they may provide new insights into the diverse molecular mechanisms of breast
cancers. We have also shown that the classification of different subtypes of breast cancer based on isomiRs expression
is more effective than using published gene expression profiling. The proposed method provides a better
performance outcome than Fisher method and Hellinger method for discovering biomarkers to distinguish different
breast cancer subtypes. This novel technique could be directly applied to identify biomarkers in other diseases.
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Background
MicroRNAs (miRNAs) are short RNA molecules and play
vital regulatory roles in a variety of biological processes
[1]. Mature miRNAs are generated from longer tran-
scripts via several sequential processing steps [2]. First
the primary miRNA transcripts (pri-miRNA) are cleaved
by the Microprocessor complex that contains Drosha, an
RNase III enzyme [3]. The cleaved precursor miRNAs
(pre-miRNA) are further processed by another RNase III
enzyme, Dicer, to produce small miRNA duplexes [4].
Alterations in miRNA maturation, such as the alterna-
tive and imprecise cleavage of Drosha and Dicer, or the
turnover of miRNAs could result in miRNAs that are
heterogeneous in length and/or sequence [5, 6]. These
variants are called isomiRs (isoforms of miRNA) and can
be divided into three main categories: 3′ isomiR (trimmed
or addition of one or more nucleotides at the 3′ position),
5′ isomiR (trimmed or addition of one or more nucleotides
at the 5′ position), and polymorphic isomiR (some
nucleotides within the sequence are different from the
wild type mature miRNA sequence) [6].

It could be envisioned that the increased expression of
miRNA variants, or individual isomiRs, lead to the loss
or weakening of the function of the corresponding wild
type mature miRNA or result in the regulation of a dif-
ferent transcriptome. Recent studies suggest that isomiRs
probably play vital roles in a variety of cancers, tissues,
and cell types [7]. For example, Juzenas and colleagues
claimed that isomiRs are differentially expressed in dif-
ferent human blood cell types [8]. Telonis and colleagues
showed that specific isomiRs could be superior cancer
biomarkers compared to mature miRNAs when they used
isomiRs to classify 32 different cancers [9]. Specifically,
Telonis and colleagues demonstrated that miRNA-based
analysis was unable to differentiate two specific subtypes
of breast cancer while, in comparison, isomiRs were able
to make clear distinctions between the two subtypes [10].
These findings suggest that isomiRs may play critical roles
in differentiating subtypes of breast cancer and, further-
more, may provide novel insights into understanding the
molecular mechanisms leading to the development of
breast cancers.

Breast cancer is the most common cancer and the sec-
ond leading cause of cancer-related deaths among women
worldwide [11]. Routine clinical evaluation and diagno-
sis of breast cancer is categorised into three major dis-
tinct molecular subtypes based on their hormone receptor
status: estrogen receptor (ERα) and progesterone recep-
tor (PR) positive, Herceptin 2 positive (HER2+), and
triple negative (ER/PR/HER2 negative) [12–14]. How-
ever, the link between molecular mechanisms and disease
prognosis defining the breast cancer subtypes is unclear
[15]. Understanding the mechanisms of breast cancer
subtyping is clinically useful with respect to prognosis,

prediction, and informed therapeutic choices [16]. Within
the major breast cancer subtypes, gene expression profil-
ing has been used to further classify these molecular sub-
types with the potential to design more specific targeted
therapies [17]. In addition, gene expression profiling has
been found to be more predictive of treatment response.
For example, in a study by Finn and colleagues they
showed reclassification of breast cancer subtypes using an
unbiased gene expression profiling technique predicted a
better treatment outcome compared to the conventional
breast cancer subtyping (ER/HER2 status) [18]. In this
study, a subset of three genes expressed in breast cancer
were more likely to predict responsiveness to dasatinib,
a small molecule specific kinase inhibitor. Dasatinib has
been used in clinical trials for hard to treat metastatic
breast cancer [19]. However, most breast cancer clinical
trial studies using dasatinib are inconclusive and poten-
tially these studies would benefit from gene profiling to
understand the lack of responsiveness.

Complex genetic diseases, such as breast cancer, inher-
ently pose the problem to be characterised by a few
biomarkers that faithfully characterise the subtypes of the
disease. MiRNAs and isomiRs provide a potentially bet-
ter alternative for classifying complex diseases compared
to mRNA based biomarkering since they are regulatory
“hubs” of gene expression. Therefore, the changes in their
expression could influence multiple downstream mRNAs
and therefore diverse biological pathways.

In this paper, we present a novel method that applies
isomiR expression profiles for improved classification of
breast cancer types using small RNA sequencing data
available in the TCGA database. Firstly, since the TCGA
dataset has many lowly expressed isomiRs that have
significant negative influence on the identification of
biomarkers, these lowly expressed isomiRs should be
removed. The traditional method for removing the lowly
expressed isomiRs is by selecting a ‘hard’ threshold [8, 9].
If the expression levels of an isomiR is lower than this
‘hard’ threshold, this isomiR is viewed as lowly expressed
and should be removed. However, this ‘hard’ threshold
may lead to a loss of information [20]. In order to tackle
this disadvantage, a ‘soft’ method based on a null hypoth-
esis method was applied, and this method was designed
to remove these lowly expressed isomiRs. Secondly, we
utilized an improved mutual information method to cal-
culate the weight of each isomiR, which measured the
significance of the isomiR to classify different subtypes of
breast cancer. The higher the weight of the isomiR, the
more suitable the isomiR for classifying different subtypes
of breast cancer. The traditional mutual information can
only be used if both the feature and the label are contin-
uous or discrete data. This improved mutual information
can be applied to features if it is continuous data and the
label is discrete data. Finally, a few isomiRs, which have



Lan et al. BMC Medical Genomics 2018, 11(Suppl 6):118 Page 75 of 112

high weights, were able to classify different breast cancer
subtypes. In order to identify these key isomiRs, the SVM
classification method was used.

Although there are many methods that have been
designed for biomarker discovery, they can be divided into
two major categories. The first category selects a set of
biomarkers that can classify the data [21], such as support
vector machine (SVM) [22], mutual information [23], and
swarm optimizer [24]. These methods do not calculate the
weight of each biomarker and therefore, the importance of
the biomarker in each breast cancer subtype classification
is not known. The weight of the biomarker may reflect
its regulatory importance in the molecular mechanism of
the disease; therefore, it may be worth studying the poten-
tial role of gene regulation of highly weighed biomarkers.
Another category of methods view the gene or isomiR
as the feature and calculates the weight of each feature.
The weight of the feature measures the importance of the
feature in the classification. The top N features viewed
as biomarkers. Information gain, t-test, and fold change
methods are widely applied to identify biomarkers [25].
However, t-tests and fold change methods are not suitable
for identifying biomarkers from the data that has more
than three categories. Although the information gain can
be applied to find biomarkers from multiple categories,
this method is very time consuming. Other methods, such
as Fisher [26] and correlation coefficient method [27], can
calculate the weight of each feature for data that comprises

of more than two categories and is less time consuming
than information gain. However, these methods also have
their limitations. The Fisher method is based on the mean
and standard deviation of the dataset and therefore, small
data sets, confounded by outliers will negatively influ-
ence the results. If weights of the feature are calculated by
the correlation coefficient method, it challenges the rank
features based on their weights [28]. Together, all these
methods used for identifying biomarkers have their lim-
itations. Therefore, a novel method is needed to identify
unique, more discrete and effective biomarkers.

Method
Our method for identifying isomiR biomarkers in differ-
ent subtypes of breast cancer is composed of three steps.
Firstly, it computes the expression level of isomiRs in each
breast cancer sample and removes the lowly expressed
isomiRs. Secondly, it utilizes improved mutual informa-
tion to calculate the weight of each isomiR. Finally, the
third step selects the critical isomiRs for breast cancer
subtype classification, for which the SVM classification
method is applied. These key isomiRs are viewed as breast
cancer subtype biomarkers. Figure 1 shows the framework
of our methodology.

Data source and definitions
The expression profiles of isomiRs in breast cancer
patients can be downloaded from TCGA GDC data
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Fig. 1 IsomiR biomarker subtyping methodology. The framework of the novel methodology designed for breast cancer biomarker subtyping is
composed of three discrete steps from isomiR expression profiling to identification of key isomiRs used as novel biomarkers
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portal website (https://portal.gdc.cancer.gov). However,
the website does not provide the name of each isomiR.
The nomenclature used in this study for discrete isomiR
was derived from its mature miRNA: the name of the isom
iR comprises of the name of the corresponding wild type
(referenced) miRNA followed by a variant symbol, e.g hsa-
miR-21-5p|3′t-2. The sign | separates the isomiR name
into miRNA name and variant symbol. The variant sym-
bol is divided into two parts by the sign (−). The first part
indicates the variant type of the isomiR. 3′t (5′a) implies
that this isomiR is 3′ trimming (5′ additional) isomiR.
The second part denotes the number of the nucleotide
that is trimmed or added. In addition, the number of
reads are not suitable for analyze. Thus, we calculated the
RPM (reads per million mapped reads) of each isomiR.
The clinical information of the breast cancer patients
was obtained from the website (https://www.nature.com/
articles/nature11412#supplementary-information). Since
the TCGA website does not provide the expression lev-
els of polymorphic isomiRs, this kind of isomiR was not
taken into consideration in this paper. Although the clini-
cal information contained 824 breast cancer patients, only
698 patients had valid clinical information. In this paper,
we applied these 698 patients’ isomiR expression levels to
identify biomarkers that classify breast cancer subtypes.

The traditional clinical classification method sorts
breast cancer into three different subtypes based on the
hormone receptor status. However, some breast cancer
patients proved to be positive in both ERα/PR+ and
HER2+ receptor status. These breast cancer patients were
identified as ERα/PR+ or HER2+ breast cancer subtypes.
However, it was not suitable to classify these breast can-
cer patients as ERα/PR+ or HER2+ breast cancer subtype
patients. Therefore, these patients were reclassified as a
fourth breast cancer subtype. Together, the breast cancer
patients were classified into four subtypes and the num-
ber of patients in each subtype of breast cancer are shown
in Table 1.

Removal of lowly expressed isomiR
A large amount of isomiRs were identified from the TCGA
dataset. However, many isomiRs had to be removed since
they were lowly expressed and had significant negative
effects on the result. We defined in our dataset, that an
isomiR was lowly expressed if the total expression level
of the isomiR was relatively low in the dataset. The total

Table 1 Breast cancer subtype reclassification for isomiR
identification

Subtype
name

ERα+HER2- ERα-HER2+ ERα+HER2+ Triple negative

Number
of patient

472 31 76 119

expression level of isomiR was deemed the sum of the
expression level of isomiR in all samples. In order to detect
the distribution of total expression level of isomiRs, a his-
togram [29] of which the ‘bin’ of the bar graph equaled 1
was applied. Since the total expression level of isomiR was
wide ranging, this histogram proved to be very large and
therefore the complete histogram could not be displayed
in this paper: the distribution of the total expression level
less than 35 is shown in Fig. 2.

According to Fig. 2, about 65% of all isomiRs showed
their total expression level was lower than 1. This implied
that most of these isomiRs were lowly expressed. Further,
it denoted that the distribution of the total expression level
of isomiRs followed the exponential distribution. In order
to remove these lowly expressed isomiRs, a null hypoth-
esis method was applied. This null hypothesis states that:
if the total expression level of an isomiR is very low, this
isomiR is a noisy isomiR and should be removed. If the
total expression level of an isomiR is very high, the null
hypothesis can be rejected and this isomiR is not a noisy
isomiR. For given q isomiRs and the expression level of
each isomiR in all breast cancer patients, we first calcu-
lated the total expression level of each isomiR. The total
expression level of q isomiRs are denoted as TE = {te1, te2,
. . . , teq}. The significance threshold θ of the competition
score was calculated using the formula:

θ = q ∗ TE
χ2

1−α/2(q)

Where TE is the mean of all the total expression level
of isomiRs, χ2

1−α/2(q) is the Chi-square with q defree of
freedom, and α is the p-value. Here, the p-value was set
at P = 0.05. Only the isomiRs whose total expression
level was smaller than this significance threshold θ , being
viewed as lowly expressed, were removed.

Calculating the weight of isomiR by improved mutual
information
The mutual information is a powerful method in feature
selection. Many mutual information-based feature selec-
tion methods have been developed and the performance
has proven to be very good [21]. However, these meth-
ods has some limitations. Although some methods select
a set of features that are very important for classification,
they do not provide the weight of the feature. Some meth-
ods are applied from the data of which both the feature
and the label are discrete or continuous data. However,
these methods were not deemed suitable for this type
of research. Therefore, an improved mutual information
was developed to calculate the weight of each isomiR.
This improved mutual information calculated the weight
of each isomiR and measured the relationship between
features and labels.

https://portal.gdc.cancer.gov
https://www.nature.com/articles/nature11412#supplementary-information
https://www.nature.com/articles/nature11412#supplementary-information
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Fig. 2 The distribution of total expression levels of isomiRs. The x-axis presents the total expression level. The ratio of the isomiRs was calculated
using the number of the isomiRs in the bin divided the total number of isomiRs. For example, the ratio of the expression level isomiRs that lower
than 1 is about 0.65. This implies that 65% of the isomiRs total expression level is lower than 1

For any given expression profile of isomiRs, this expres-
sion profile has m isomiR X = {x1, x2, . . . , xm}, n breast
cancer patients S = {s1, s2, . . . , sn}, and the subtype label
of the patients Y = {y1, y2, . . . , yn}. xa

τ is defined as the
expression level of isomiR τ in the breast cancer sam-
ple a. The min-max normalization method is applied to
scale the expression levels of each isomiR between 0 and 1.
The mutual information between an isomiR xτ and breast
cancer subtype Y is:

I(xτ , Y ) = 1
n

n∑
i=1

log
f (xi

τ , yi)

f
(
xi
τ

)
f (yi)

Where f
(
xi
τ

)
, and f (yi) are the density function of isomiR

and label, respectively. f
(
xi
τ , yi

)
is the joint density func-

tion of isomiR and label. Since the expression level of
isomiR is continuous data while the label is discrete data,
the density function of isomiR and label should be calcu-
lated by different equations:

f
(
xi
τ

) = 1√
2πn

n∑
j=1

exp

⎛
⎜⎝−

(
xi
τ − xj

τ

)2

2

⎞
⎟⎠

f (yi) = 1√
2πn

n∑
j=1

exp
(

−d(yi, yj)

2

)

Where d(yi, yj) measures the distance between labels yi
and yj. If these two labels are continuous data, the dis-
tance between two labels can be calculated by Euclidean
distance. However, the label in this research is discrete
data. The distance of two labels cannot be calculated by
Euclidean distance. d(yi, yj) is 0 if these two labels are the
same, and it is 1 otherwise.

Since the improvement in calculating the distance
between discrete labels, the mutual information is appli-
cable for the dataset where the feature is continuous data
and the label is discrete data. The joint density func-
tion f (xi

τ , yi) can be calculated by using two-dimensional
Gaussian kernel estimate:

f (xi
τ , yi) = 1

2πn

n∑
k=1

exp
(

−Dk
(
xi
τ , yi

)
2

)

Where Dk
(
xi
τ , yi

) =
√(

xi
τ − xk

τ

)2 + d(yk , yi).

This improved mutual information measured the rela-
tionship between features and labels. If the feature and
the label have high co-relationship, the weight of the
isomiR should be large. It implies that this isomiR is more
important for the breast cancer subtype classification.

Identification of isomiR biomarkers that classify breast
cancer subtypes
A few key isomiRs, which have the highest weights,
can distinguish between the different subtypes of breast
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cancer. These key isomiRs can then be used as breast
cancer biomarkers, and they can be identified through
these processes: sorting isomiRs by using their weights
from large to small, then using the different top N
isomiRs to evaluate the performance in the classifica-
tion of breast cancer subtypes. The performance of this
type of breast cancer classification will be raised with
the increasing number of selected isomiRs. If the per-
formance of classification by using top N isomiRs is
not significantly raised compared to the performance
by using top N + 1 isomiRs, it implies that these
N isomiRs are key isomiRs and can be viewed as
biomarkers.

In this paper, the SVM [30] classifier was applied to
classify different subtypes of breast cancer. According to
Table 1, different subtypes of breast cancer have vari-
able numbers of patients. Around 68% of breast cancer
patients are ERα+HER2-, while nearly 4.4% of breast can-
cer patients are ERα-HER2+. This dataset is an imbal-
anced dataset and the SMOTE method was used to
balance the data [31]. The receiver operation charac-
teristic (ROC) curve is very popular to judge the dis-
crimination ability of various statistical methods [32].
The area under ROC curve (AUC) measures the per-
formance of the classifier [33]. Since this research is a
multiclasses learning, macro-AUC of ROC was used to
validate the performance of the classification [34]. Fur-
ther, 5-fold cross-validation was applied to evaluate the
results.

Results and discussion
Characterization of isomiRs identified in different subtypes
of breast cancer
In this study, 20134 different isomiRs were identified in
the small RNA sequencing results of 698 breast can-
cer patients. However, most of the isomiRs were lowly
expressed. Thus, we removed the lowly expressed isomiRs
by using the null hypothesis method that was described
in the subsection ‘Removal of lowly expressed isomiR’.
Finally, 435 isomiRs, whose total expression level was
larger than the significance threshold, were viewed as
highly expressed isomiRs. Among these highly expressed
isomiRs, 169 isomiRs were 5′ variant isomiRs and 266
isomiRs were 3′ variant isomiRs. These isomiRs are
derived from 169 wild type miRNAs. The distribution
expression of these isomiRs and their miRNAs across
different breast cancer subtypes are shown in Fig. 3. In
Fig. 3(a), only the total expression level of the isomiRs,
of which one nucleotide is added at 3′ position, is larger
than the expression level of wild type miRNA. While the
expression level of the other 3′ isomiRs is lowly expressed
compared with wild type miRNAs. In Fig. 3(b), the
isomiRs, which trimmed one nucleotide at the 5′ position,
has a similar expression level to the wild type miRNA.
These two isomiRs (which added one nucleotide at 3′
position and trimmed one nucleotides at the 5′ position)
may play vital roles in the breast cancer subtypes. Indi-
vidual pre-miRNA may produce many different kinds of
isomiRs and the expression level of isomiRs maybe higher

Fig. 3 The distributions of isomiR modification types and their wild type miRNAs across different breast cancer subtypes. (a) 3′ isomiR and wild type
miRNA distribution (b) 5′ isomiR and wild type miRNA distribution. Y-axis is the total expression level of isomiR (or wild type miRNA). The x-axis is the
variant symbol. The variant symbol is divided into two parts by the sign (−). The left part of the sign (−) is the variate type at 3′ or 5′ position. The
right part of sign (−) is the number of nucleotide added or trimmed at the 3′ or 5′ position
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than its wild type miRNA. Figure 4 displays the expression
level of miRNA has-let-7d and its isomiRs across differ-
ent breast cancer subtypes. We found that different kinds
of isomiRs are produced during the miRNA maturation
processes. Further, the expression level of isomiRs may be
higher than the corresponding wild type miRNA.

Identification of isomiRs that classify breast cancer
subtypes
After the characterization of isomiRs in breast can-
cer, we calculated the weight of these isomiRs by using
improved mutual information. Finally, we selected dif-
ferent numbers of isomiRs to compute their perfor-
mance in the classification of breast cancer subtypes.
The results and the Python source code of our algorithm
can be downloaded from the website https://github.com/
ChaowangLan/isomiRbreastsubtype.

According to Fig. 5, with the increasing number of
isomiRs selected, the performance of the classification
was improved. However, when the number of isomiRs
was more than 20, the performance of the classifica-
tion plateaued. Therefore, the number of key isomiRs
for breast cancer subtype classification was 20. These 20
isomiRs are viewed as breast cancer subtype biomarkers.
These isomiRs and their weights are listed in the second
and third column of Table 2.

Among the isomiRs that faithfully characterize breast
cancer subtypes, 7 isomiRs were identified as 5′ vari-
ant isomiRs and the other isomiRs were identified as

3′ variant isomiR. Most of these isomiRs were highly
expressed compared to their corresponding wild type
miRNAs. We calculated the ratio of the expression lev-
els of these isomiRs and their corresponding wild type
miRNAs in different subtypes of breast cancer. These
ratios are listed in Table 2. If the expression level of an
isomiR was larger than the expression level of its corre-
sponding wild type miRNA, the ratio was larger than 1.
Among these 20 isomiRs, only hsa-mir-28-3p|3′a-2 and hsa-
mir-22-3p|5′t-1 were lowly expressed compared to their
corresponding wild type miRNAs, the other isomiRs were
more abundant. These results denote that many of these
isomiR biomarkers are more highly expressed compared
to their corresponding wild type miRNAs.

Comparing the performance of improved mutual
information to other feature selection methods
Many methods for feature selection have been devel-
oped. However, not all these methods are suitable for
the dataset where feature is continuous data and label
is discrete data. In this paper, we focused on comparing
the performance of our novel method with two popular
feature selection methods. One is the Fisher score and
the other is the Hellinger distance-based method [26, 35].
The AUCs, calculated using the three different methods
and using different numbers of selected isomiRs, are pre-
sented in Fig. 6. According to this figure, the AUCs show
an increase with the raising of the number of selected
isomiRs. However, if the number of selected isomiRs is

Fig. 4 The distributions of miRNA has-let-7d-5p and its isomiRs across different breast cancer subtypes. The 3′ (5′) isomiR could have different
lengths. The total expression level of 3′ (5′) isomiR is the sum of the expression level of different length of 3′ (5′) isomiR

https://github.com/ChaowangLan/isomiRbreastsubtype
https://github.com/ChaowangLan/isomiRbreastsubtype
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Fig. 5 The performance of classification by using different number of isomiR. The x-axis is the number of isomiRs that are used to classify the breast
cancer subtype. The Y-axis is the performance of the classification

Table 2 The 20 isomiR biomarkers, their weights, and their ratios

Rank IsomiR name Weight Ratios

ERα+HER2- ERα-HER2+ Triple negative ERα+HER2+

1 hsa-mir-106b-5p|5′a-1 1.86 ∗ 10−3 19.53 25.56 37.89 16.27

2 hsa-mir-28-3p|3′a-2 1.57 ∗ 10−3 0.51 0.65 0.87 0.53

3 hsa-mir-93-5p|3′a-1 1.46 ∗ 10−3 128.75 161.48 260.60 126.86

4 hsa-mir-106b-3p|5′t-1 1.45 ∗ 10−3 2598.00 3570.00 6163.00 2890.00

5 hsa-mir-106b-3p|3′a-1 1.37 ∗ 10−3 2702.00 3643.00 6395.00 2987.00

6 hsa-mir-17-3p|3′a-1 1.37 ∗ 10−3 1233.00 1601.00 3776.00 1251.00

7 hsa-mir-197-3p|3′a-1 1.19 ∗ 10−3 6.18 10.81 12.87 6.15

8 hsa-mir-92a-1-3p|5′t-1 1.14 ∗ 10−3 1.80 2.26 3.47 1.75

9 hsa-mir-146b-5p|3′a-1 1.13 ∗ 10−3 5.38 7.46 9.93 6.50

10 hsa-mir-210-3p|5′a-1 1.12 ∗ 10−3 15.69 40.67 37.39 20.70

11 hsa-mir-146b-5p|3′a-2 1.07 ∗ 10−3 11.12 15.06 19.60 14.63

12 hsa-let-7i-5p|3′a-1 1.03 ∗ 10−3 1.03 1.46 1.72 1.10

13 hsa-mir-210-3p|3′a-1 1.03 ∗ 10−3 206.94 513.97 497.48 272.43

14 hsa-mir-106b-5p|3′a-1 9.97 ∗ 10−4 46.36 56.38 85.98 39.33

15 hsa-mir-532-5p|3′a-1 9.60 ∗ 10−4 11.98 21.97 17.88 13.88

16 hsa-mir-93-5p|3′t-2 9.26 ∗ 10−4 6.85 7.89 13.59 6.31

17 hsa-let-7d-5p|3′a-1 8.80 ∗ 10−4 2.96 4.32 5.49 3.15

18 hsa-mir-27a-3p|5′t-1 8.51 ∗ 10−4 62.11 104.63 106.78 59.38

19 hsa-mir-22-3p|5′t-1 8.45 ∗ 10−4 0.04 0.05 0.05 0.04

20 hsa-mir-93-5p|5′t-1 8.45 ∗ 10−4 1.80 2.02 3.18 1.58
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Fig. 6 Comparison of our isomiR panel based novel method classification with other feature selection methods. The x-axis is the number of isomiRs
that are used to classify the breast cancer subtype. Y-axis is the performance of the classification. The higher the AUC, the better the classification.
Legend: the star represents the novel method described in this paper. The circle, and cross sign are the Filter method, and the Hellinger method,
respectively

larger than 30, the AUCs, which are calculated by these
three methods, do not have significance changes. It indi-
cates that the number of key isomiRs, by using these three
methods, are lower or equal than 30. However, differ-
ent methods identify different numbers of key isomiRs
for breast cancer classification. The Fisher method identi-
fied 30 key isomiRs while the Hellinger method found 25
key isomiRs. Although fewer key isomiRs were discovered
using Hellinger method, the AUC was found to be slightly
lower than the Fisher method. Our method identified 20
key isomiRs that classify breast cancers, which is the low-
est number of key isomiRs compared to the other methods
mentioned, and the AUC was similar (nearly equal) to
the Fisher method. It implied that our method can use
fewer isomiRs as biomarkers to classify different subtypes
of breast cancer.

IsomiRs are superior biomarkers compared to protein
coding gene expression-based approaches for the
classification of different subtypes of breast cancer
Over the past decade, many studies have found that pro-
tein coding gene expression data can be used to classify
breast cancer subtypes. For instance, Van and colleagues
proposed that a 70-genes’ expression profile can use for
identifying different subtypes of breast cancer [36], Parker
and colleagues defined the PAM50 genes, which are the
most famous biomarkers for breast cancer subtype classi-
fication [37], and Neve and colleagues also applied genes

expression data for the classification of different subtypes
of breast cancer [38]. Their research indicated that differ-
entially expressed mRNAs can be used as breast cancer
subtype biomarkers.

The TCGA database also provides the expression level
of mRNAs in different subtype of breast cancer. There-
fore, we can calculate if isomiR or gene expression-based
profiling performs better for breast cancer subtype classi-
fication. Figure 7 presents the AUC by using isomiRs and
mRNAs. According to the comparison in Fig. 7, the per-
formance of breast cancer subtype classification using the
expression of five mRNAs is very high (the AUC is near
to 0.89). Direct comparison of isomiRs and mRNA (gene
expression) clearly show that fewer isomiRs are needed
to classify different subtypes of breast cancer compared
to the number of mRNA (genes). With the increasing
number of mRNA, the difference between the two clas-
sification methods is comparable, i.e. when the number
of mRNA (gene classification) is more than 35, the AUC
does not show any significant difference. Therefore, the
number of key mRNA is 35, in comparison with isomiR,
the key number is 20, showing fewer isomiRs can clas-
sify different subtypes of breast cancer. This experiment
indicates that isomiRs also can be used as biomarkers for
the classification of breast cancer subtypes and, impor-
tantly, fewer isomiRs can be used to classify different
subtypes of breast cancer. These results strongly sug-
gest that isomiRs are more suitable biomarkers compared
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Fig. 7 Comparison of isomiR and gene classification for breast cancer subtyping. The x-axis is the number of isomiR that are used to classify the
breast cancer subtype. Y-axis is the performance of the classification. The higher the AUC, the better the classification. Legend: the star and circle
present the classification using mRNA and isomiR, respectively

to biomarkers based on protein coding gene expression
profiles.

IsomiRs may play important regulatory roles in different
subtypes of breast cancer
Many studies have found that different categories of
isomiRs have different functions in regulating biolog-
ical processes. For example, 3′ isomiRs have low 3′
untranslated region stability and therefore, loose regu-
lation of mRNAs [39]. 5′ isomiRs have slightly altered
seed sequences compared to the corresponding wild
type miRNAs; therefore, besides weakening the regula-
tory effect of the wild type miRNAs they can target
mRNAs that are significantly different from the wild type
miRNA targeted transcriptome [40]. Based on sequence
similarities it is possible to predict potential mRNAs
that are regulated by certain miRNAs [41, 42]and there-
fore, biological pathways that are influenced by miRNAs
and their isomiRs. The elevated levels of isomiRs com-
pared to their corresponding wild type miRNAs can
also be used to predict changes in the regulation of
gene expression in breast cancers that may well pro-
vide insight into the molecular mechanisms leading to
breast cancer. We predicted that the presence of abun-
dant 3′ isomiRs develop weakened regulatory effects on
transcripts that are regulated by the corresponding wild
type miRNAs. Thus, mRNAs that are regulated by the
wild type miRNAs should show elevated expression levels
when the expression level of isomiRs were significantly

elevated. These targets that may be affected by the
accumulation of 3′ isomiRs can be obtained from the
miRWalker2.0 website (http://zmf.umm.uni-heidelberg.
de/apps/zmf/mirwalk2/holistic.html). To predict poten-
tial targets for abundant 5′ isomiRs with modified seed
sequence we used the miRDB website (http://www.mirdb.
org/). In order to obtain the most likely targeted mRNAs,
the score of the prediction target gene should be higher
than 95 (the maximum score is 100).

After predicting the sets of potential mRNAs that are
affected by the elevated miRNA isomiR levels, we wanted
to characterize what molecular pathways may be changed
in breast cancers. Enrichr (http://amp.pharm.mssm.edu/
Enrichr/), which is a gene enrichment analysis web server,
was applied to find out the Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway of these target genes [43].
104 KEGG pathways were identified as significant path-
ways (the p-value of these pathways were higher than 0.05)
from this website. In this paper, we selected five path-
ways have been computed to be significantly affected by
isomiRs to further discuss the function of the isomiRs in
breast cancer. These 5 KEGG pathways are presented in
Table 3.

The first two KEGG pathways in Table 3 are very impor-
tant for analysis of breast cancer outcome [44]. This data
suggests that isomiRs also play a vital role in breast can-
cer development. The clinical breast cancer classification
is based on the hormone receptor status, some of these
KEGG pathways are involved in regulating the hormone

http://zmf.umm.uni-heidelberg.de/apps/zmf/mirwalk2/holistic.html
http://zmf.umm.uni-heidelberg.de/apps/zmf/mirwalk2/holistic.html
http://www.mirdb.org/
http://www.mirdb.org/
http://amp.pharm.mssm.edu/Enrichr/
http://amp.pharm.mssm.edu/Enrichr/
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Table 3 Five KEGG pathways which are relative to breast cancer
progresses and subtype classification

KEGG name P-value Number of gene

Pathways in cancer 5.01 ∗ 10−11 96

p53 signalling pathway 1.29 ∗ 10−6 24

MAPK signalling pathway 1.20 ∗ 10−5 56

Insulin signalling pathway 3.16 ∗ 10−3 29

Estrogen signalling pathway 1.79 ∗ 10−2 20

receptor status. For example, Neve’s research highlights
that up-regulation of genes involved in insulin/MAPK sig-
naling predicts response to Herceptin [38]. It implies that
these two signaling pathways regulate the Herceptin sta-
tus. According to the third and fourth line of Table 3,
isomiRs were shown to influence 56 and 29 genes in
MAPK and insulin signal pathways, respectively. There-
fore, isomiRs could affect the Herceptin statue through
these two pathways and lead to the development of dif-
ferent subtypes of breast cancer. We also identified the
estrogen signalling pathway represented by 20 genes that
is potentially affected by the isomiRs (Table 3). It implies
that isomiRs could affect the expression of these genes to
influence the estrogen receptor status. Above all, isomiRs
may regulate the hormone receptor status via different
KEGG pathways and therefore, affecting different breast
cancer subtypes.

Assessing the role of individual isomiRs in the regulation of
breast cancer specific pathways
Next, we focused on the further analysis of six isomiRs
that have potential to characterise/classify breast can-
cer subtypes. Dressman and colleagues pointed out that
there are 18 genes that may delineate the role of estro-
gen receptor in breast cancer [45]. Transforming growth
factor-beta type III receptor (TGFBR3) and serpin fam-
ily A member 3 (SERPINA3) are two of these genes.
Accordingly, the miRwalker 2.0 database, TGFBR3 is one
of the potential target genes of hsa-let-7i-5p and SER-
PINA3 is the target gene of hsa-mir-197-3p. However, if
one nucleotide is added to the 3′ position of these two
miRNAs, then there is a possibility that these isomiRs can-
not efficiently bind to the gene TGFBR3 and SERPINA3,
respectively. This is because the longer sequence alters
the stability of the miRNA and cannot inhibit the expres-
sion level of its target gene. Alternatively, 3′ isomiRs could
be a sign of actively turned over miRNA that may have
weakened regulatory functions. In the ER negative breast
cancer tumors, most hsa-let-7i-5p wild-type miRNAs are
altered to isomiRs hsa-let-7i-5p|3′a-1 and hsa-mir-197-
3p miRNAs are changed to isomiRs hsa-mir-197-3p|3′a-1.
Therefore, they are predicted to have a weakened affect
to inhibit the expression level of TGFBR3 and SERPINA3

and these two genes are highly expressed in the ER nega-
tive breast cancer subtype. Similarly, these two genes are
lowly expressed in the ER positive breast cancer subtype.
Table 4 displays the average expression level of these two
isomiRs in different subtypes of breast cancer. According
to the average expression levels of isomiRs hsa-let-7i-
5p|3′a-1 and hsa-mir-197-3p|3′a-1 in different subtypes of
breast cancer, these two isomiRs are highly expressed in
the ER negative tumors (ERα-Her2+ and triple negative
breast cancer subtype) and lowly expressed in ER posi-
tive tumors (ERα+Her2- and ERα+HER2+ breast cancer
subtypes).

The 5′ variant isomiRs have distinct seed sequences
compared to the corresponding wild type miRNAs; there-
fore, they may regulate a novel set of transcripts relative to
the wild type miRNAs. Table 5 presents the predicted tar-
get genes of some 5′ variant isomiRs by miRDB database.
The dysregulation of estrogen signalling pathway leads
to ER positive breast cancer and therefore, the genes
involved in this pathway may be the most attractive tar-
get for ER positive breast cancer treatment In the first line
of Table 5, hsa-miR-93-5p|5′t-1 may bind to gene SHC4.
SHC4 is one of the gene involved in estrogen signal-
ing pathway. The result implies that hsa-miR-93-5p|5′t-1
may regulate SHC4 and dysregulate the estrogen signal-
ing pathway. Furthermore, three 5′ variant isomiRs, which
exhibited in the last three lines of Table 5, potentially bind
to MAPK14, MAPK8, and RAP1B, respectively. These
three genes are the part of the MAPK signaling pathway,
which affects the Herceptin status. These results revealed
that 5′ variant isomiRs may bind to genes that regulate
hormone receptor status and therefore, lead to different
breast cancer subtypes.

Conclusion
In this paper, we propose a novel method for iden-
tifying isomiR biomarkers for breast cancer subtyping
from small RNA sequencing data. We first removed
the lowly expressed isomiRs from the data sets. Then
we calculated the weight of the isomiR by utilizing
the improved mutual information. The improved mutual
information measured the co-relationship between the
expression level of isomiRs and breast cancer subtypes.

Table 4 The average expression level of isomiRs and miRNA in
each breast cancer subtype

IsomiR/miRNA
name

Breast cancer subtype

ERα+HER2- ERα-HER2+ Triple negative ERα+HER2+

hsa-let-7i-
5p|3′a-1

10.43 13.57 17.09 10.55

hsa-mir-197-
3p|3′a-1

26.27 36.33 61.66 25.75



Lan et al. BMC Medical Genomics 2018, 11(Suppl 6):118 Page 84 of 112

Table 5 5′ variant isomiRs’ predicted target genes

isomiR Predicted target mRNA Score

hsa-miR-93-5p|5′t-1 SHC4 95

hsa-mir-27a-3p|5′t-1 MAPK14 97

hsa-miR-92a-1-3p|5′t-1 MAPK8 97

hsa-mir-106b-3p|5′t-1 RAP1B 95

The higher the co-relationship between isomiR’s expres-
sion and breast cancer subtypes, the more important the
isomiR for breast cancer subtype classification. Further,
this improved mutual information can be applied to the
data set that the feature is continuous data and the label
is discrete data. While the traditional mutual informa-
tion cannot. Finally, the SVM classifier was applied to
find specific isomiR biomarkers for classification of the
different breast cancer subtypes. This method, proved to
be more effective and efficient in identifying fewer key
isomiRs needed for breast cancer subtyping in compar-
ison to the Fisher and Hellinger methods. Importantly,
in this study, we describe the enhanced identification of
isomiR biomarkers for classification of breast cancer sub-
types and, in addition, isomiRs were found to be superior
biomarkers compared to classification based on mRNA
gene expression for this type of classification. Further,
applying this improved methodology, we identified indi-
vidual isomiRs that may be key in the regulation of spe-
cific breast cancer pathways. There is great potential in
exploiting these novel isomiR regulatory mechanisms as
drug-targets for more personalized subtype breast cancer
specific therapies.

Discovery of unique biomarkers in different breast can-
cer subtype is a challenge in research, especially since the
regulation mechanism of different breast cancer subtypes
is not yet fully understood. Our research provides a new
way to explore the mechanism of breast cancer subtypes.
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