
Review

Nucleotide-based genetic networks: Methods and applications

RAHUL K VERMA
1, PRAMOD SHINDE2 and SARIKA JALAN1,3*

1Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore,
Khandwa Road, Simrol, Indore 453 552, India

2Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
3Complex Systems Lab, Department of Physics, Indian Institute of Technology Indore, Khandwa

Road, Simrol, Indore 453 552, India

*Corresponding author (Email, sarika@iiti.ac.in)

MS received 27 September 2021; accepted 25 April 2022

Genomic variations have been acclaimed as among the key players in understanding the biological mecha-
nisms behind migration, evolution, and adaptation to extreme conditions. Due to stochastic evolutionary
forces, the frequency of polymorphisms is affected by changes in the frequency of nearby polymorphisms in
the same DNA sample, making them connected in terms of evolution. This article presents all the ingredients to
understand the cumulative effects and complex behaviors of genetic variations in the human mitochondrial
genome by analyzing co-occurrence networks of nucleotides, and shows key results obtained from such
analyses. The article emphasizes recent investigations of these co-occurrence networks, describing the role of
interactions between nucleotides in fundamental processes of human migration and viral evolution. The
corresponding co-mutation-based genetic networks revealed genetic signatures of human adaptation in extreme
environments. This article provides the methods of constructing such networks in detail, along with their
graph-theoretical properties, and applications of the genomic networks in understanding the role of nucleotide
co-evolution in evolution of the whole genome.
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1. Introduction

1.1 Genomic variations

Genomic variations (polymorphisms) play a significant
role in defining phenotypic alteration in any given
population. These variations could be categorized as
neutral, beneficial, or deleterious based on their direct
effects on the phenotype. The genomic variations could
be further defined based on the presence of alleles, i.e.,
bi-allelic or tri-allelic, with two or three types of
nucleotides at the same positions. Usually, bi-allelic
sites are present in abundance compared with tri-allelic

sites, and therefore are highly considered for evolu-
tionary and phylogenetic analysis (Adelson et al.
2019). With the emergence of next-generation
sequencing (NGS) data, genomics studies have been
revolutionized. However, with larger genome lengths,
even minute errors in sequencing could result in false
variant calling. There could be possible errors while
analyzing the collected data, such as contamination,
degradation, missing private variations for priming,
and machine failure (Robasky et al. 2014). One could
apply Sanger sequencing (Mu et al. 2016), sample
replicates (Kamps-Hughes et al. 2018), and reference
sequences (Hardwick et al. 2017) to validate the variant
calling. One of the possible ways to avoid sequencing
error is the smaller size of genomes, such as viral, most
bacterial, and extracellular plasmids or mitochondrial
genomes. The smaller size allows the highest accuracy
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in sequencing the genome. In humans, the nuclear
genome is vast and often disintegrates during isolation.
In contrast, with its high copy number and small size,
the mitochondrial genome became a favorite molecular
tool for molecular, phylogenetic, and evolutionary
scientists. The mitochondrial genome consists of 16569
nucleotides, 13 protein-coding genes, 2 rRNAs, and 22
tRNAs. The 13 protein-coding genes are part of the
mitochondrial OXPHOS pathway (Wallace 2013).
Humans originated in Africa and the first haplogroup
established was the macrohaplogroup L (Wallace
2015). From this macrohaplogroup, L3 originated
65,000–70,000 years ago and gave rise to two major
haplogroups, M and N, which later migrated out of
Africa and populated the rest of the world (Wallace
2015). Various different haplogroups were founded by
purifying selection of specific mitochondrial variations
and enriched at regional levels (Mishmar et al. 2003).
Apart from identifying the haplogroups and migration
patterns, there are variations that also affect the
bioenergetic system (Wallace 2013). It has been
reported that about 10 to 20% of the tRNA variations,
at least a few of the rRNA variations (Ruiz-Pesini and
Wallace 2006), and 25% of the mtDNA protein
sequence variations (Mishmar et al. 2003; Ruiz-Pesini
et al. 2004) have played roles in altering mitochondrial
coupling efficiency. The central role of mitochondria is
to generate energy through the electron transport chain
(ETC). The ETC oxidizes the reduced dietary compo-
nents and, in the process, generates a proton gradient
across the inner mitochondrial membrane. This proton
gradient then leads to the formation of ATP with the
help of complex V (ATP synthase) in the matrix. The
efficiency with which the proton gradient is converted
into energy production is known as coupling efficiency.
The mtDNA variations that cause a reduction in this
efficiency lead to the production of more heat than
ATP, which is used in colder climates. One such vari-
ation is 3394C in the ND1 gene, which is enriched in
high-altitude Tibetans compared with low-altitude
Asians (Ji et al. 2012). The mtDNA variations also
affect the pH of the mitochondrial matrix and calcium
dynamics in the mitochondria. Particularly, 8701A and
10398A lead to a decrease in the pH of the matrix and
the uptake of calcium by mitochondria (Kazuno et al.
2006). Along with the phenotypic effect of mutations
in coding genes, the variations in the control region
also affect the overall dynamics of the mitochondrial
genome. One such variant is 295T, which has been
shown to enhance the binding of TFAM (mitochondrial
transcription factor A) to the L-strand promoter of
mtDNA, L-strand transcripts, and mtDNA copy

number. The mtDNA mutations are also shown to be
associated with a wide range of clinical phenotypes
(Wei and Chinnery 2020). Large-scale deletions in
mtDNA were, for the first time, shown to be respon-
sible for optic neuropathy and myopathies (Holt et al.
1988; Wallace et al. 1988). Since mtDNA is present in
a few to several copies per cell, depending upon the
type of tissue, the mere presence of a mutation in a few
molecules does not correspond to any clinical pheno-
types. This condition where both mutated and wild-
type mtDNA molecules are present is known as
heteroplasmy. Mutated mtDNA molecules should be
present in high frequency for any clinical implication
of mutations to show up (Stewart and Chinnery 2021).
Apart from the mtDNA-transcribed genes, there are
*1200 genes, which, if they were to get mutated,
might lead to mitochondrial dysfunctions (Calvo et al.
2006). With the gain in understanding of the nature of
mtDNA mutations through deep sequencing studies,
new therapeutic methods are also emerging that target
symptomatic interventions, pharmacological therapies,
ATP and nitric oxide synthesis pathways, antioxidant
defense, and improving mitochondrial quality and
apoptosis (Bottani et al. 2020). However, in certain
conditions, the mere presence of a variation is not
enough to impart its effect, as in the case of the mito-
chondrial genome, since the number of mitochondria
varies in human cells and each mitochondrion harbors
hundreds to thousands of copies of their genome
(D’Erchia et al. 2015), and the deleterious effect on the
phenotype of individuals depends on the ratio of
damaged mitochondrion or mutated genomes with
respect to the healthy ones.

1.2 Mutual effect of variations

In the human mitochondrial genome, it is observed that
a variation may have different effects depending upon
the haplogroup/genome backgrounds (Ji et al. 2012).
As we know, the 3394C variant confers high-altitude
adaptation in Tibetans, and its haplogroup background
plays a vital role in its phenotypic consequences. When
3394C is present on the M haplogroup on the M9
background in Tibetans and on the C4a4 background in
the Indian Deccan plateau population, it has beneficial
effects and does not affect the complex I activity.
However, its presence in the N haplogroup reduces the
complex I activity and associates with Leber hereditary
optic neuropathy (LHON), suggesting the role of the
haplogroup background in modulating bioenergetics.
Similarly, the non-pathogenic missense variants cause
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low-penetrance LHON, as shown in a study of com-
plete mtDNA sequences of three families from south-
ern Italy and one family from northern Italy (Caporali
et al. 2018). It was reported that the variants, otherwise
polymorphic, when present in a particular combination,
led to reduced complex I activity and thereby the onset
of LHON. There could be multiple reasons behind such
complex observations, one being the hypothesis of
genetic hitchhiking, which states that a selective sweep
at one position in the genome could alter the allele
frequency at a nearby position (Charlesworth et al.
2000). Another phenomenon where the presence of
mutual variations imparts their effect at the phenotypic
level is observed in the form of epistasis, which usually
deals with alterations in traits associated with those
variations (Lehner 2011). Considering the fact that the
relationship between phenotypic effects and the pres-
ence of variations is not direct, it becomes important to
assess the collective role of variations in understanding
mitochondrial genetics in the human population.
Genetic variations were observed to impart their effect
at the phenotypic level as a cohort of multiple inter-
actions and rarely individually (Papp and Pál 2011).
The heritability of complex diseases is minutely
affected by the mere presence of single nucleotide
polymorphisms (SNPs) (Jakobsdottir et al. 2009).
However, the manifestation of such diseases depends
on the interactions of SNPs (Cordell 2002; Marchini
et al. 2005; Phillips 2008), and therefore it is important
to study the collective effect of genomic variations.
There are various ways to study the collective effect of
variations, and the specific interactions between genes
associated with specific traits (Gilbert-Diamond and
Moore 2017). To select a particular cohort of the
variations and their interactions responsible for the
manifestation of complex phenotypes, various compu-
tational methods have been developed and imple-
mented, among which principal component analysis, to
infer groups of SNPs from linkage disequilibrium to
evaluate multivariate SNP correlations for intragenic
diversity coverage (Horne and Camp 2004), integrative
scoring system based on their deleterious effects (Lee
and Shatkay 2009), and the Pareto-optimal approach
for identifying functionally and informatively signifi-
cant SNPs (Lee et al. 2009), are the most popular.
There exist other approaches based on pair-wise
interactions such as two variations significantly inter-
acting through logic regression (Schwender and Ick-
stadt 2007), predictive rule inference (Wan et al. 2009),
and shrunken dissimilarity measure, in which a gene–
gene similarity value is calculated and pairs are selec-
ted if the similarity value crosses a set threshold value

(Liu et al. 2020). These traditional methods of detect-
ing genetic interactions based on SNPs rely on omitting
interactions with minimal or no effect on the trait,
thereby leading to the possibility of an increase in
false-negative results. To overcome this, variable site
pairs are considered based on their allele frequency in
the population in question. This provides quantitative
as well as qualitative (as major or minor allele) infor-
mation of all the variable sites for that population. Such
pairs of variable sites give rise to a network in which
the nodes are defined as variable sites and edges are
defined as the relative frequency of occurrence of their
alleles together. In this way, we can start with most of
the pairs of variable sites without worrying about false-
negative errors since we are not omitting any variable
site or its interactions based on phenotypic information.
Next, with the appropriate threshold selection method
we can focus on identifying significant variable sites
and their interactions to further analyze the network
properties. There are several structural properties such
as degree, clustering coefficient, centrality measures,
etc., which can be analyzed to extract specific infor-
mation on important nodes as well as their interactions
in the network (Jalan and Sarkar 2017). Various graph-
theoretical measures and models are extensively
reviewed to understand the biological significance and
hidden properties of living systems (Pavlopoulos et al.
2011). With myriad biological components such as
proteins (Pellegrini et al. 2004), transcription factors
(Lee et al. 2002), metabolites, and metabolic reactions
(Jeong et al. 2000), the systems were studied as a
complex system of networks to advance the funda-
mental understanding to the origin of functioning of the
system. The promising role of network science can be
elucidated as a spectrum of structural and spectral
properties that have been extensively applied to
understand the complex behavior of multiple cancers
(Rai et al. 2017) and to identify the crucial role of
various proteins involved in each developmental stage
of C. elegans (Shinde and Jalan 2015).

1.3 Biological applications of co-occurrence/
co-mutation networks

Role of compensatory mutations as co-mutations have
been reported in influenza viral evolution; e.g., the
presence of E375G is known to functionally compen-
sate for deleterious effects of R384G while M239V
enhances viral fitness in the NP gene (Berkhoff et al.
2005). With this information, co-occurrence networks
were constructed for the human influenza virus (H3N2)
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to analyze the collective effect of all the variations on
the evolution of the virus from viral genomes isolated
between 1968 to 2006 (Du et al. 2008). These studies
identified the role of connectivity maps between and
within viral genes as a contributing factor of influenza
virus evolution. However, rather than focusing on
individual nucleotide pairs, these studies provided a
wholesome picture of viral evolution based on evalu-
ating the changes in co-occurrence network topology
with respect to time. In a similar line of work, entropy
(for genetic diversity) and information gain (for anti-
genic degree) were analyzed to identify antigenic crit-
ical amino acid positions on hemagglutinin (HA)
protein in influenza virus to distinguish between avir-
ulent and virulent strains (Huang et al. 2009). This
distinction is critical for developing new vaccines for
antigenic variants. The information gain from these
studies was used to identify co-mutation pairs on dif-
ferent epitopes which could lead to antigenic drift.
Association rule mining was performed to extract co-
occurrence of mutations in the HA gene of human
influenza A/H3N2, A/H1N1, and B viruses to predict
their evolution and emphasized vaccine upgradation
(Chen et al. 2016). Rule-based co-mutation networks
identified the driver mutations during the H1N1 2009
pandemic by comparing the degree centrality of pan-
demic and post-pandemic networks. In an another
study, co-occurring mutations in HA and neu-
raminidase (NA) genes of influenza A/(H1N1)pdm09
viruses were explored (Liu et al. 2020). The study
showed that sore throat was associated with co-occur-
ring mutations in hemagglutinin and neuraminidase
genes. Moreover, apart from the influenza virus, a
change in the degree centrality of co-mutation in the
Ebola virus has been attributed to the accelerated viral
evolution in recent outbreaks. Lethality of the disease
with case fatality rate was also predicted by mapping
the co-mutation networks (Deng et al. 2015). In recent
studies, co-existing mutations have been used to clas-
sify Indian SARS-CoV-2 strains based on 22 groups
(Sarkar et al. 2021), whereas co-mutation modules
were explored to capture the evolution and transmis-
sion patterns of SARS-CoV-2 (Qin et al. 2021). The
effect of co-occurring genetic alterations on non-small-
cell lung cancer (NSCLC) progression and therapy
resistance were studied for the first time on CTNNB1
and PIK3CA genes. It was identified that co-occurring
alterations in CTNNB1 and PIK3CA genes coopera-
tively promote cancer progression (Blakely et al.
2017). A systems biology approach was presented to
extract the impact of functional interactions between
mutated genes in different cancers (Cui 2010). In the

study, co-occurring (and anti-co-occurring) mutations
were defined based on the presence (or absence) of
mutated genes in a particular cancer. Analyzing such
genetic interaction networks based on co-mutations, it
was reported that mutated genes that co-occur in
tumors shared signal transduction pathways and had
functional similarities. In another study, candidate
therapeutic pathways for personalized medicine were
identified by utilizing the information of mutated genes
in tumors of 14 different cancer types to construct co-
mutation-based genetic interaction networks (Liu et al.
2020). The interaction of WNT4 and WNT5A genes
through rs2072920 and rs11918967 SNPs were shown
to be associated with obesity in the Han Chinese people
(Dong et al. 2017). Along with DNA sequences, co-
evolution has been substantially studied in protein
sequences (Morcos et al. 2011; Kamisetty et al. 2013).
Various methods such as direct coupling analysis
(Morcos et al. 2011), statistical coupling analysis (Russ
et al. 2005), and evolutionary coupling analysis (Hopf
et al. 2015) were developed and applied to establish the
role of amino acid interactions in the structural stability
and functionality of proteins. A relatively more
developed method known as deep coupling scan was
proposed, which takes care of patterns of evolutionary
conservation in deep mutation scan data sets (Salinas
and Ranganathan 2008). In this article, as a tutorial, we
provide detailed step-by-step instructions to construct
such co-occurrence/co-mutation networks along with a
brief discussion of the results.

2. Network construction techniques

A network consists of a set of connected nodes or units,
where connections are defined by an interaction type.
There exist various network models incorporating
various properties of real-world complex systems,
among which three are most popular (box 1). Structural
properties of real-world networks are readily compared
with these corresponding model networks for their
deviations and to detect system specific information.
The prerequisite of constructing a network from a
given set of genetic sequence data is the alignment of
sequences usually in a FASTA format. For aligning the
DNA sequences, the online tool Clustal Omega
(https://www.ebi.ac.uk/Tools/msa/clustalo/) (Sievers
et al. 2011), and for offline alignment, AliView soft-
ware (Larsson 2014), are readily employed. Once the
sequences are aligned, the next step is to pre-process
them, by replacing ambiguous characters such as ‘M’,
‘Y’, ‘S’, ‘K’, etc., with one letter, say, ‘N’. This is done
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to simplify the procedure of defining the variable sites.
The first step to construct these nucleotide networks is
identification of the variable sites. A variable site is
defined as a position where more than one type of
nucleotides is present. Such a site where only two types

of nucleotides are present is considered a bi-allelic site,
and the site with three nucleotides is considered a tri-
allelic site. For our analysis, we only consider bi-allelic
sites since the role of tri-allelic sites in evolution is still
not clear. The allele frequencies substantially define the

1. Random networks
The Erdös–Rényi (ER) (Erdös and Rényi 1960) model is used for generating a random network. Starting

with N nodes, it connects each pair of nodes with a probability p, which creates a graph with 

approximately pN (N − 1)/2 randomly placed links. The node degrees follow a Poisson distribution 

(figure a), which indicates that most nodes have approximately the same number of 

links (close to the average degree k ≥≤ ). This is the commonly used model to compare with real-

world networks for their random behavior.

2. Small-world networks
Small-world networks (Watts and Strogatz 1998)  are characterized by high clustering coefficient 

and small average path length. To construct such networks, one can start with a regular network and 

then rewire the edges for a given probability, pr . For  pr = 0, a regular network is sustained while 

for pr = 1, a completely random network is obtained. The mean path length is proportional to the 

logarithm of the network size, l logN . It follows degree distribution similar to ER network (figure

b). Small-world behavior is depicted by bacterial metabolic (Wagner and Fell 2001)

and brain networks (Bassett and Bullmore 2006)  among many others.

3. Scale-free networks
Scale-free networks (Barabási and Pósfai 2016)  are characterized by a power-law degree 

distribution with degree exponent 2 ≤ γ ≤ 3. Such distributions are straight lines on a log–log plot 

(figure c). Yeast protein interaction maps (Uetz et al. 2000) and E.coli gene regulatory 

networks (Shen-Orr et al. 2002) are few examples which show scale-free topology. In a gene 

regulatory network, a scale-free topology suggests that a few general transcription factors regulate 

almost all the genes.

To visualize and perform statistical analysis of networks, Gephi (Bastian et al. 2009) and 

Cytoscape (Shannon et al. 2003) are well established, as are user-friendly open source softwares 

 along with the network module (Hagberg et al. 2008) in Python.

Box 1. Popular network models and their definitions.

~

Visualization of model networks (upper panel), the degree distribution (P (k)) is plotted
for each model network.
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genetic structure of the population. However, the
individual allele frequencies do not affect the con-
struction of co-occurrence networks at all. Other than
the bi-allelic or tri-allelic sites, we have sites with gaps
and unknown nucleotides often represented by ‘-’ or
‘N’ or ‘?’. The sites with gaps usually represent indels
(insertions and deletions), and so there is no meaning in
taking those as variable sites; ‘N’ could be any
nucleotide out of the four standard nucleotides, and
hence does not give any particular biological infor-
mation about that polymorphic site. Therefore, we
suggest such sites be ignored since they could give rise
to artifacts while calculating the co-occurrence/co-
mutation frequency between variable positions. In the
co-occurrence and co-mutation networks, the nodes are
variable sites and the connections are defined according
to the type of network we are constructing (this will be
discussed further).

2.1 Co-occurrence networks

Co-occurrence networks take into account the position
of variable sites as nodes, and the connection between a
pair of the nodes is defined based on the co-occurrence
of alleles for the given population. For this reason,
there exists one unique network for each available
sequence of the population. Since we have already
mentioned that a co-occurrence network considers the
allele (major or minor) present at a variable site for a
particular sequence, we defined our edges with respect
to the alleles and their frequencies for pairs of variable

sites in the population. The co-occurrence frequency
between a pair of variable sites for the alleles in posi-
tion is calculated as

Coij ¼
xiyj
� �2

xið Þ yið Þ

where Coij is the co-occurrence frequency between the
x and y alleles present at the ith and jth variable site for a
particular sequence. The numerator xiyj is the frequency
of the presence of the x and y alleles together at the ith and
jth sites, whereas xi and yj are the total frequencies of the
allele x at the ith position and the y allele at the jth position,
individually. The value of Coij gives information about
the co-occurrence of two nucleotide positions in a given
sample with respect to their presence in the whole pop-
ulation. The co-occurrence frequency ranges from [0 to
1], and we need to define a threshold value to filter out the
possible noise to obtain a structurally meaningful sparse
network. To define a threshold, we look for two structural
properties of the network: one is the order of the largest
connected component (LCC), and the other one is the
average degree hki of LCC. These two properties help in
constructing a sparse network that is structurally more
meaningful by filtering out some connections. For cal-
culating the threshold, we start to construct a network by
considering all the pairs with Coij[0, which gives rise to
a more or less globally connected network. To get a
meaningful sparse network from such a network, we
gradually remove the links with Coij B Coth (co-occur-
rence threshold) and keep only those connections above a
particular Coth and simultaneously calculate NcLCC and

Genomics: It is the study of the whole genome of an organism including genome sequencing, structural

organisation, and interactions.

Genome: Genome is the complete set of DNA present in an organism.

Whole genome sequencing: With advancement in sequencing techniques, it is now possible to

sequence the whole genome of an organism rather than focusing on few genes or some section of

DNA.

Inheritance: Usually in higher organisms, offsprings get 50% of their genome from each of the

parents. In humans, the mitochondrial DNA is solely inherited from the mother only. Hence, it is

often used to trace genealogy in humans.

Allele: An allele describes the different forms of a gene or a position of the gene. The presence 

of more than one nucleotide at a position in a gene for a given population renders that site as a variable

site or polymorphic site.

Major allele: The form of a gene which is present in a majority of the population is considered as a major

allele.

Minor allele: The form of a gene which is present in a minority in a population is considered as a minor

allele. Usually, the allele frequency is measured for the minor allele and known as minor allele 

frequency (MAF).

Box 2. Basic terminology of genomics and their definitions.
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hki. Following this procedure, we obtain a threshold
where the NcLCC consists of almost all the nodes but as
few connections as possible, yielding a very low hki or
NcLCC \ NLCC, where NcLCC and NLCC represent the
number of connections and the number of nodes of the
LCC, respectively (figure 1). We applied the above-
mentioned method of threshold selection to all the net-
works generated for a given population, yielding as many
sparse networks as the number of available sequences. In
the next step, we constructed a master network by
merging all the individual networks generated for each
sequence. In this step, we obtained duplicate nodes and

edges; however, we chose to perform a union operation
on our networks (which can be performed by using codes
in Python or Java or any other preferred programming
language by the user). By performing a union operation
on the edges, we obtained only one network in which all
the nodes and edges of all the networks were taken into
consideration only once, yielding a single undirected and
unweighted co-occurrence network for all the samples.
Then, various graph-theoretic structural properties were
analyzed for this network, which are discussed in the
results section.

2.2 Co-mutation networks

For co-mutation networks, we again start with the
multiple aligned DNA sequences. The variable sites are
isolated based on minor allele frequency. Considering
the minor allele, may have one additional aspect:
comparison with the reference sequence. When we
compare the minor allele with the reference sequence,
we find that this minor allele is present as a major allele
in the population. However, the site with such an allele
would still be considered as a variable site for our
analysis. As we calculated the co-occurrence frequency
in the previous section, here we will be defining and
calculating the co-mutation frequency between two
variable sites based on their minor allele frequencies as

Cmij ¼
mij

� �2

mið Þ mið Þ

where Cmij is the co-mutation frequency, mij is the
number of times minor alleles at the ith and jth position
occur together, mi and mj are minor allele frequencies at
the ith and jth positions individually. Calculating Cmij is
the first step in constructing co-mutation networks
whose range is again [0, 1]. Further, we calculate a
statistical correlation (Pi,j) (popularly known as p-value
test) to filter out interactions lying below a threshold
value to get a meaningful network.

Pi;j ¼
Cmr

ij

� �
� Cmij

� �h i

reshuffling

where Cmr
ij is a random co-mutation frequency, cal-

culated after permuting the alleles at the ith and jth

positions for a large number of times. As per standard
practice, we keep the threshold value at standard
B 0.05 to filter the interactions. This method yields only
one network combining all the sequences, and hence, the
method is independent of number of samples.

Figure 1. Schematic for construction of co-occurrence and
co-mutation networks. Coij is co-occurrence frequency of
two nucleotides at the variable positions i and j, xiyj is the
occurrence of x and y nucleotides at the ith and jth positions
together, xi and yi are the occurrence of x and y nucleotides at
the ith and jth position, respectively. Cmij and Cmr

ij represent
the natural and random co-mutation frequencies respectively,
mij represents the frequency of minor alleles present at both
ith and jth positions together, mi and mj are the minor allele
frequencies at the ith and jth positions respectively. Once Coij
or Cmij is calculated, one can use either or both of the
threshold selection methods.
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2.3 Network properties

Degree (k): The degree of a node is defined as
number of connections that a node has with other
nodes (Barabási and Pósfai 2016). A node with a
very high degree is referred to as the hub node and is
known to play important functional roles in the
corresponding system. In most networks, such hub
nodes are very few, and hence the network becomes
highly robust against random external attacks. On the
other hand, a target attack to such nodes could
drastically collapse the network. The degree of a
node i is denoted as ki and is calculated from a
symmetric matrix as

ki ¼
XN

j¼1

Aij

where j is number of columns of the given adjacency
matrix. The average degree hki of a network is the
average of the degrees of all the nodes in the network
and is a measure of the sparseness (or denseness) of the
underlying system.
Clustering coefficient: The tendency of the nodes in

a system to form triangles is captured by the clustering
coefficient (Barabási and Pósfai 2016). Most real-world
networks show high clustering coefficients compared
with the corresponding random network. The higher
clustering also provides information on the existence of
modularity in the network. The clustering coefficient of
a node i is calculated as

Ci ¼
2kn

ki ki � 1ð Þ

where kn is the number of connections between the
neighbors of i.
Hierarchy: A decrease in the clustering coefficient

with an increase in the degree of nodes suggests the
presence of hierarchy in the network (Barabási and
Pósfai 2016). This indicates that the nodes with small
degrees belong to highly interconnected small mod-
ules. To quantify hierarchy, the local reaching centrality
(CR) is measured for a node i as the proportion of all
the nodes that can be reached from node i. Hierarchy
arises due to the fact that the modules are not com-
pletely independent in a network where a few nodes
play the crucial role of cross-talking between any two
or more modules. CR is calculated as

CR ið Þ ¼ 1

N � 1

X

j:0[ di;j [1

1

di;j

where di,j is the shortest path length and N is the total
number of nodes. Based on CR, the hierarchy is defined
as

h ¼
P

Cmax
R � CR ið Þ

� �

N � 1

where Cmax
R is the highest reaching centrality in the

network.
Betweenness centrality: This is the measure of the

importance of a node as a connector or bridge between
two modules or communities independent of their
degree. It is defined as the fraction of shortest paths
between all the pair of nodes that pass through the node
i, and is calculated as

bi ¼
X

st

nist
gst

Modularity: In biological systems, the
components form groups in order to perform
relatively different functions at the molecular level
(Barabási and Pósfai 2016). This property of a
system is referred to as modularity. A high clustering
coefficient is the signature of a network to have high
modularity. This also gives information about the
motifs, which are highly connected subgraphs.
Motifs are present in almost all the real-world
networks that have been examined so far.
Modularity can be calculated using various
algorithms such as Newmann–Girvan (Girvan and
Newman 2002) or Louvian (Blondel et al. 2008).

3. Pseudo-codes/algorithms used to construct
networks

In this section we have provided algorithms for con-
structing both types of networks. Algorithm 1 is com-
mon for both network construction methods.
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4. Results

4.1 Structural properties

We have discussed two different methods of threshold
selection to obtain a sparse network. One could apply
either of these methods or even both of them together.
Further, we considered a real-world example to
understand these two methods of network construction.
As a practical example, we started with *1500 human
mtDNA from hmtDB from Oceania, giving rise to
*1500 variable sites (dependent on the updates of the
database), out of which only *450 take part in net-
work construction with *470 connections. Figure 2a
shows that the order of the largest connected compo-
nent (NLCC) and its average degree (kLCC) decreases
with an increase in the value of the co-occurrence
frequency threshold. Initially, with no threshold, all the
nodes (N) take part in network construction having
degree N-1. In the inset of the graph in figure 3 (left),
NLCC and kLCC from 0.9 to 1.0 are plotted to show the
changes in the value of threshold to be considered to
get a largest possible sparse network, which in this case

is 0.9988. This method of threshold selection is per-
ceived as the network efficiency score since it is
employed to generate a sparse network. Similar to the
network efficiency score, the effect of the p-value-
based threshold selection method can be seen (figure 3,
right). Here, we took the mtDNA of a Tibetan popu-
lation with *85 samples, giving rise to *420 variable
sites, of which *400 take part in network construction
and *3400 significant connections. The number of
nodes participating in the network construction is not
affected as much as the change (more than 50%) in the
number of connections (Nc) and the average degree
hki, thus resulting in a sparse network. For this par-
ticular example, we considered a co-mutation network
in which the minor allele frequency (maf) of a variable
site plays a crucial role in determining the importance
of the corresponding node in that network (figure 4).
We plotted the degree of the node and its minor allele
frequency to determine the role of the minor allele
frequency in defining the co-mutation tendency of a
variable site (figure 4a). The maf and degree show a
positive correlation (0.4) for the given population, and
there are a few nodes with smaller values of maf cor-
responding to a high degree in the network, and vice
versa. In this context, the mutations which are usually
the drivers of cancer evolution have been shown to
have high maf (Spurr et al. 2018). It could be easily
interpreted from the figure that there exist few nodes
which have very high maf and most of the nodes have
maf between 1 to 10 (figure 4a, x-axis). However, the
two variable sites which co-mutate do not show any
particular correlation in terms of maf (figure 4b).

Figure 2. Evolution of co-occurrence network with change
in co-occurrence threshold. In the first graph, when no
threshold is taken, an all-to-all connected network is
produced. In the second graph, when the threshold is
increased to 0.5, only those edges are present which have co-
occurrence frequency (Co) 0.5. In the third graph, the
threshold is further increased to 0.9, where we lose a lot of
connections and get a sparse network. In the fourth graph,
the threshold is set to 1.0, which means that only edges with
Co = 1.0 will be present in the network, giving rise to
complete subgraphs.
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Variable sites with high maf can also co-mutate with
nodes having relatively low maf. Moreover, maf could
affect the distribution of edges with high co-mutation
frequency (figure 4c and d). When the value of maf is
increased from 15 to 20, the edges with Coij C 0.6 are
not affected, while edges with smaller Coij are removed
from the network. This observation provides a general
idea that pairs of nodes in which both the variable sites

have high maf would give a high value of co-mutation
frequency (Coij) in the network, since their association
would be far less random (figure 4c and d).
As we know that the degree of a variable site pro-

vides the extent of co-evolution of that site with other
sites, the degree is a prime property that indicates
evolutionary change in the genome of an organism.
The change in the average degree between viral gen-
omes of two different seasons accounted for the sudden
evolution of viral strains (Du et al. 2008). Similarly, the
co-mutation of two amino acids of the HA protein in
H3N2 virus was linked with antigenic drift or high co-
evolution. A co-mutation score was calculated for each
amino acid pair, and it was identified that the epitope
regions (the antibody binding sites) showed a higher
tendency of co-mutations as compared with non-epi-
tope regions (Huang et al. 2009). The strong selection
pressure on the mutated sites could also be identified
by looking at the frequently co-mutating sites as in
human influenza A/H3N2 and A/H1N1, and B viruses
(Chen et al. 2016). In a large-scale study of mito-
chondrial genomic co-occurrence networks, it was
found that the average degree is conserved across all
the five continents (Shinde et al. 2018). This observa-
tion supports the consistent distribution of mtDNA
variations across the whole world and the nature of its
uniparental inheritance (Ruiz-Pesini et al. 2004; Wei
and Chinnery 2020). The high-degree nodes usually
considered as hub nodes were shown to be the mito-
chondrial haplogroup markers in three high-altitude
populations (Verma et al. 2022).
Along with the degree of specific nodes, the degree

distribution of all the nodes provides information about
the nature of the network to compare with the model
networks. The degree distribution (box 1) of these two
types of the nucleotide networks follows a binomial
distribution with a pronounced peak at hki and decays
exponentially for large degrees similar to small-world
networks (Albert and Barabási 2002). However, the
degree distribution could be affected by the choice of
threshold for generating the final network. Addition-
ally, these networks also show very high clustering
coefficients, which suggests that the nodes in these
networks tend to cluster together. The presence of a
high clustering coefficient has been shown to be
associated with the co-evolution of mitochondrial
variations as a cohort between and among mitochon-
drial genes, in a dependable manner rather than indi-
vidually, which is in line with the mechanism of
haplogroup inheritance among subpopulations (Shinde
et al. 2021; Verma et al. 2022). These networks show
similar average shortest path length and higher

Figure 3. Left: Change in the order of largest connected
component (blue squares) and its average degree (red dots)
with respect to the co-occurrence frequency threshold. Right:
The effect of p-value threshold on the order (NLCC), size
(NcLCC) and average degree (kLCC) of largest connected
component of a co-mutation network.

Figure 4. These networks show similar average shortest
path length and higher clustering coefficient as compared
with the corresponding random networks, further adding to
the evidence on the small-world-like nature of these
networks. (a) The maf and degree of each node showed a
positive correlation. (b) The maf of nodes, i and j of each
pair. (c and d) The effect of maf on the distribution of co-
mutation frequency.
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clustering coefficient as compared with the corre-
sponding random networks, further adding to the evi-
dence about the small-world-like nature of these
networks. In terms of sparseness, the network con-
structed using the p-value threshold method is more
sparse as compared with that constructed using the
efficiency score method. The high clustering also
suggests the presence of high modularity in these net-
works. The modules formed in these networks are
predominated by particular haplogroups and also
specific genes. Thus, these modules harbor critical
information, and these modules could be further ana-
lyzed at the genetic, haplogroup, or pathogenic levels.
The clustering co-efficient was reported to follow a

negative power law with respect to degree (Ravasz
et al. 2002), and hence provided evidence for the
presence of hierarchy in these networks. The presence
of hierarchy and modularity is consistent with the
evolution of haplogroups over time and geographic
space. As it is well established that humans migrated
out of Africa and established settlements across Eurasia
and other continents with time, various variations were
also selected and enriched in the regional population
while inheriting the previous root variants that gave
rise to haplogroups. The hierarchy captures this char-
acteristic behavior of mitochondrial evolution.

4.2 Perfectly co-occurring sites

As discussed, we can apply a threshold value for
generating a sparse network. In co-occurrence net-
works, if we keep the threshold of efficiency score at
1.0, and in co-mutation networks, if we consider only
those pairs with Cmij = 1.0 and Pij B 0.05, we get only
those pairs of variable sites that are perfectly co-oc-
curring and co-mutating in the population, respectively.
Such sites form complete subgraphs (all-to-all con-
nected) and yield disconnected components (figure 2).
The peculiar case of perfectly co-occurring sites could
be interpreted in two ways: first, the nucleotides at the
ith and jth positions are co-occurring in just one sample
and not present in any other sample in that population;
second, the nucleotides are co-occurring in many
samples and are not present individually. In both these
cases we would get a perfect co-occurrence of the
involved sites; however, in the first case, the signifi-
cance of co-occurrence would be negligible for com-
mon variants but could have considerable importance
for rare variants (Bomba et al. 2017). To avoid this
bias, one can either define the rare variants beforehand
or consider only those sites with a higher minor allele

frequency. The perfectly co-occurring sites give rise to
disconnected complete subgraphs or motifs of order
two or more. Two- and three-order network motifs
were analyzed for codon bias in the human population
(Shinde et al. 2018). In this study, the codon positions
of the mitochondrial genome were mapped to these
network motifs given the position of the variable sites.
The protein-coding gene codon positions were mapped
as 1, 2, and 3, and the non-coding gene codon positions
were mapped as 0. It was shown that synonymous
positions (0 and 3) tend to co-occur more often than the
non-synonymous positions. This suggests that protein-
coding regions have played a selective role in human
evolution. In an another study to compare the low- and
high-altitude populations of Asia, these perfectly co-
occurring network motifs were employed to identify
the role of high-altitude marker sites in defining the co-
evolution patterns at high altitudes (Verma et al. 2021)

4.3 Gene mapping and genetic interaction
networks

The variable sites participating in the network con-
struction after applying a threshold could be mapped to
their corresponding genes. For this purpose, the refer-
ence sequence should be mapped to the multiple
sequence alignment by introducing all the indels. In
this way, one can generate a genetic interaction net-
work based on the co-mutation/co-occurrence network.
Since more than one variable site might belong to the
same gene, or two separate sets of variable sites might
belong to same gene pairs, the resultant network would
be weighted but undirected. For example, there exists a
link between the variable sites 45 and 89, and these two
sites belong to same gene, yielding a self-loop for this
gene, and in another case, variable sites 35 and 102,
and 48 and 105, have a link. The variable sites 35 and
48 belong to gene 1, and 102 and 105 belong to gene 2.
This will yield a link between gene 1 and gene 2 with a
weight 2. Thus, this genetic interaction network con-
tains the information of co-evolution of the gene
qualitatively and quantitatively. Such networks were
constructed to compare the three high-altitude popula-
tions: Tibet, Ethiopia, and Andes. Functional enrich-
ment analysis of the identified gene sets provided
information about their role in the evolution of the
human population at these high-altitude regions (Verma
et al. 2022). By mapping the variable sites to genes, the
co-evolution of genes could be quantified. For exam-
ple, co-operative changes were observed among and
between influenza genes. It was observed that
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hemagglutinin genes underwent connectivity changes
within themselves during a particular period and the
neuraminidase genes underwent a similar evolutionary
pattern as other genes (Du et al. 2008). In gene–gene
networks, the flow of information was investigated in
co-mutating genes using a model ‘perturbed master
equation’ (pME) in order to identify the gene pairs
responsible for network frailness in breast cancer
(Bersanelli et al. 2020). In another study, enriched
genes were identified in cancer pathways from co-
mutation-based gene–gene networks of a large-scale
study across 14 cancers with 2.5 million non-synony-
mous mutations and *6700 tumor exomes (Liu et al.
2020). It was predicted based on this study that inter-
actions between BRCA2 and TP53 were related to the
sensitivity/resistance to anticancer drugs.

5. Conclusion and future prospects

This review described the methodology for construct-
ing networks utilizing the information of variable sites
of multiple DNA sequences. The variable sites could
be defined as nodes given their allelic information.
Based on this definition of allelic information of vari-
able sites and their associations, we categorized these
networks into (i) co-occurrence and (ii) co-mutation
networks. Such networks provide insights into the
evolutionary patterns of given species under the spec-
trum of external environments, specifically, fast-
evolving viral genomes and mitochondrial genomes.
The co-occurrence network motifs were studied in the
mitochondrial genome in the human population of five
continents to identify the role of codon positions
(Shinde et al. 2018) and population-based biases in
mitochondrial epistatic interactions of ancestral sites
(Shinde et al. 2021) in shaping human evolution and
migration patterns. Such motifs were also applied to
analyze the human populations residing at different
altitudes with respect to the Tibetan population (Verma
et al. 2021), and co-mutation-based genetic networks
identified the interplay of different gene sets in con-
vergent evolution of highlanders globally (Verma et al.
2022). Network module identification and their analy-
sis on these networks have shown to have potential
applications in gaining information on human migra-
tion and geographic distribution of various hap-
logroups. The module-based study of amino acid
substitutions in human influenza virus identified the
change in the antigenic structure of viral proteins which
could evade the recognition by antibodies (Du et al.
2008). Further, the evolution of viral genomes poses a

greater threat to human health, such as the global
pandemic of COVID-19, where the role of such net-
works becomes more important in predicting the evo-
lution of potentially pathogenic strains of these viruses
and similar pathogens (Qin et al. 2021; Sarkar et al.
2021). Genetic interaction networks have been suc-
cessfully applied for mitochondrial (Verma et al. 2022)
and viral genomes (Du et al. 2008) to identify the
specific sets of genes responsible for evolution and
adaptation. These networks could be further applied to
identify unknown genes and their possible role in
classifying viral or bacterial strains as virulent or
hyper-virulent strains. These networks could also be
applied to genomes of various organisms along with
more sophisticated network science techniques, such as
spectral techniques, as well as the established popula-
tion genomics tools in advancing the understanding of
genetic evolution.
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Availability of Codes

The codes to generate co-occurrence and co-mutation
networks are freely available on our Github repository:
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