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Abstract: This review considers the topological fermion condensation quantum phase transition
(FCQPT) that explains the complex behavior of strongly correlated Fermi systems, such as frustrated
insulators with quantum spin liquid and heavy fermion metals. The review contrasts theoretical
consideration with recent experimental data collected on both heavy fermion metals (HF) and
frustrated insulators. Such a method allows to understand experimental data. We also consider
experimental data collected on quantum spin liquid in Lu3Cu2Sb3O14 and quasi-one dimensional
(1D) quantum spin liquid in both YbAlO3 and Cu(C4H4N2)(NO3)2 with the aim to establish a
sound theoretical explanation for the observed scaling laws, Landau Fermi liquid (LFL) and non-
Fermi-liquid (NFL) behavior exhibited by these frustrated insulators. The recent experimental
data on the heavy-fermion metal α−YbAl1−xFexB4, with x = 0.014, and on its sister compounds
β−YbAlB4 and YbCo2Ge4, carried out under the application of magnetic field as a control parameter
are analyzed. We show that the thermodynamic and transport properties as well as the empirical
scaling laws follow from the fermion condensation theory. We explain how both the similarity and
the difference in the thermodynamic and transport properties of α−YbAl1−xFexB4 and in its sister
compounds β−YbAlB4 and YbCo2Ge4 emerge, as well as establish connection of these (HF) metals
with insulators Lu3Cu2Sb3O14, Cu(C4H4N2)(NO3)2 and YbAlO3. We demonstrate that the universal
LFL and NFL behavior emerge because the HF compounds and the frustrated insulators are located
near the topological FCQPT or are driven by the application of magnetic fields.

Keywords: fermion condensation; topological quantum phase transition; flat band; quantum spin
liquid; heavy fermion compound; frustrated compound

1. Introduction

Strongly correlated Fermi systems are represented by numerous heavy fermion (HF)
compounds characterized by their diverse microscopic properties. To study these strongly
correlated Fermi systems, we employ a topological symmetry representing a powerful
method for gaining knowledge about physical systems spanning from solids to galaxies
and their clusters in the Universe [1,2]. Understanding of such symmetry and conditions
for its violation allows one to obtain a general information about physical systems. The low-
temperature universal properties of strongly correlated systems, including HF metals and
frustrated insulators, can be unveiled within the fermion condensation (FC) theory [1–7].
This universality suggests that strongly correlated systems, or HF compounds, represent a
new state of matter. It means that this new state is independent of the atomic composition of
HF compounds, exhibits universal properties, and is defined by the formation of flat or ap-
proximately flat bands [1–7]. These bands, predicted many years ago [3,5,6] and discovered
recently in graphene, see, e.g., [8–10], originate from a specific quantum phase transition
known as the topological fermion-condensation quantum phase transition (FCQPT) that

Materials 2022, 15, 3901. https://doi.org/10.3390/ma15113901 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma15113901
https://doi.org/10.3390/ma15113901
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0001-8945-2211
https://orcid.org/0000-0002-1248-5661
https://doi.org/10.3390/ma15113901
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma15113901?type=check_update&version=2


Materials 2022, 15, 3901 2 of 25

rearranges the Fermi surface into the Fermi volume, generating a flat band. Thus, for very
different substances and under very different external conditions the universal topological
FCQPT occurs at microscopic level, determining the macroscopic properties and universal
behavior of HF compounds. These compounds proliferated and they include HF metals,
quantum spin liquids, quasicrystals and two dimensional systems like 3He [1]. These HF
compounds represent the new state of matter, since their behavior near the topological
FCQPT acquires important similarities that make them universal [1,6,7,11–14].

In our brief review we consider recent experimental data collected on the frustrated in-
sulator like Lu3Cu2Sb3O14 and quasi-1D quantum spin liquid (1DQSL) in both YbAlO3 and
Cu(C4H4N2)(NO3)2 and family of HF metals α−YbAl1−xFexB4, β−YbAlB4 and YbCo2Ge4.
We show that these unexplained experimental data can be explained within the framework
of fermion condensation (FC) theory based on the topological FCQPT. As a result, we
demonstrate that these HF compounds belong to the new state of matter. Thus, the recent
experimental data support our conclusion expressed in recent reviews [13,14] that HF
compounds form the new state of matter.

Currently, numerous quantum spin liquids (QSLs) with various types of ground states
are proposed [14–25]. These QSLs define the thermodynamic, transport and relaxation
properties of frustrated insulators and represent the new state of matter formed by HF
compounds [1,13,14]. QSLs are formed with fermionic quasiparticles with the effective mass
M∗ which are called spinons. Spinons carry spin σ = 1/2 and no charge. At temperature
T = 0 the Fermi sphere is shaped from spinons with the Fermi momentum pF. Thus,
frustrated insulators can be viewed as a spinon metal, which differs from HF metals in that
it cannot support the electric current.

The Fermi sphere of spinons can be located near the topological Fermion condensation
phase transition (FCQPT) that forms the FC state and the corresponding flat band [1,3,4,7,11,26].
In the FC state, at T = 0 the corresponding flat band is given by the equation

ε(p, T = 0) = µ, pi ≤ pF ≤ p f ; 0 ≤ n(p) ≤ 1. (1)

where pi and p f stand for initial and final momenta, where the flat band reside. At T > 0 the
quasiparticle occupation numbers n(p) is given by the Fermi–Dirac distribution function
which is represented in the form [5,27]

ε(p, T)− µ(T) = T ln
1− n(p, T)

n(p, T)
. (2)

Taking into account that T → 0, the distribution function satisfies the inequality
0 < n(p) < 1 for pi ≤ pF ≤ p f , we see that the logarithm is finite; the right hand side of
Equation (2) vanishes, and lead to Equation (1). Near FCQPT flat band takes place and the
notion of the strongly correlated quantum spin liquid (SCQSL) emerges that allows one to
describe numerous data related to the thermodynamic, relaxation and transport properties
of frustrated magnetic insulators [1,7,11,14,22,28–30].

We consider recent measurements in magnetic field B of the quantum spin liquid [23] that
forms the thermodynamic properties of Lu3Cu2Sb3O14 and the thermodynamic of 1DQSL
that defines behavior of YbAlO3 [24] and Cu(C4H4N2)(NO3)2 [22,25], see Section 2. We
analyze recently obtained measurements on the heavy-fermion (HF) metals β−YbAlB4 [31,32],
YbCo2Ge4 [33] and α−YbAl1−xFexB4 [34], that have been performed under the application
of magnetic field B, as well as on β −YbAlB4 under the application of hydrostatic pressure
P [31,32]. These have received substantial theoretical analysis [31,32,35–44]. We explain
these results within the framework of the FC theory, and show that the mentioned above HF
metals exhibit the same behavior as that of SCQSL, forming properties of Lu3Cu2Sb3O14,
YbAlO3 and Cu(C4H4N2)(NO3)2, see Section 6. Our results are summarized in Section 8.
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2. Universal Scaling Behavior of Quantum Spin Liquid

The ground state energy of QSL depends weakly on the spins configuration, since
the spinons of the triangular lattice compounds form symmetric positions. Therefore, the
triangular lattice is near to a topologically protected flat band of the spectrum with zero
excitation energy [6,7,28,45–47]. As a result, the topological FCQPT can be considered
as a quantum critical point (QCP) of the Lu3Cu2Sb3O14 quantum spin liquid. In that
case the elementary magnetic quasiparticles, dubbed spinons, defining the relaxation,
transport and thermodynamic properties, carry the effective mass M∗, zero charge and
spin σ = 1/2. Spinons occupy the corresponding Fermi sphere with the Fermi momentum
pF, representing HF quasiparticles of deconfined SCQSL. Spinon quasiparticles generate
the excitation spectrum typical for HF compounds located near the topological FCQPT.
The ground state energy E(n) is given by the Landau functional, depending on the spinon
distribution function nσ(p), where p is the momentum. Near the FCQPT point, the spinon
effective mass M∗ is defined by the Landau Equation [6,48]

1
M∗(T, B)

=
1

M∗(T = 0, B = 0)
(3)

+
1
p2

F
∑
σ1

∫ pFp1

pF
Fσ,σ1(pF, p1)

∂δnσ1(p1)

∂p1

dp1

(2π)3 .

In Equation (3) B is magnetic field and we rewrite the spinon distribution function
as δnσ(p) ≡ nσ(p, T, B) − nσ(p, T = 0, B = 0). Note that both functional E(n) and
Equation (3) are exact [1,49]. This fact provides firm ground to construct the theory of
HF compounds [1,6,7]. The geometric frustration of QSL in Lu3Cu2Sb3O14 [23] is located
near the topological FCQPT, therefore we employ the theory of HF compounds, that is
the FC theory, to describe SCQSL of Lu3Cu2Sb3O14, see, e.g., [6,28]. This theory allows
quantitative analysis of the thermodynamic, relaxation and transport properties of both
HF compounds containing QSL and HF metals [1,6,7,11,14,28]. We will show that the
thermodynamic properties of Lu3Cu2Sb3O14 coincide with those of the frustrated magnet
ZnCu3(OH)6Cl2 and of HF metals including the archetypical HF metal YbRh2Si2 [45].

In Equation (3) the only role of the Landau interaction is to drive the system to the
FCQPT point, where the Fermi surface changes its topology so that the effective mass
acquires strong temperature and field dependences [1,6,50,51], as seen from the inset of
Figure 1. Indeed, it is seen from the inset that the effective mass M∗(T, B) ∝ Cmag/T
strongly depends on both T and B. At the topological FCQPT the term 1/M∗(T = 0, B = 0)
vanishes and Equation (3) becomes homogeneous and therefore is solved analytically. We
remark that at p = pF the single-particle spectrum ε(p) acquires an inflection point at
which the corresponding flat band related to FC is formed [3,6]. In the simplest case the
inflection point turns out to be ε(p) = (p − pF)

3 [5,6]; the other types of the inflection
points are considered in Section 6. At B = 0, the effective mass depends on T exhibiting the
non-Fermi liquid (NFL) behavior [6]

M∗(T) ' aTT−2/3. (4)

At finite T magnetic field B drives the system to the Landau Fermi liquid (LFL)
behavior with

M∗(B) ' aBB−2/3. (5)

Here aT and aB are fitting parameters. Note that the exponent −2/3 corresponds to
the above considered inflection point.
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3

The geometric frustration of QSL in Lu3Cu2Sb3O14 [23]
is located near the topological FCQPT, therefore we
employ the theory of HF compounds, that is the FC
theory, to describe SCQSL of Lu3Cu2Sb3O14, see e.g.
[6, 28]. This theory allows quantitative analysis of the
thermodynamic, relaxation and transport properties of
both HF compounds containing QSL and HF metals
[1, 6, 7, 11, 14, 28]. We will show that the thermody-
namic properties of Lu3Cu2Sb3O14 coincide with those of
the frustrated magnet ZnCu3(OH)6Cl2 and of HF metals
including the archetypical HF metal YbRh2Si2 [45].
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FIG. 1: The normalized specific heat (Cmag/T )N as a func-
tion of the normalized temperature TN measured under the
application of magnetic field is shown in the legend. The
normalized specific heat Cmag/T is extracted from the mea-
surement of the specific heat of Lu3Cu2Sb3O14 [23] shown in
the inset. The solid orange curve displaces the theoretical
calculations based on Eq. (3) [45]. The same curve is shown
in Figs. 3 and 4, exhibiting the scaling of the thermodynamic
properties of the quantum spin liquid of Lu3Cu2Sb3O14.

In Eq. (3) the only role of the Landau interaction
is to drive the system to the FCQPT point, where the
Fermi surface changes its topology so that the effective
mass acquires strong temperature and field dependences
[1, 6, 50, 51], as seen from the inset of Fig. 1. In-
deed, it is seen from the inset that the effective mass
M∗(T,B) ∝ Cmag/T strongly depends on both T and B.
At the topological FCQPT the term 1/M∗(T = 0, B = 0)
vanishes and Eq. (3) becomes homogeneous and there-
fore is solved analytically. We remark that at p = pF
the single-particle spectrum ε(p) acquires an inflection
point at which the corresponding flat band related to FC
is formed [3, 6]. In the simplest case the inflection point
turns out to be ε(p) = (p − pF )

3 [5, 6]; the other types
of the inflection points are considered in Section VI. At

B = 0, the effective mass depends on T exhibiting the
non-Fermi liquid (NFL) behavior [6]

M∗(T ) ' aTT
−2/3. (4)

At finite T magnetic field B drives the system to the
Landau Fermi liquid (LFL) behavior with

M∗(B) ' aBB
−2/3. (5)

Here aT and aB are fitting parameters. Note that the
exponent −2/3 corresponds to the above considered in-
flection point.
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FIG. 2: Schematic plot of the normalized effective massM∗
N =

M∗/M∗
M versus the normalized temperature TN = T/TM .

The crossover region, at which M∗
N reaches its maximum

M∗
N = 1 at TN = 1, is shown by the arrows. The inflection

point Tinf at which the system enters the crossover region
is displayed by the arrow. The LFL and NFL regions are
labeled.

The universal scaling of the effective mass M∗ is shown
in Fig. 2. This behavior is given by Eq. (3), provided
that the system is located near FCQPT. At finite B and
T , near the topological FCQPT, the solution of Eq. (3)
M∗(B, T ) links the LFL (M∗(T ) ∝ const) and NFL
(M∗(T ) ∝ T−2/3) regions [1, 6, 7]. As seen from Fig.
2, the LFL behavior and the NFL one, given by Eqs. (5)
and (4) are separated by the crossover region at which
M∗ reaches its maximum value M∗

M at temperature TM .
It is seen from Fig. 2, representing the universal scaling
behavior of the dimensionless normalized effective mass
M∗

N = M∗/MM as a function of the dimensionless nor-
malized temperature TN = T/TM , that M∗

N exhibits the
usual behavior of the experimental thermodynamic func-
tion like C/T or χ(T ), see e.g. [6]. Indeed, the region
TN ∼ 1 represents the crossover region between the LFL
behavior with almost constant effective mass and the
NFL behavior, exhibiting the M∗ ∝ T−2/3 dependence,
see Eq. (4), and Tinf separates the beginning point of
the crossover region from the NFL region [6]. Note that
both M∗

M and TM , occurring at M∗
N = TN = 1, depend

on the microscopic properties of the system in question

Figure 1. The normalized specific heat (Cmag/T)N as a function of the normalized temperature TN

measured under the application of magnetic field is shown in the legend. The normalized specific
heat Cmag/T is extracted from the measurement of the specific heat of Lu3Cu2Sb3O14 [23] shown in
the inset. The solid orange curve displaces the theoretical calculations based on Equation (3) [45]. The
same curve is shown in Figures 2 and 3, exhibiting the scaling of the thermodynamic properties of
the quantum spin liquid of Lu3Cu2Sb3O14.

4

[6], while their normalized values exhibit the universal
scaling. Thus, the FC theory, based on the topological
FCQPT and the corresponding flat bands, incorporates
the inherent universal scaling behavior that is experimen-
tally exhibited by numerous HF compounds [1, 6, 7].

A. Universal behavior of Lu3Cu2Sb3O14

It is seen from the inset of Fig. 1 that Cmag/T reaches
its maximum value (Cmag/T )max(B) under the applica-
tion of magnetic fields at some temperature Tmax(B). To
reveal the scaling, we introduce the dimensionless nor-
malized specific heat (Cmag/T )N as a function of the di-
mensionless normalized temperature TN = T/Tmax(B)
[6]

(Cmag/T )N =
Cmag/T

(Cmag/T )max
= M∗

N . (6)

From Eq. (6) and from both Fig. 1 and Fig. 2, we see
that (Cmag/T )N (TN ) exhibits the universal, scaling as a
function of only TN ∝ T/B, presented by a single curve.
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FIG. 3: The normalized specific heat (Cel/T )N = M∗
N of

YbRh2Si2 as a function of normalized temperature TN un-
der the application of magnetic field B shown in the left hand
legend (low B) and the right hand legend (high B) The exper-
imental data is extracted from the measurement of C/T mea-
surements on the archetypical HF metal YbRh2Si2 [53, 54].
The low-field calculations of M∗

N are depicted by the solid
green curve. The solid blue curve representing high-field cal-
culations (B ∼ 18) is performed for the fully polarized qua-
siparticle band [29]. Starting from relatively high magnetic
fields B ≥ 4 T, the specific heat demonstrates the same be-
havior as (Cmag/T ) = M∗

N of Lu3Cu2Sb3O14 shown in Fig.
1.

To construct the interpolating equation revealing the
universal scaling of the effective mass M∗ ∝ Cmag/T ,
we employ both the dimensionless normalized effective

mass M∗
N and the dimensionless normalized temperature

TN , defined by dividing the effective mass M∗(T,B) by
its maximal values, M∗

max(T,B), and temperature T by
Tmax at which the maximum M∗

N occurs, TN = T/Tmax

[6]. Magnetic field B emerges in Eq. (3) as the combina-
tion µBB/kBT . As a result, kBTmax ' µBB where kB
is the Boltzmann constant and µb is the Bohr magneton
[6, 50]. This observation allows us to conlcude have that
[6, 7, 52]

Tmax ∝ B (7)

and

TN ∝ T/B (8)

Thus, we obtain that the normalized effective mass
M∗

N = M∗/M∗
max = (Cmag/T )N is well defined by the in-

terpolating function, approximating the solutions of Eq.
(3) [6]

M∗
N (y) ≈ c0

1 + c1y
2

1 + c2y8/3
. (9)

Here c0 = (1 + c2)/(1 + c1), c1 and c2 are fitting pa-
rameters, and y = T/Tmax ∝ T/B. Clearly, from both
Eqs. (5) and (9) that under the application of magnetic
field M∗ becomes finite and at low temperatures the sys-
tem exhibits the LFL behavior, Cmag(T )/T ∝ M∗(T ) '
M∗(T = 0) + a1T

2. As seen from the inset of Fig.
1, at increasing temperatures M∗ ∝ Cmag/T increases
and enters the crossover region, reaching its maximum
M∗

max ∝ (Cmag(T )/T )max at T = Tmax, with subsequent
diminishing given by Eqs. (4) and (9). Scaling behavior
is manifested by Eq. (9), exhibiting the superior qual-
ity of Eq. (3) at the topological FCQPT: the function
M∗(T,B) of two variables transforms into the function
M∗ of the single variable TN ∝ T/B. We employ Eq. (9)
to outline the universal scaling, verifying our calculations
based on Eq. (3).
The scaling of (Cmag/T )N = MN , extracted from the

experimental data Cmag(T,B)/T [23], is reported in Fig.
1. The data for a wide range of B vales up to 9 T
merge well into a single curve. Figure 3 reports the
normalized specific heat (Cel/T )N = M∗

N of YbRh2Si2
versus normalized temperature TN as a function of B.
Indeed, at low TN . 0.1 the normalized specific heat
(Cel/T )N ' 0.4 [1, 29]. This value is determined by
the polarization of the heavy electron band under the
application of magnetic fields B > 4 T, and coincides
with that of χN = M∗

N obtained on ZnCu3(OH)6Cl2
and shown in Fig. 4. Results of our calculations are
represented by the same solid curve in Figs. 1, 3 and
4. We stress that at low normalized temperatures TN

and at low magnetic fields B the polarization becomes
small, making (Cel/T )N → 0.9 at the LFL region, as
it is seen from Fig. 3. Thus, the scaling behavior
of Cmag/T shown in Fig. 1 is of universal character;
indeed, (Cmag/T )N = M∗

N of Lu3Cu2Sb3O14 behaves

Figure 2. The normalized specific heat (Cel/T)N = M∗N of YbRh2Si2 as a function of normalized
temperature TN under the application of magnetic field B shown in the left hand legend (low B)
and the right hand legend (high B) The experimental data is extracted from the measurement of
C/T measurements on the archetypical HF metal YbRh2Si2 [52,53]. The low-field calculations of
M∗N are depicted by the solid green curve. The solid blue curve representing high-field calculations
(B ∼ 18) is performed for the fully polarized quasiparticle band [29]. Starting from relatively high
magnetic fields B ≥ 4 T, the specific heat demonstrates the same behavior as (Cmag/T) = M∗N of
Lu3Cu2Sb3O14 shown in Figure 1.

The universal scaling of the effective mass M∗ is shown in Figure 4. This behavior
is given by Equation (3), provided that the system is located near FCQPT. At finite B
and T, near the topological FCQPT, the solution of Equation (3) M∗(B, T) links the LFL
(M∗(T) ∝ const) and NFL (M∗(T) ∝ T−2/3) regions [1,6,7]. As seen from Figure 4, the LFL
behavior and the NFL one, given by Equations (4) and (5) are separated by the crossover
region at which M∗ reaches its maximum value M∗M at temperature TM. It is seen from
Figure 4, representing the universal scaling behavior of the dimensionless normalized
effective mass M∗N = M∗/MM as a function of the dimensionless normalized temperature
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TN = T/TM, that M∗N exhibits the usual behavior of the experimental thermodynamic
function like C/T or χ(T), see, e.g., [6]. Indeed, the region TN ∼ 1 represents the crossover
region between the LFL behavior with almost constant effective mass and the NFL behavior,
exhibiting the M∗ ∝ T−2/3 dependence, see Equation (4), and Tin f separates the beginning
point of the crossover region from the NFL region [6]. Note that both M∗M and TM, occurring
at M∗N = TN = 1, depend on the microscopic properties of the system in question [6], while
their normalized values exhibit the universal scaling. Thus, the FC theory, based on the
topological FCQPT and the corresponding flat bands, incorporates the inherent universal
scaling behavior that is experimentally exhibited by numerous HF compounds [1,6,7].
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FIG. 4: Normalized magnetic susceptibility χN = χ/χmax =
M∗

N as a function of the normalized temperature TN ∝ T/B.
The values of magnetic field B are displayed in the legend.
The data are extracted from the measurements of the mag-
netic susceptibility χ(T,B) on ZnCu3(OH)6Cl2 [16]. The nor-
malized data of (Cel/T )N = M∗

N are obtained from the spe-
cific heat measurements Cel/T of YbRh2Si2 in the presence of
magnetic field B (the legend) [53]. The solid curve represents
theoretical calculations at B ' 18 T at the fully polarized
quasiparticle band. It demonstrates universal scaling of M∗

N ,
and coincides with the universal scaling of the quantum spin
liquid depicted in Fig. 1. The crossover from the LFL behav-
ior to the NFL one is displayed by the arrow.

like (Cel/T )N = χN = M∗
N shown in Figs. 3 and 4

The data shown are extracted from measurements on
ZnCu3(OH)6Cl2 and YbRh2Si2 [16, 53, 54]. Thus, the
quantum spin liquid of Lu3Cu2Sb3O14 can be viewed as
SCQSL that exhibits gapless behavior even in the pres-
ence of a strong magnetic field. From Fig. 1 the data
at B = 0 and TN < 1 indicate that the quantum spin
liquid exhibits the LFL behavior. Thus, we see that the
quantum spin liquid in Lu3Cu2Sb3O14 is located before
the topological FCQPT. Otherwise, the spin liquid, be-
ing on the ordered side of the topological FCQPT, would
have been consumed by phase transition, eliminating the
corresponding finite value of the residual entropy S0 at
S(T → 0) → S0 [1, 6]. In that case one can experimen-
tally observe competition of the different phase transi-
tions at T → 0 that make the corresponding phase di-
agram very complicated, and the only reason of these
complexity and competition of possible phase transitions
is to vanish S0 due to the Nernst law [5, 6]. Therefore, we
conclude that SCQSL without a gap should be close to
the topological FCQPT, and is located on the disordered
side of the topological FCQPT.

In Fig. 5 (a), the solid squares denote the values of
the maxima (Cmag/T )max(B) versus magnetic field B,
taken from the inset of Fig. 1. Clearly the agreement
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FIG. 5: The properties of the specific heat. (a) The maximum
values of (Cmag/T )max of the specific heat Cmag/T versus
magnetic field B are shown by the solid squares, see the inset,
Fig. 1. The solid curve is approximated byM∗

max(B) ∝ B−2/3

in accordance with Eq. (5). The arrow depicts the position
of (Cmag/T )max at B = 0 when the impurity Schottky contri-
bution is subtracted [23]. (b) The temperature Tmax(B), at
which the maxima of (Cmag/T ) are located, see Fig. 3 (a).
The solid straight line traces the function Tmax ∝ B, see Eq.
(7).

between the theory (solid curve) and the experiment is
good. At B = 0 the arrow shows the position of the maxi-
mum with the subtracted impurity Schottky contribution
[23]. We believe that there is no reason to subtract the
the impurity Schottky contribution, since it is not possi-
ble to differentiate the contribution from the impurities
and from those coming from the pure crystal holding SC-
QSL [45], since both of them form the integral SCQSL
[14]. The solid line in Fig. 5 (b) represents function

Figure 3. Normalized magnetic susceptibility χN = χ/χmax = M∗N as a function of the normalized
temperature TN ∝ T/B. The values of magnetic field B are displayed in the legend. The data are
extracted from the measurements of the magnetic susceptibility χ(T, B) on ZnCu3(OH)6Cl2 [16].
The normalized data of (Cel/T)N = M∗N are obtained from the specific heat measurements Cel/T of
YbRh2Si2 in the presence of magnetic field B (the legend) [52]. The solid curve represents theoretical
calculations at B ' 18 T at the fully polarized quasiparticle band. It demonstrates universal scaling of
M∗N , and coincides with the universal scaling of the quantum spin liquid depicted in Figure 1. The
crossover from the LFL behavior to the NFL one is displayed by the arrow.

1 0 - 1 1 0 0 1 0 1

1

N F LL F L

M*
N

 

 

T N

c r o s s o v e r  r e g i o n T i n f

Figure 4. Schematic plot of the normalized effective mass M∗N = M∗/M∗M versus the normalized
temperature TN = T/TM. The crossover region, at which M∗N reaches its maximum M∗N = 1 at
TN = 1, is shown by the arrows. The inflection point Tin f at which the system enters the crossover
region is displayed by the arrow. The LFL and NFL regions are labeled.
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2.1. Universal Behavior of Lu3Cu2Sb3O14

It is seen from the inset of Figure 1 that Cmag/T reaches its maximum value (Cmag/T)max(B)
under the application of magnetic fields at some temperature Tmax(B). To reveal the scaling,
we introduce the dimensionless normalized specific heat (Cmag/T)N as a function of the
dimensionless normalized temperature TN = T/Tmax(B) [6]

(Cmag/T)N =
Cmag/T

(Cmag/T)max
= M∗N . (6)

From Equation (6) and from both Figures 1 and 4, we see that (Cmag/T)N(TN) exhibits
the universal, scaling as a function of only TN ∝ T/B, presented by a single curve.

To construct the interpolating equation revealing the universal scaling of the effective
mass M∗ ∝ Cmag/T, we employ both the dimensionless normalized effective mass M∗N
and the dimensionless normalized temperature TN , defined by dividing the effective mass
M∗(T, B) by its maximal values, M∗max(T, B), and temperature T by Tmax at which the
maximum M∗N occurs, TN = T/Tmax [6]. Magnetic field B emerges in Equation (3) as the
combination µBB/kBT. As a result, kBTmax ' µBB where kB is the Boltzmann constant and
µb is the Bohr magneton [6,50]. This observation allows us to conlcude have that [6,7,44]

Tmax ∝ B (7)

and
TN ∝ T/B (8)

Thus, we obtain that the normalized effective mass M∗N = M∗/M∗max = (Cmag/T)N is
well defined by the interpolating function, approximating the solutions of Equation (3) [6]

M∗N(y) ≈ c0
1 + c1y2

1 + c2y8/3 . (9)

Here c0 = (1 + c2)/(1 + c1), c1 and c2 are fitting parameters, and y = T/Tmax ∝
T/B. Clearly, from both Equations (5) and (9) that under the application of magnetic
field M∗ becomes finite and at low temperatures the system exhibits the LFL behavior,
Cmag(T)/T ∝ M∗(T) ' M∗(T = 0) + a1T2. As seen from the inset of Figure 1, at increas-
ing temperatures M∗ ∝ Cmag/T increases and enters the crossover region, reaching its
maximum M∗max ∝ (Cmag(T)/T)max at T = Tmax, with subsequent diminishing given by
Equations (4) and (9). Scaling behavior is manifested by Equation (9), exhibiting the supe-
rior quality of Equation (3) at the topological FCQPT: the function M∗(T, B) of two variables
transforms into the function M∗ of the single variable TN ∝ T/B. We employ Equation (9)
to outline the universal scaling, verifying our calculations based on Equation (3).

The scaling of (Cmag/T)N = MN, extracted from the experimental data Cmag(T, B)/T [23],
is reported in Figure 1. The data for a wide range of B vales up to 9 T merge well into a
single curve. Figure 2 reports the normalized specific heat (Cel/T)N = M∗N of YbRh2Si2
versus normalized temperature TN as a function of B. Indeed, at low TN . 0.1 the normal-
ized specific heat (Cel/T)N ' 0.4 [1,29]. This value is determined by the polarization of
the heavy electron band under the application of magnetic fields B > 4 T, and coincides
with that of χN = M∗N obtained on ZnCu3(OH)6Cl2 and shown in Figure 3. Results of our
calculations are represented by the same solid curve in Figures 1–3. We stress that at low
normalized temperatures TN and at low magnetic fields B the polarization becomes small,
making (Cel/T)N → 0.9 at the LFL region, as it is seen from Figure 2. Thus, the scaling
behavior of Cmag/T shown in Figure 1 is of universal character; indeed, (Cmag/T)N = M∗N
of Lu3Cu2Sb3O14 behaves like (Cel/T)N = χN = M∗N shown in Figures 2 and 3 The data
shown are extracted from measurements on ZnCu3(OH)6Cl2 and YbRh2Si2 [16,52,53].
Thus, the quantum spin liquid of Lu3Cu2Sb3O14 can be viewed as SCQSL that exhibits
gapless behavior even in the presence of a strong magnetic field. From Figure 1 the data at
B = 0 and TN < 1 indicate that the quantum spin liquid exhibits the LFL behavior. Thus,
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we see that the quantum spin liquid in Lu3Cu2Sb3O14 is located before the topological
FCQPT. Otherwise, the spin liquid, being on the ordered side of the topological FCQPT,
would have been consumed by phase transition, eliminating the corresponding finite value
of the residual entropy S0 at S(T → 0)→ S0 [1,6]. In that case one can experimentally ob-
serve competition of the different phase transitions at T → 0 that make the corresponding
phase diagram very complicated, and the only reason of these complexity and competition
of possible phase transitions is to vanish S0 due to the Nernst law [5,6]. Therefore, we
conclude that SCQSL without a gap should be close to the topological FCQPT, and is
located on the disordered side of the topological FCQPT.

In Figure 5a, the solid squares denote the values of the maxima (Cmag/T)max(B)
versus magnetic field B, taken from the inset of Figure 1. Clearly the agreement between
the theory (solid curve) and the experiment is good. At B = 0 the arrow shows the position
of the maximum with the subtracted impurity Schottky contribution [23]. We believe
that there is no reason to subtract the the impurity Schottky contribution, since it is not
possible to differentiate the contribution from the impurities and from those coming from
the pure crystal holding SCQSL [45], since both of them form the integral SCQSL [14].
The solid line in Figure 5b represents function Tmax(B) ∝ B, given by Equation (8). It
is seen that the data are well approximated by the straight line. At B = 0 Tmax is finite,
pointing to the fact that SCQSL exhibits the LFL behavior. Indeed, at B = 0 and T → 0 the
specific heat Cmag/T demonstrates the LFL behavior, as evident from the inset of Figure 1.
This behavior indicates that SCQSL of Lu3Cu2Sb3O14 is placed before the topological
FCQPT. Thus, at T → 0 the system exhibits the LFL behavior and the absence of a gap or
some phase transition, that has to eliminate the residual entropy S0. This conclusion is
consistent with the general properties of the phase diagrams of HF metals and quantum
insulators [14,54]. To clarify the above mentioned properties, one needs to carry out low
temperature measurements of both the magnetic susceptibility χ and the thermal transport
in presence of the magnetic field.

A few remarks related to the heat transport in frustrated insulators are in order here.
Recent measurements of the low-temperature thermal conductivity κ have shown that the
value of κ(T → 0) strongly depends on the disorder of quantum magnets (insulators) and
at high disorder κ(T → 0) → 0, see, e.g., [55,56]. Measurements on the transition metal
dichalcogenide 1T− TaS2 demonstrates that it hosts QSL on the two-dimensional perfect
triangular lattice [56]. Experiments show that the application of magnetic field B enhances
κ/T and suppresses Cmag/T [56]. These observations agree with the predictions of the FC
theory [14,44,57]. On the other hand, κ(T → 0)→ 0 could signal that QSL is not present,
while the thermodynamic properties of quantum insulators with κ(T → 0)→ 0 demon-
strate the typical behavior of HF metals. As a result, we propose that the thermodynamic
properties of these insulators are defined by QSL [1,14,28]. Thus, we have to suggest that
there are at least two types of QSL: one is represented by QSL with high resistance to the
heat transport, that is κ(T → 0)→ 0, and the other is characterized by κ(T → 0) being fi-
nite. In the latter case κ depends on magnetic field similarly to the magnetoresistance of HF
metals [29,30]. We assume that in two dimensional systems, formed by the kagomè lattice,
spinons form weakly bound states with impurities and that bound states strongly obstruct
the heat transport, κ(T →))→ 0, but this obstacle does not influence the thermodynamic
properties of SCQSL [45].
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N as a function of the normalized temperature TN ∝ T/B.
The values of magnetic field B are displayed in the legend.
The data are extracted from the measurements of the mag-
netic susceptibility χ(T,B) on ZnCu3(OH)6Cl2 [16]. The nor-
malized data of (Cel/T )N = M∗

N are obtained from the spe-
cific heat measurements Cel/T of YbRh2Si2 in the presence of
magnetic field B (the legend) [53]. The solid curve represents
theoretical calculations at B ' 18 T at the fully polarized
quasiparticle band. It demonstrates universal scaling of M∗
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and coincides with the universal scaling of the quantum spin
liquid depicted in Fig. 1. The crossover from the LFL behav-
ior to the NFL one is displayed by the arrow.
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The data shown are extracted from measurements on
ZnCu3(OH)6Cl2 and YbRh2Si2 [16, 53, 54]. Thus, the
quantum spin liquid of Lu3Cu2Sb3O14 can be viewed as
SCQSL that exhibits gapless behavior even in the pres-
ence of a strong magnetic field. From Fig. 1 the data
at B = 0 and TN < 1 indicate that the quantum spin
liquid exhibits the LFL behavior. Thus, we see that the
quantum spin liquid in Lu3Cu2Sb3O14 is located before
the topological FCQPT. Otherwise, the spin liquid, be-
ing on the ordered side of the topological FCQPT, would
have been consumed by phase transition, eliminating the
corresponding finite value of the residual entropy S0 at
S(T → 0) → S0 [1, 6]. In that case one can experimen-
tally observe competition of the different phase transi-
tions at T → 0 that make the corresponding phase di-
agram very complicated, and the only reason of these
complexity and competition of possible phase transitions
is to vanish S0 due to the Nernst law [5, 6]. Therefore, we
conclude that SCQSL without a gap should be close to
the topological FCQPT, and is located on the disordered
side of the topological FCQPT.

In Fig. 5 (a), the solid squares denote the values of
the maxima (Cmag/T )max(B) versus magnetic field B,
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in accordance with Eq. (5). The arrow depicts the position
of (Cmag/T )max at B = 0 when the impurity Schottky contri-
bution is subtracted [23]. (b) The temperature Tmax(B), at
which the maxima of (Cmag/T ) are located, see Fig. 3 (a).
The solid straight line traces the function Tmax ∝ B, see Eq.
(7).
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The values of magnetic field B are displayed in the legend.
The data are extracted from the measurements of the mag-
netic susceptibility χ(T,B) on ZnCu3(OH)6Cl2 [16]. The nor-
malized data of (Cel/T )N = M∗

N are obtained from the spe-
cific heat measurements Cel/T of YbRh2Si2 in the presence of
magnetic field B (the legend) [53]. The solid curve represents
theoretical calculations at B ' 18 T at the fully polarized
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liquid depicted in Fig. 1. The crossover from the LFL behav-
ior to the NFL one is displayed by the arrow.
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quantum spin liquid of Lu3Cu2Sb3O14 can be viewed as
SCQSL that exhibits gapless behavior even in the pres-
ence of a strong magnetic field. From Fig. 1 the data
at B = 0 and TN < 1 indicate that the quantum spin
liquid exhibits the LFL behavior. Thus, we see that the
quantum spin liquid in Lu3Cu2Sb3O14 is located before
the topological FCQPT. Otherwise, the spin liquid, be-
ing on the ordered side of the topological FCQPT, would
have been consumed by phase transition, eliminating the
corresponding finite value of the residual entropy S0 at
S(T → 0) → S0 [1, 6]. In that case one can experimen-
tally observe competition of the different phase transi-
tions at T → 0 that make the corresponding phase di-
agram very complicated, and the only reason of these
complexity and competition of possible phase transitions
is to vanish S0 due to the Nernst law [5, 6]. Therefore, we
conclude that SCQSL without a gap should be close to
the topological FCQPT, and is located on the disordered
side of the topological FCQPT.

In Fig. 5 (a), the solid squares denote the values of
the maxima (Cmag/T )max(B) versus magnetic field B,
taken from the inset of Fig. 1. Clearly the agreement
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of (Cmag/T )max at B = 0 when the impurity Schottky contri-
bution is subtracted [23]. (b) The temperature Tmax(B), at
which the maxima of (Cmag/T ) are located, see Fig. 3 (a).
The solid straight line traces the function Tmax ∝ B, see Eq.
(7).

between the theory (solid curve) and the experiment is
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and from those coming from the pure crystal holding SC-
QSL [45], since both of them form the integral SCQSL
[14]. The solid line in Fig. 5 (b) represents function

Figure 5. The properties of the specific heat. (a) The maximum values of (Cmag/T)max of the specific
heat Cmag/T versus magnetic field B are shown by the solid squares, see the inset, Figure 1. The solid
curve is approximated by M∗max(B) ∝ B−2/3 in accordance with Equation (5). The arrow depicts the
position of (Cmag/T)max at B = 0 when the impurity Schottky contribution is subtracted [23]. (b) The
temperature Tmax(B), at which the maxima of (Cmag/T) are located, see Figure 1. The solid straight
line traces the function Tmax ∝ B, see Equation (7).

There are perspective insulators with QSL that are the Kitaev materials. They can be
thought of as Mott insulators, exhibiting specific exchange interactions leading to uncon-
ventional forms of magnetism induced by QSLs [58]. There are a number of experimentally
studied examples like Na2IrO3, ff-Li2IrO3 and α−RuCl3 where local magnetic moments are
aligned in interacting hexagonal layers, see, e.g., [14,59–61]. Measurements of thermal con-
ductivity κ(B) in magnetic fields B of the insulator α−RuCl3 have shown that κ(B) is finite
at T → 0 when the antiferromagnetic order is suppressed by magnetic field B = Bc ' 7 T,
while κ(B) is an increasing function at B > Bc [60,61]. Such a behavior points to the fact
that QSL of α−RuCl3 is located on the ordered side of the topological FCQPT, and the
application of magnetic field shifts the system to the point of FCQPT, similarly to the case
of YbRh2Si2 [62]. Then, the elevated magnetic field B enhances κ, since κ(B) ∝ (M∗(B))−2

with M∗(B) given by Equation (5) [57]. These observations are in good agreement with the
behavior of κ(B) of SCQSL, allowing us to suggest that QSL of α−RuCl3 represents SCQSL,
resembling the corresponding behavior of HF metals [1,14,30,57].

The universal scaling behavior exhibited by Lu3Cu2Sb3O14 is shown on Figure 6 that
displays T/B scaling of the HF metal CeCu6−xAux and SCQSL of the frustrated insulator
herbertsmithite ZnCu3(OH)6Cl2 [16,63]. This universal scaling demonstrated by the very
different HF compounds, allows to conclude that HF compounds represent a new state
of matter [1,7]. In contrast to ordinary quantum phase transition, the universal scaling
induced by FCQPT occurs up to high temperatures T < Tf , where Tf ∼ 100 K, for both
LFL and NFL behaviors are defined by quasiparticles (with M∗N given by Equation (9)),
rather than by some kind of fluctuations or Kondo lattice [1,6,7]. A few remarks are in order
here. A HF compound can be placed before the topological FCQPT, exactly at FCQPT, and
behind it on its ordered side, see Section 6, Figure 7. One may expect that the T/B scaling
is defined by some phenomena that are not related to both the presence of FCQPT and the
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corresponding divergence of M∗, see, e.g., [1,6,7]. On the other hand, if the HF compound in
question is located before FCQPT, it exhibits the LFL behavior even without the application
of magnetic field B at low T → 0. At elevated magnetic fields, as magnetic field becomes
B � B0, Equation (5) is valid and the scaling restores, see also Section 6, Equation (28).
Thus, to observe both scaling and the divergency of the effective mass in measurements
on HF compounds, measurements should be performed at sufficiently low temperatures
and magnetic fields. For instance, the HF metal CeRu2Si2 shows the NFL behavior down
to lowest temperatures of 170 mK and very low magnetic fields (B ' 0.02 mT) [64]. We
note that interpretations of the measurements carried out in presence of magnetic field can
lead to incorrect theoretical results that CeRu2Si2 demonstrates the LFL behavior at low
temperatures [64]. Thus, we have to conclude that a theory is an important tool that allows
one to understand what is being measured. For example, a conclusion that the scaling
behavior of the thermodynamic properties of a HF compounds without both QCP and
the divergency of the effective mass could be caused by simple misinterpretation of the
obtained experimental data, see Section 6.
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Figure 6. The universal scaling behavior of different strongly correlated Fermi systems versus
B/T. The universal behavior of the HF metal CeCu6−xAux is extracted from data [63], and that of
ZnCu3(OH)6Cl2 is derived from data [16]. At B/T � 1 the systems exhibit the NFL behavior, that is
T2/3χ ∝ const. At B/T � 1 the systems demonstrate the LFL behavior, with χ being a decreasing
function of B/T.
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Figure 7. Schematic temperature T—doping x/xc phase diagrams of HF metals. The number density
x is taken as the control parameter and depicted as x/xc. At x/xc < 1 the dashed arrow shows the
the ordered phase of the topological FCQPT, when the system possesses flat bands. At any finite
temperature T > 0 and at x/xc < 1, the system exhibits the NFL. The shadowed area corresponds to
the case x/xc > 1 and sufficiently low temperatures, where the system is in the LFL phase.
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2.2. Schematic Phase Diagram of Lu3Cu2Sb3O14

Now we are in a position to construct the schematic phase diagram of Lu3Cu2Sb3O14
displayed in Figure 8. As seen from (9) and Figure 1, at T = 0 and B = 0 the system is
located before the topological FCQPT, that is on its disordered side. Therefore, at T < T0
the system exhibits the LFL behavior, ensuring the existence of SCQSL without gap, as
discussed above. Both magnetic field B and temperature T play the role of the control
parameters, shifting the system from its location at B = 0 and T = T0 (close to the
topological FCQPT) and driving it from the NFL to LFL region as shown by the vertical
and horizontal arrows in Figure 8. At a fixed temperature increasing B drives the system
from the NFL to the LFL region.

7

LFL behavior even without the application of magnetic
field B at low T → 0. At elevated magnetic fields, as
magnetic field becomes B � B0, Eq. (5) is valid and the
scaling restores, see also Section VI, Eq. (28). Thus, to
observe both scaling and the divergency of the effective
mass in measurements on HF compounds, measurements
should be performed at sufficiently low temperatures and
magnetic fields. For instance, the HF metal CeRu2Si2
shows the NFL behavior down to lowest temperatures
of 170 mK and very low magnetic fields (B ' 0.02 mT)
[64]. We note that interpretations of the measurements
carried out in presence of magnetic field can lead to
incorrect theoretical results that CeRu2Si2 demonstrates
the LFL behavior at low temperatures [64]. Thus, we
have to conclude that a theory is an important tool that
allows one to understand what is being measured. For
example, a conclusion that the scaling behavior of the
thermodynamic properties of a HF compounds without
both QCP and the divergency of the effective mass could
be caused by simple misinterpretation of the obtained
experimental data, see Section VI.

B. Schematic phase diagram of Lu3Cu2Sb3O14

Now we are in a position to construct the schematic
phase diagram of Lu3Cu2Sb3O14 displayed in Fig. 7. As
seen from (9) and Fig. 1, at T = 0 and B = 0 the system
is located before the topological FCQPT, that is on its
disordered side. Therefore, at T < T0 the system exhibits
the LFL behavior, ensuring the existence of SCQSL with-
out gap, as discussed above. Both magnetic field B and
temperature T play the role of the control parameters,
shifting the system from its location at B = 0 and T = T0

(close to the topological FCQPT) and driving it from the
NFL to LFL region as shown by the vertical and horizon-
tal arrows in Fig. 7. At a fixed temperature increasing B
drives the system from the NFL to the LFL region. This
behavior is seen from Fig. 5 (b): Tmax increases with B
increasing. At T < Tmax the system exhibits the LFL be-
havior [6]. On the contrary, at fixed B and increasing T ,
the system, following the vertical arrow direction, shifts
from the LFL to NFL region. The inset to Fig. 7 dis-
plays the behavior of the normalized effective mass M∗

N
as a function of the normalized temperature TN ∝ T/B,
as seen from Eq. (9).The region TN ∼ 1 represents the
crossover region between the LFL behavior with almost
constant effective mass and the NFL behavior, exhibiting
the T−2/3 dependence, see Eq. (4) and inset in Fig. 7.
We note that in the framework of the Fermion conden-
sation theory it is possible to explain the crossover from
the NFL behavior to the LFL one in the presence of the
small magnetic fields [1, 6, 7, 14, 43], while the applying
the pressure does not alter the NFL behavior, provided
that the system is located on the ordered side of the
topological FCQPT, see e.g. [32]. In that case the resid-
ual entropy S0 is eliminated by some phase transition like
the superconducting one that occurs in the heavy-fermion
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FIG. 7: Schematic T − B phase diagram of Lu3Cu2Sb3O14

with magnetic field as the control parameter. The vertical
and horizontal arrows depict LFL-NFL transitions at fixed B
and T , respectively. The line separating LFL-NFL regions
is shown by the arrow, representing the crossover region at
Tmax(B) and displaying the function Tmax(B). T0 is the tem-
perature at which the LFL behavior occurs. The inset demon-
strates a chart of the normalized effective mass M∗

N as a func-
tion of TN ∝ T/B. Transition region is characterized by the
maximum value M∗

max of M∗ at TN = T/Tmax = 1.

superconductor β−YbAlB4, later representing a strange
metal located away from a magnetic instability, is not ac-
companied by fluctuations [32, 43]. Also, one cannot in-
voke quantum fluctuations to explain the corresponding
properties of the phase diagram 7 and the dependencies
displayed in Fig. 5 (a,b) [23]. Thus, the main features of
the schematic phase diagram 7 show that the thermody-
namic properties of Lu3Cu2Sb3O14 are similar to those of
the HF metal YbRh2Si2 and ZnCu3(OH)6Cl2 [1, 6, 14].
As a result, the quantum spin liquid of Lu3Cu2Sb3O14 is
represented by SCQSL [45].

III. QUASI-ONE DIMENSIONAL QUANTUM
SPIN LIQUIDS

The behavior of quasi-one dimensional quantum spin
liquid (1DQSL) is the subject of ongoing intensive ex-
perimental research in condensed matter physics (see,
e.g. [22, 24, 25] and references therein). Recently,
searching for 1DQSL, the salient experiments were per-
formed on the 1D Heisenberg antiferromagnet insulators
Cu(C4H4N2)(NO3)2 (CuPzN) and YbAlO3 in the pres-
ence of magnetic field and interpreted in terms of SCQSL
and the Tomonaga-Luttinger liquid (TLL) [22, 24, 25].
The observed thermodynamic properties of both CuPzN
and YbAlO3 are atypical and it is expected that they
do not belong to the class of HF compounds, includ-
ing HF metals and quasicrystals insulators with quan-
tum spin liquid and HF metals [6, 7, 12, 22, 28, 65].
In this Section we show that, contrary to conventional

Figure 8. Schematic T− B phase diagram of Lu3Cu2Sb3O14 with magnetic field as the control param-
eter. The vertical and horizontal arrows depict LFL-NFL transitions at fixed B and T, respectively. The
line separating LFL-NFL regions is shown by the arrow, representing the crossover region at Tmax(B)
and displaying the function Tmax(B). T0 is the temperature at which the LFL behavior occurs. The
inset demonstrates a chart of the normalized effective mass M∗N as a function of TN ∝ T/B. Transition
region is characterized by the maximum value M∗max of M∗ at TN = T/Tmax = 1.

This behavior is seen from Figure 5b: Tmax increases with B increasing. At T < Tmax
the system exhibits the LFL behavior [6]. On the contrary, at fixed B and increasing T, the
system, following the vertical arrow direction, shifts from the LFL to NFL region. The
inset to Figure 8 displays the behavior of the normalized effective mass M∗N as a function
of the normalized temperature TN ∝ T/B, as seen from Equation (9).The region TN ∼ 1
represents the crossover region between the LFL behavior with almost constant effective
mass and the NFL behavior, exhibiting the T−2/3 dependence, see Equation (4) and inset
in Figure 8. We note that in the framework of the Fermion condensation theory it is
possible to explain the crossover from the NFL behavior to the LFL one in the presence of
the small magnetic fields [1,6,7,14,43], while the applying the pressure does not alter the
NFL behavior, provided that the system is located on the ordered side of the topological
FCQPT, see, e.g., [32]. In that case the residual entropy S0 is eliminated by some phase
transition like the superconducting one that occurs in the heavy-fermion superconductor
β−YbAlB4, later representing a strange metal located away from a magnetic instability,
is not accompanied by fluctuations [32,43]. Furthermore, one cannot invoke quantum
fluctuations to explain the corresponding properties of the phase diagram Figrue 8 and the
dependencies displayed in Figure 5a,b [23]. Thus, the main features of the schematic phase
diagram Figrue 8 show that the thermodynamic properties of Lu3Cu2Sb3O14 are similar
to those of the HF metal YbRh2Si2 and ZnCu3(OH)6Cl2 [1,6,14]. As a result, the quantum
spin liquid of Lu3Cu2Sb3O14 is represented by SCQSL [45].
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3. Quasi-One Dimensional Quantum Spin Liquids

The behavior of quasi-one dimensional quantum spin liquid (1DQSL) is the subject of
ongoing intensive experimental research in condensed matter physics (see, e.g., [22,24,25]
and references therein). Recently, searching for 1DQSL, the salient experiments were
performed on the 1D Heisenberg antiferromagnet insulators Cu(C4H4N2)(NO3)2 (CuPzN)
and YbAlO3 in the presence of magnetic field and interpreted in terms of SCQSL and the
Tomonaga-Luttinger liquid (TLL) [22,24,25]. The observed thermodynamic properties of
both CuPzN and YbAlO3 are atypical and it is expected that they do not belong to the
class of HF compounds, including HF metals and quasicrystals insulators with quantum
spin liquid and HF metals [6,7,12,22,28,65]. In this Section we show that, contrary to
conventional wisdom, both CuPzN and YbAlO3 can be considered as insulators belonging
to HF compounds, while their thermodynamic properties are defined by weakly interacting
1DQSL formed by spinons, and are similar to those of the HF compounds.

One dimensional (1D) chain of half-odd-integer spins described by the Heisenberg
model can be mapped on the fermionic system [66–69]. One of the hallmark features of
geometrically frustrated insulators is the spin-charge separation; frustrated spin system
is disconnected from the electron system characterized by the charge gap, and forms
approximate flat band, as an electron system does in metals, e.g., formed by Na [1,14].
At T = 0 1DQSL survives up to the saturation field Bs ∼ 2J, with J being the exchange
coupling constant, e.g., between Cu2+ in the 1D chains [25]. At B = Bs the QCP occurs,
creating the gapped field-induced paramagnetic phase [25,67,70]. That is, at B→ Bs both
antiferromagnetic (AFM) sublattices align toward the field direction, and the magnetic field
Bs fully polarizes 1DQSL spins, forming flat bands [22]. Thus, in 1DQSL the topological
FCQPT plays a role of QCP, at which the energy band for spinons becomes almost flat
at B = Bs due to the purely kinematic reasons, and the effective mass M∗ of spinons
diverges [22]. Beyond FCQPT at B > Bs 1DQSL is fully polarized, leading to the vanishing
magnetic susceptibility χ(T → 0). Therefore, CuPzN and YbAlO3 can be considered as
weakly interacting fermions with simplest possible spectrum ε = p2/(2m0), where p is
the momentum and m0 is the bare mass (we use the atomic units h̄ = c = 1). In vicinity
of FCQPT occurring at B = Bs and T = 0, the fermion spectrum becomes almost flat,
since at FCQPT pF → 0. The spinon effective mass diverges, M∗ ∝ m0/pF → ∞, as it
is seen from Figure 9 [22]. In case of weak repulsion between spinons the divergence is
associated with the onset of a topological transition at finite value of pF signaling that
M∗(T) ∝ T−1/2, see Section 6 and Refs. [12,22,71–73]. Following [74], we assume that
the weakly interacting 1DQSL could be thought as QSL formed by fermionic spinons
generating the Fermi sphere (line) with the Fermi finite momentum pF, and carrying spin
1/2 and no charge. This observation is supported by experimental facts collected on quasi-
1D HF metal YbNi4P2 [75]. These facts demonstrate that the spin-charge separation is not
observed, while the thermodynamic properties of YbNi4P2 resemble those of HF metals
including the emergence of the LFL behavior under the application of magnetic field with
the resistance ρ(T) ∝ T2 [75]. Note that recently a new state of matter, quasi-Fermi liquid,
has been introduced [76,77] in context of 1DQSL with the bare interaction of spinons being
weak. In that case the original Tomonaga-Luttinger system can exactly be mapped on a
system of free spinons, whose low-temperature behavior in magnetic fields exhibits the
LFL one [74]. As a result, we shall see that the T − B phase diagram of 1DQSL in both
CuPzN and YbAlO3 resembles that of HF compounds. Thus, CuPzN, YbAlO3 and YbNi4P2
represent a unique possibility to observe a new type of 1DQSL whose thermodynamic
properties resemble that of HF compounds including HF metals.

As 3D AFM ordering is observed in CuPzN and YbAlO3 [24,78] with very weak
coupling J′ between Cu2+ chains, the proper spin Hamiltonian is of the form

B = J ∑
i

Si · Si+1 + J′ ∑
<ij>

Si · Sj − B ∑
i

Siz, (10)
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with J being the interchain exchange coupling constant and J′ << J is the interchain
coupling. The experimental values J ≈ 10.3 K [79] and J′ ≈ 0.046 K [78] allow to conclude
that the criterion of smallness of the ratio is met, J′/J ≈ 0.0045. The Holstein-Primakoff
model of the bozonization of the spin Hamiltonian (10) up to first nonlinear terms shows
that their contribution to magnetization turns to be about 5% of that stemming from
noninteracting boson gas [66,68,80–82].
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Figure 9. Temperature dependence of χ(T) for CuPzN. The experimental data are from [25]. The
magnetic fields are shown in the legend. The three regions LFL, NFL and crossover are shown. The
divergent behavior of χ(T) at B = Bs is indicated by the black arrow.

As a result, both CuPzN and YbAlO3 are indeed represented by weakly interacting
fermions. Therefore, magnetization in terms of fermion number per spin is given by

N/L =
∫ ∞

0
D(ε) f (ε− µ(B))dε. (11)

Here L is the number of spins in 1D chain, D(ε) is the density of states, corresponding
to free fermion spectrum ε = p2/(2m0). The chemical potential µ(B) = Bs − B, and
f (x) = (ex + 1)−1 is the well-known Fermi distribution function [25,68,69,83–85]. The
magnetization can be expressed as M = Ms − N (Ms is the saturation magnetization)

M(B, T) = Ms −
√

2m0T
π

∫ ∞

0

dx

e(x2− Bs−B
T ) + 1

. (12)

Equations (9) and (12) will be used below to calculate the differential magnetic suscep-
tibility χ

χ(T, B) =
∂M(T, B)

∂B
(13)

Dimensionless normalized magnetic susceptibility χN of 1DQSL versus dimension-
less variable (T/|B− Bs|)N for magnetic field below and above the saturation field Bs is
displayed in Figure 10. In the fermion representation of the 1DQSL ground state energy
E(n), it can be viewed as the Landau functional depending on the spinon distribution
function nσ(p), where p is the momentum. Near the topological FCQPT point, the effective
mass M∗ is governed by the Landau Equation (3). In that case the main role of the Landau
interaction F(p1, p2) = δ2E/δn(p1)δn(p2) is to bring the system to the topological FCQPT
point, where M∗ → ∞ at T = 0, and the Fermi surface alters its topology so that the
effective mass acquires the temperature and the magnetic field dependences, while the
proportionality of the specific heat C/T and the magnetic susceptibility χ to M∗ holds:
C/T ∼ χ ∼ M∗(T, B) [6,7,50,51]. This feature can be used to separate solutions of the
Equation (3), corresponding to specific experimental situation, for details see Section 6.
Namely, Namely, experiments on YbAlO3 [24] and on Cu(C4H4N2)(NO3)2 [22,25] show
that near the topological FCQPT at B = Bs the temperature TM at which the maximum
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value of χ occurs vanishes, TM → 0, see Figure 11a,b. In accordance with these observa-
tions, the magnetic susceptibility of CuPzN diverges as χ(T) ∝ T−1/2 at B = 13.55 T [25]
meaning that the divergence of M∗ is responsible for the observed behavior, as seen from
Figure 9. Again, we recognize QCP at B = Bs as the topological FCQPT.

It has been shown that near the FCQPT effective mass can behave as M∗(T) ∝ T−1/2,
see Section 6, while the application of B drives the system to the LFL region with M∗(B) ∝
(Bs − B)−1/2 [7,12]. At finite B and T, near FCQPT, solutions of Equation (3) M∗(T, B)
can be well approximated by a simple universal interpolating function [6,7,12]. The in-
terpolation occurs between the LFL (M∗ ∝ a + bT2) and NFL (M∗ ∝ T−1/2) regimes and
represents the universal scaling of M∗N(TN) independent of the spatial dimension of the
considered system

M∗N =
1 + c2

1 + c1

1 + c1T2
N

1 + c2T5/2
N

, (14)

where c1 and c2 are fitting parameters, M∗N = M/M∗M and TN = T/TM are the normalized
effective mass and temperature respectively. Here, [6,7,12]

M∗M ∝ |Bs − B|−1/2, (15)

TM ∝ |Bs − B|. (16)

( a )( a )

B > B s
B > B s

B > B s

B > B sB < B s

χ N

( T / | B - B s | ) N

( a ) ( b )

Figure 10. The normalized magnetic susceptibility χN vs. the normalized (T/|B− Bs|)N , calculated
from Equations (12) and (13) for B < Bs (panel (a)) and B > Bs (panel (b)). At B > Bs the complete
spin polarization occurs and χ vanish at (T/B)N → 0. Two different curves on panel (a) show
an excellent scaling of χN(T/B)N . As seen from panel (a), the LFL behavior holds for the weakly
interacting quasi-1D quantum spin liquid [22].
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Figure 11. The magnetic field dependence of peak temperature TM(χ). Panel (a) shows the B− TM

dependence of CuPzN, extracted from data [25]. Panel (b) demonstrate the B− TM dependence for
YbAlO3, extracted from experimental data [24]. The calculated straight lines TM = a|Bs − B| given by
Equation (17). The excellent coincidence is seen, showing that Equation (17) holds for both CuPzN
and YbAlO3.



Materials 2022, 15, 3901 14 of 25

We remaind that M∗M is the maximum value of the effective mass M∗ taking place at
TM. It is seen from Equation (16) that the normalized temperature reads

TN ∝ T/|Bs − B| (17)

As a result, we obtain that χ(T, B)/χmax(T, B) = M∗N(TN) becomes a function of the
single variable TN ∝ T/B as it is shown in Figure 4, see, e.g., [1,6,7]. Here χmax(T, B) is the
maximum of χ(T, B) occurring at TM(B). Below Equations (14) and (17) is used along with
Equation (12) to describe the experimental facts collected on CuPzN and YbAlO3.

4. Experiment versus Theory

As seen from Figure 12a,b our calculations of χN for CuPzN and YbAlO3 represented
by solid curves agree quite well with the experimental values from [24,25]. Magnetic sus-
ceptibility at B < Bs exhibits the LFL behavior in magnetic fields at which T/(Bs − B) < 1,
and at rising temperatures, that is T/(Bs − B) > 1, the NFL behavior occurs. In between of
the LFL and NFL behavior, the crossover takes place with the maximum of χN(T/B).

Theory agrees similarly well with the experiment in case B > Bs, as shown in
Figure 13a,b. Now, since he system is fully polarized, χN → 0 at T/(Bs − B) → 0; at
temperature increasing polarization dissolves, leading to increasing χN . Then the χN
reaches its maximum value and the growing is intercepted as soon as the NFL behavior
sets in.

The comparison of the experimental results for the normalized magnetization (Mc/
√

B)N
obtained on β−YbAlB4 and CuPzN show very good agreement between these very different
compounds, as seen from Figure 14. This result is in a good agreement with the theoretical
curve taken from [22,43], as seen from Figure 14 that reports the scaling behavior of the
magnetization Mc/B0.5 = a + (M−Ms)/(Bs − B)0.5 as a function of T/B = T/(Bs − B),
with a being a constant. Indeed, from Figure 14, the LFL behavior occurs at T � B, the
crossover at T ∼ B, and the NFL one at T � B, as in the case of the HF compounds [6,7,43].
As a result, we conclude that HF metals and 1DQSL exhibit the behavior similar to that of
β−YbAlB4. In Section 6, we show that the HF metals β−YbAlB4 exhibits the same universal
behavior that α−YbAl1−xFexB4 and YbCo2Ge4 do.
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Figure 12. The normalized magnetic susceptibility χN extracted from measurements at B < Bs. Panel
(a): χN extracted from measurements on CuPzN [25]. Panel (b): χN extracted from measurements on
YbAlO3 [24]. Our theoretical curve, plotted based on Equations (12) and (14), is represented by the
solid line (shown in Figure 10a) tracing the scaling. It is seen that the dependence χN for YbAlO3 has
three regions: LFL, crossover and NFL.
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Figure 13. The normalized magnetic susceptibility χN extracted from measurements in magnetic
fields B > Bs shown in the legend. Panel (a): χN extracted from measurements on CuPzN [25]. Panel
(b): χN extracted from measurements on YbAlO3 [24]. Our theoretical curves, plotted on the base
of Equations (12) and (14), is taken from Figure 10b, and is reported by the solid line tracing the
scaling behavior.
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Figure 14. The scaling dependence of magnetization normalized to maximal values (Mc/B1/2)N

(Mc = Ms − M, B = Bs − B) on (T/B)N for CuPzN and β−YbAlB4. The experimental data are
taken from [25,31]. The magnetic fields B (in T) are shown in the legends. The typical LFL and NFL
behavior are shown by both the arrows and the straight lines, the crossover is displayed by the arrow.
The theory is represented by the solid green curve [22,43].

5. Phase Diagram of One Dimensional Quantum Spin Liquids

Thermodynamic properties reported in Figures 10, 12 and 13 allow us to construct the
T − B phase diagram of 1DQSL, shown in Figure 15. We see from Figure 10, that the peak
temperature TM vanishes as B approaches Bs. Furthermore, from Figure 9 the effective
mass M∗ of spinons does diverge at B→ Bs, since it takes place at FCQPT. Based on these
observations we construct the T− B phase diagram reported in Figure 15, demonstrating
that the peak dependence TM takes place over the wide range of B, for TM ∝ (Bs− B). Thus,
we conclude that the curves TM(B) are straight lines, representing energy scales typical for
HF metals located at their QCP [1,54,86]. Since FCQPT occurs at B = Bs, the phase diagram
is approximately symmetric with respect to the point B = Bs, and consists of the LFL,
gapped Fermi liquid, crossover and the NFL regions. Some asymmetry comes from the
impediment that the LFL region may be occupied by some ordered phases marked by OP
in Figure 15, as it happens for YbAlO3 [24]. The crossover regions in Figure 15 are depicted
by arrows, and are represented by the straight lines that represent the B-dependencies
of temperatures of approximate LFL and NFL boundaries as well as by that of TM. It is
seen that NFL state occurs at relatively high temperatures. At the same time LFL region
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are located at low temperatures, where the spinon effective mass M∗ is almost constant,
characteristic to the LFL behavior. At B > Bs the 1DQSL transforms into a gapped field-
induced paramagnetic spin liquid, as shown in Figure 15. With temperature increasing and
the fixed magnetic field B, 1DQSL transits through the crossover, and enters the NFL region.
The crossover region shown by oliver circles becomes wider, as 1DQSL moves from the
topological FCQPT displayed by the filled red circle. We conclude that 1DQSL exhibits the
typical behavior of HF compounds [1,54] forming the corresponding T− B phase diagram
displayed in Figure 15.

T M

 L F L g a p p e d  F L

N F L

 
B

T

Q C P
  B s

T M C r o s s o v e r

O P

Figure 15. Schematic magnetic field—temperature phase diagram of 1DQSL. Straight lines on both
sides of Bs, which is a FCQPT point, indicate, respectively, the lines of LFL boundary (the lowest
temperature), the temperatures of maxima (middle line, marked “TM” taken from Figure 11a) and the
end of crossover region: The highest temperature at which the system enters the NFL regime. The left
sector labeled as “LFL” and “OP” (ordered phase) displays the LFL behavior and possible ordered
phase of spin liquid. The right sector labeled as “gapped FL” denotes the gapped field-induced
ferromagnetic spin liquid.

6. Universal Scaling in Heavy Fermion Metals

To address the universal scaling within the context of the topological FCQPT, we begin
with examination of the scaling of the thermodynamic functions of α−YbAl1−xFexB4. The
Landau functional E(n) representing the ground-state energy depends on the quasiparticle
momentum distribution nσ(p). Near the topological FCQPT, the effective mass m∗ is
governed by the Landau equation Equation (3). In this section, in order reserve the capital
letter for magnetization M, we denote the effective mass by m∗. Let us recall that the Landau
functional E(n) and Equation (3) are exact expressions [6,49]. The Landau interaction
F(p1, p2) = δ2E/δn(p1)δn(p2) brings the system to the FCQPT point when m∗ → ∞ at
T = 0. At this point the topology of the Fermi surface is altered, and in contrast to the
LFL theory, near this point the effective mass m∗ acquires strong temperature and field
dependencies. However, the typical LFL theory relations

C/T ∼ χ ∼ m∗, (18)

remain intact. Approaching the FCQPT, m∗(T = 0, B = 0)→ ∞ and Equation (3) becomes
homogeneous, i.e., m∗(T = 0, B) ∝ B−z and m∗(T, B = 0) ∝ T−z, with z depending on
the analytical properties of F [5–7,12]. On the ordered side of FCQPT at T = 0, the single-
particle spectrum ε(p) becomes flat in some interval pi < pF < p f surrounding the Fermi
surface at pF. Thus, under the influence of the topological FCQPT, the two dimensional
(2D) Fermi surface transforms into 3D Fermi volume:

ε(p) = µ, (19)
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where µ is the chemical potential. At FCQPT the flat interval shrinks, since pi → pF → p f ,
and ε(p) possesses an inflection point at pF, with ε(p ' pF)− µ ' (p− pF)

3. This inflection
point can also emerge in the case of a non-analytical Landau interaction F, with [43]

ε(p)− µ ' −(pF − p)2, p < pF (20)

ε(p)− µ ' (p− pF)
2, p > pF.

At the inflection point given by Equation (20) the effective mass diverges as m∗(T →
0) ∝ T−1/2 [1,12,43]. These features of ε(p) can be used to specify the solutions of
Equation (3) according to different experimental situations. In particular, the experimental
results obtained for both fi-YbAlB4 and α−YbAl1−xFexB4 show that near QCP at B ' 0,
the magnetization obeys M(B) ∝ B−1/2 [12,31,35–37,42]. This behavior corresponds to
the spectrum ε(p) given by Equation (20) with (p f − pi)/pF � 1. Near the FCQPT and
at finite B and T, the solutions of Equation (3) determining the T and B dependencies of
m∗(T, B) can be well approximated by the universal interpolating function [1,6,7,12]. The
interpolation used between the LFL regime (m∗ ∝ a + bT2) with

m∗ ∝ B−1/2, (21)

and the NFL is given by Equation (4).
The regimes given by Equations (4) and (15) are separated by the crossover region at

which m∗ reaches its maximum value m∗M at temperature TM, as seen from Figure 4, repre-
senting the universal scaling of the dimensionless normalized effective mass m∗N = m∗/mM
as a function of the dimensionless normalized temperature TN = T/TM. Evidently, the
region TN ∼ 1 represents the crossover region between the LFL behavior with almost
constant effective mass and the NFL behavior, exhibiting the m∗ ∝ T−1/2 dependence, see
Equation (4). As we shall see below, the inflection point Tin f can be used to reveal the
universal scaling behavior. In Figure 4, Tin f shows approximately the beginning point of
the crossover region [6]. Note that both m∗M and TM depend on the microscopic properties
of the system in question [6], while the normalized values exhibit universal scaling given
by the equation:

m∗N(TN) =
m∗(T, B)

m∗M
=

1 + c2

1 + c1

1 + c1T2
N

1 + c2T5/2
N

. (22)

Here c1 and c2 are fitting parameters. Clearly, from Equations (4) and (15), see, e.g., [1,44],

TM ∝ Tin f ∝ B ; TN = TM/T ∝ T/Tin f ∝ T/B. (23)

From Equations (14) and (16) m∗ is seen to exhibit the universal scaling [1,6,44]

m∗(T, B) = c3
1√
B

m∗N(T/B), (24)

where c3 is a constant [6,7,12]. We describe the experimental observations on α−YbAl1−xFexB4
using Equations (14) and (24). Note that the scaling occurs at temperatures T . Tf , with
Tf being the temperature at which the influence of the FCQPT becomes negligible [6,7].
Based on Equation (24), we conclude that magnetization M as described within the theory
of fermion condensation does exhibit the empirical scaling behavior, given by

dM(T, B)
dT

=
∫ dχ(y)

dT
dB1 ∝ − 1√

B

∫ dm∗N(y)
dy

dy
y

, (25)

where y = T/B. Indeed, as seen from Equation (25),
√

BdM/dT is a function of the only
variable y.

To confirm the validity of Equation (25) and to demonstrate the universal scaling, we show
in Figure 16 our calculated dimensionless normalized magnetization (B1/2dM(T, B)/dT)N
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versus the dimensionless normalized ratio (T/B)N . The normalization is obtained by
dividing B1/2dM(T, B)/dT and T/B by their maximum values (B1/2dM(T, B)/dT)M and
(T/B)M respectively. We recall that it is the normalization that reveals the universal
behavior of HF compounds, since it allows one to get rid of microscopic properties of HF
compounds, thereby elucidating their universal properties [1,6].

Evidently, as it is seen from Figure 16, the calculated scaling function of the ratio
(T/B)N , taken from [43], tracks the data of the normalized quantity (B1/2dM(T, B)/dT)N
well. It also follows from Equation (25) that the calculated function (B1/2dM(T, B)/dT)N
exhibits the scaling as a function of (B/T)N . The NFL, crossover and LFL behavior are
indicated in Figure 16a–c by arrows. The theory is represented by the solid curve [43],
describing very well the scaling of (B1/2dM(T, B)/dT)N for the HF metals β−YbAlB4,
α−YbAl1−xFexB4 and YbCo2Ge4. It is evident from Figure 16 that our calculations, not
involving fitting parameters and ad hoc functions, are in good agreement with the experi-
mental data [32–34,37,38].
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Figure 16. Scaling of dimensionless normalized magnetization (B1/2dM(T, B)/dT)N as a function of
the dimensionless normalized (T/B)N at magnetic field values B given in the legends (a,b). Regions
of LFL behavior, crossover, and NFL behavior are indicated by arrows. The theory is represented by
the solid curve [14,43]. Data are extracted from [32–34]. Panel (a): Scaling of β−YbAlB4 [43]. Panel
(b): Scaling of α−YbAl1−xFexB4. Panel (c): Scaling of YbCo2Ge4, measured at different field values
B = 0.05, 0.1, 0.2, 0.3, 0.5 T [33].

7. Schematic Temperature—Doping Phase Diagram

To construct the schematic phase diagram of α−YbAl1−xFexB4, we define the location
of α−YbAl1−xFexB4 with respect to the topological FCQPT. The locations of the HF metals
β−YbAlB4 and YbCo2Ge4 are defined: β−YbAlB4 is located beyond FCQPT, and YbCo2Ge4
before FCQPT [43,44]. When applying magnetic field B and at sufficiently low temperatures,
α−YbAl1−xFexB4 is driven to the LFL state having with the resistivity [34]

ρ(T) = ρ0 + A(B)T2. (26)

Measurements of the coefficient A(B) provides information on the location of the corre-
sponding HF metal with respect to the topological FCQPT. Being proportional to the quasiparticle-
quasiparticle scattering cross section, A(B) obeys the relation A ∝ (m∗(B))2 [6,62,87], provided



Materials 2022, 15, 3901 19 of 25

that system is located at the point of FCQPT. According to Equation (15) with Bs = 0, this
implies that

A(B) ∝
1
B

. (27)

If the system is located before FCQPT, then at low temperatures and as B → 0, the
coefficient A(B) acquires the LFL behavior and can be approximated by the interpolating
function, see, e.g., [6,44]

A(B) =
a1√

B2 + a2
, (28)

where a1 and a2 are fitting parameters. From Equation (28), as B → 0 the coefficient
A→ const, similarly to the case of LFL behavior; at elevated magnetic field B one observes
the behavior given by Equation (27). Figure 17 presents the fit of A(B) to the data extracted
from the experimental data [34].
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 cm
/K2 )

B  ( T )
Figure 17. Experimental data for the coefficient A(B), plotted as a function of magnetic field B (solid
squares). Measured values of A(B) are extracted from the experimental data [34]. The solid curve is
given by Equation (28).

It is seen from Figure 17, that the theoretical dependence (28) agrees very well with
the experimental data leading to a conclusion that the physics underlying the field-induced
re-entrance into the LFL behavior under the application of magnetic field B is the same as
for the HF metals and is defined by Equations (22) and (27). It is important to note here that
deviations of the theoretical curve at low values of B from that given by Equation (27) are
due to the fact that ff-YbAl1−xFexB4 is located before the topological FCQPT, and since now
the system exhibits the LFL behavior, m∗ does not diverge. To confirm this conclusion, we
analyze the behavior of the resistivity ρa(T) at low temperatures, as shown in Figure 18a,b.
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Figure 18. Experimental data for the resistivity ρa(T): in panel (a) resistivity is plotted as a function
of T, solid circles and in panel (b) resistivity is plotted as a function of T2, solid squares. The data are
taken from [34]. The solid lines are fits to the experimental data.
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From Figure 18a it is clearly seen that for 1 < T < 5 K the resistivity demonstrates
the typical NFL behavior characterized by the linear dependence ρa(T) ∝ T. At low
temperatures T → 0 this behavior is violated. Figure 18b shows that as T → 0 the
violation is defined by the LFL behavior, since the T-dependence of the resistivity is given
by Equation (26). This observed agreement is consistent with that derived above from
Figure 17.

We now turn to Figure 19 that displays the magnetization M(T) as a function of T for
different values of the magnetic field B. In Figure 5, the inset displays the inflection point
Tin f versus magnetic field B, and shows that at B = 0 the inflection point has a finite value
Tin f ' 3 mK.
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Figure 19. Magnetization M(T) versus T for B values shown in the legend. The data are taken
from [34]. M(T) is displayed versus temperature on a logarithmic scale. The approximate location of
the inflection point at temperature Tin f (B) (versus magnetic field B) is indicated by the arrow. At
T = Tin f (B) the HF metal α−YbAl1−xFexB4 enters the crossover region, separating the NFL behavior
from the LFL one, see Figure 7. The inset displays Tin f versus magnetic field B.

From Equation (18) it follows that at the crossover region, starting at Tin f , magneti-
zation behaves as M/B ∝ χ ∝ m∗(T/B), as seen from Figure 4. Since from Equation (23),
Tin f ∝ B, the finite value of Tin f as B → 0 signals that the system is located before the
topological FCQPT, exhibiting the LFL behavior at B = 0 and T → 0. This observation is
consistent with the LFL behavior of both A(B→ 0) shown in Figure 17 and the resistivity
shown in Figure 18b.

Based on the results of the above analysis, we can construct the schematic T− x/xc
phase diagram of α−YbAl1−xFexB4 with xc = 0.014 depicted in Figure 7, with the doping
x/xc as a control parameter. At T → 0, B = 0 and x/xc > 1 the system exhibits the LFL
behavior, and, therefore, is located before the topological FCQPT, that is on its disordered
side, as it is shown by the blue arrow. Thus, at T → 0 the system exhibits the LFL behavior,
and we expect that the scaling of α−YbAl1−xFexB4 (with xc = 0.042 and xc = 0.014) to
be violated at low temperatures. At increasing temperatures T and fixed magnetic field
B the system enters the crossover region and continues into the NFL one, displaying
the restoration of the scaling behavior. We suggest that a fine tuning of x can place
α−YbAl1−xFexB4 at FCQPT with the T/B scaling down to lowest temperatures, while
the doping x = 0.042 drives the system from FCQPT, and the system still exhibits the
LFL behavior at relatively high temperatures [34]. Now we employ the phase diagram
Figure 8 to demonstrate the similarity between frustrated insulators and HF metals. As
seen from Figure 8, both the magnetic field B and the temperature T play the role of the
control parameters, shifting the system from its location close to the topological FCQPT
and driving it from the NFL to LFL regions as shown by the vertical and horizontal
arrows. At fixed temperatures T > T0 increasing B drives the system from the NFL to
the LFL region. On the contrary, at fixed B and growing temperatures T, the system
goes along the vertical arrow from the LFL to the NFL region. The same behavior is
exhibited by the HF metal YbCo2Ge4 that does not demonstrate scaling down to lowest
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temperatures, since at x/xc it is located before the quantum critical point associated with
the topological FCQPT, see Figure 7. For the same reason the effective mass does not
diverge at the lowest temperatures [44]. It is worth noting that within the framework of
the theory of fermion condensation it is possible to explain the crossover from the NFL
behavior to LFL when the small magnetic field is applied [1,6,43]. However, application
of pressure does not change the NFL behavior, see, e.g., [32]. Such a behavior observed
in the heavy-fermion superconductor β−YbAlB4, a strange metal located away from a
magnetic instability, is not accompanied by fluctuations [32]. Therefore, at B = 0, β−YbAlB4
acquires a flat band, implying the presence of a fermion condensate in a strongly degenerate
state of matter that becomes susceptible to transition into a superconducting state [43].
Accordingly, the HF metal β−YbAlB4 is located behind FCQPT. Thus, the general features of
the schematic phase diagram Figure 8 demonstrate that at elevated T/B the thermodynamic
properties of α−YbAl1−xFexB4 become close to those of the HF metals YbCo2Ge4 [44] and
β−YbAlB4 [43], as it is seen from Figure 16. Note that at the doping x = 0.014 and relatively
high temperatures [34] and elevated magnetic field B the system enters the LFL region
from the transition region, and the behavior ρ(T) ∝ T2 emerges, see, e.g., [6,7]. To carefully
locate the position of the HF metal α−YbAl1−xFexB4 with respect to the topological FCQPT
one needs to carry out measurements of the resistivity at low temperatures at which the
system is placed at the LFL region, as shown by the blue arrow in Figure 7. We suggest that
this procedure can allow to tune the HF metal α−YbAl1−xFexB4 to the topological FCQPT
point by doping x.

8. Summary

We have demonstrated that the quantum spin liquid of Lu3Cu2Sb3O14 and quasi-
one dimensional quantum spin liquid of both YbAlO3 and Cu(C4H4N2)(NO3)2 can be
considered as strongly correlated Fermi systems whose thermodynamic properties are
defined by SCQSL located near FCQPT. Our calculations of thermodynamic properties
and the constructed phase diagrams are in a good agreement with the experimental data.
Thus, the quantum spin liquid and 1DQSL are well represented by SCQSL and well
described within the theory of fermion condensation [1,6,7,14,45]. We remark that the
observed universal scaling can hardly be explained within theories based on some kinds
of fluctuations.

We have also analyzed the thermodynamic and transport properties of the heavy-
fermion metal α−YbAl1−xFexB4 and explained its enigmatic scaling behavior within a
topological description based on the topological FCQPT. The similarity between the three
different HF metals α−YbAl1−xFexB4, YbCo2Ge4 and β−YbAlB4 has been explained, and
have shown that their T/B scaling can be described by the same universal function. We
predict that a fine tuning of x around xc = 0.014 can place α−YbAl1−xFexB4 at FCQPT
with the T/B scaling down to lowest temperatures, namely T0 → 0, with the effective mass
exhibiting divergent behavior m∗(T) ∝ T−1/2 down to lowest temperatures. We have also
demonstrated that the fermion condensation theory provides good description of the scaling
for various HF compounds. Our results are in a good agreement with experimental obser-
vations and allow us to conclude that both the HF metals α−YbAl1−xFexB4, β−YbAlB4 and
YbCo2Ge4 and the frustrated insulators Lu3Cu2Sb3O14, Cu(C4H4N2)(NO3)2 and YbAlO3
with SCQSL form the new state of matter [1].
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