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Abstract: Cisplatin (CDDP) is one of the most commonly used chemotherapy drugs for the treat-

ment of various cancers. Although platinum-based therapies are highly efficacious against rapidly 

proliferating malignant tumors, the development of CDDP resistance results in significant relapse 

as well as decreased overall survival rates, which is a significant obstacle in CDDP-based cancer 

therapy. Long non-coding RNAs (lncRNAs) are involved in cancer development and progression 

by the regulation of processes related to chromatin remodeling, transcription, and posttranscriptional 

processing. Emerging evidence has recently highlighted the roles of lncRNAs in the development 

of CDDP resistance. In this review, we discuss the roles and mechanisms of lncRNAs in CDDP 

chemoresistance, including changes in cellular uptake or efflux of a drug, intracellular detoxification, 

DNA repair, apoptosis, autophagy, cell stemness, and the related signaling pathways, aiming to 

provide potential lncRNA-targeted strategies for overcoming drug resistance in cancer therapy.
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Introduction
Cancer significantly affects the quality of life and is a leading cause of death worldwide. 

It has been reported that about 14.1 million new cancer cases and 8.2 million deaths 

occurred in 2012 worldwide.1 In 2018, 1,735,350 new cancer cases and 609,640 cancer 

deaths are projected to occur in the USA.2 Increasing national investment in cancer 

research contributes to accelerating progress in the prevention and treatment of 

cancer. Currently, the gold standard for antitumor therapeutic strategies is a combina-

tion of chemotherapy and surgery. However, chemotherapeutic anticancer agents are 

the standard treatment regimen for patients in whom surgery is not a viable option.3 

Cisplatin is one of the most widely used and successful cytotoxic drugs for the treat-

ment of a broad variety of tumors such as ovarian, testicular, bladder, lung, esophageal, 

and nasopharyngeal carcinoma (NPC). Since the discovery of the antitumor activity 

of cisplatin, novel platinum-based agents (carboplatin and oxaliplatin) have been 

developed with reduced side effects and increased efficacy.4 However, as a prototype 

of platinum-based agent, cisplatin remains widely used as a chemotherapeutic agent. 

When cisplatin is used in platinum-based chemotherapy, nearly 85% of patients with 

metastatic testicular cancer can be cured5 and the 5-year survival rate in patients with 

completely resected non-small-cell lung cancer (NSCLC) tumors is improved.6

Nevertheless, there exist many patients intrinsically resistant to cisplatin-based 

therapies, especially with colorectal, lung, and prostate cancers. What is more, originally 

sensitive tumors eventually develop chemoresistance, which is frequently observed in 

ovarian cancer.7 Chemoresistance allows the cancer cells to become increasingly antago-

nistic and improves the ability of cancer invasion and migration, leading to tumor relapse 
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and poor prognosis.8,9 Emerging studies have revealed that 

dysregulated expression of long non-coding RNAs (lncRNAs) 

plays an essential role in cisplatin resistance.10 The lncRNAs, 

which are .200 nucleotides (nt) in length and which lack a 

significant open reading frame, may play major roles in a wide 

variety of biological pathways and cellular processes at the 

epigenetic, transcriptional, and posttranscriptional levels.10,11 

Here, we briefly review the functions and mechanisms of 

lncRNAs in the regulation of drug resistance in cancer cells, 

mainly focusing on cisplatin chemoresistance.

Cisplatin
As an alkylating agent, cisplatin was first described by Michele 

Peyrone in 1845, and its antitumor activity was discovered in 

the 1970s.12,13 Since its approval by the US Food and Drug 

Administration for the treatment of testicular and ovarian can-

cer in 1987,12,14 cisplatin has gradually become a first-line che-

motherapeutic agent. The platinum atom of cisplatin interacts 

with nucleophilic N7-sites of purine in DNA to form inter- and 

intra-strand DNA crosslinks,8,14 which results in DNA damage, 

cell cycle arrest, and activation of multiple signal transduction 

pathways, leading to cell apoptosis.8,15 Moreover, cisplatin-

induced production of reactive oxygen species and activation 

of inflammatory pathways may also contribute to the induction 

of apoptosis.16 The introduction of cisplatin for the treatment of 

testicular cancer has improved its cure rate from 10% to 85%.17 

Unfortunately, the development of cisplatin resistance limits 

its efficacy in cancer treatment. Studies over the years have 

revealed multiple potential mechanisms related to cisplatin 

resistance (Figure 1). Cisplatin resistance may occur through 

reduced intracellular platinum accumulation due to decreased 

drug uptake or increased drug export in cancer cells. Down-

regulation of copper transporter 1 (CTR1) has been associated 

with resistance to cisplatin by reducing cisplatin uptake.18 On 

the other hand, the efflux of cisplatin is mediated by transport-

ing P-type adenosine triphosphatases (ATP) 7A and ATP7B, 

or multidrug-resistance-associated proteins (MRPs) in the cell 

membrane, and an upregulation of these efflux transporters is 

one of the major mechanisms of cisplatin resistance.19 Cispla-

tin scavenging by intracellular detoxification is another major 

mechanism of cisplatin resistance, in which glutathione (GSH) 

plays a key role in the overexpression of enzymes involved in 

GSH synthesis and GSH conjugation has been reported to be 

associated with cisplatin resistance.20 In addition, activation 

of the DNA damage systems, such as the nucleotide excision 

repair system, can attenuate the apoptotic process, leading 

Figure 1 Molecular mechanisms of cisplatin resistance.
Notes: Multiple cellular alterations in cancer cells, including cell cycle, apoptosis, autophagy, stemness, intracellular detoxification, and drug influx/efflux, contribute to cisplatin 
chemoresistance through genetic and/or epigenetic regulation of multiple signaling pathways. Some major genetic and epigenetic factors are illustrated in the figure (see text 
for detailed discussion).
Abbreviations: ALDH1, aldehyde dehydrogenase 1 family member A1; ATG7, autophagy associated gene; BRCA2, breast cancer susceptibility proteins 2; CTR1, copper 
transporter 1; ERCC1, excision repair cross-complementing rodent repair deficiency, complementation group 1; GSH, glutathione; GST, glutathione S-transferase; 
HR, homologous recombination; MMR, mismatch repair; MRP, multidrug-resistant-associated protein; NeR, nucleotide excision repair; γ-GCS, γ-glutamylcysteine synthetase.
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to cisplatin resistance. Increased expression of nucleotide 

excision repair proteins, including XPF–ERCC1 complex, 

is associated with reduced efficacy of platinum-based thera-

py.21 Since the mismatch repair (MMR) system can detect 

cisplatin-induced DNA lesion and activate the apoptotic 

signal, downregulation or a mutation of MMR-related genes 

such as MLH1 and MSH2 has been reported to contribute to 

cisplatin resistance.22 Homologous recombination is another 

mechanism to repair cisplatin-induced DNA damage, and 

hence, a deficiency of breast cancer susceptibility proteins 1 

and 2 (BRCA1/2), two critical components in the homologous 

recombination system, promotes cell sensitivity to cisplatin in 

cancer cells.23 The expression of tumor suppressor protein p53 

and p53-related nuclear transcription factors in cancer cells 

has been shown to mediate the cytotoxic effect of cisplatin.24,25 

As the cytotoxic effect of cisplatin is associated with apoptotic 

signaling pathways, the expression levels of Bcl-2 proteins, 

caspases, and mitochondrial intermembrane proteins are 

crucial factors in influencing cell sensitivity to cisplatin.26–28 

Furthermore, accumulating evidence suggests that the altera-

tion in cell autophagy and PI3K/AKT1 signaling pathway can 

modulate cell sensitivity to cisplatin through compensating for 

cisplatin-induced lethal signals.29,30

lncRNA
With the rapid development of sequencing technologies, it 

has been determined that ,2% of the human genome encodes 

proteins, while the remaining transcriptional products 

are ncRNAs, which are considered as non-functional and 

transcriptional noise.31 The ncRNAs can be classified into 

two major groups based on their sizes: small ncRNAs for 

those with a length ,200 nt and lncRNAs for those with a 

length .200 nt, which includes intronic lncRNAs, intergenic 

lncRNAs, bidirectional lncRNAs, enhancer lncRNAs, and 

sense or antisense lncRNAs.32 The lncRNAs can modulate 

gene expression at epigenetic, transcriptional, and posttran-

scriptional levels.10,33 In recent years, various studies have 

suggested that lncRNAs are involved in embryonic develop-

ment and in the etiology of many human diseases, especially 

cancer.34 Using advanced sequencing technology, numerous 

lncRNAs have been found to be dysregulated or aberrantly 

expressed in multiple types of cancers. The lncRNAs have 

been reported to act as critical factors in cancer development 

and progression by regulating cell proliferation, cell death, 

metastasis, and angiogenesis.35 As lncRNAs play an impor-

tant role in tumor cell survival and death, it is conceivable 

that lncRNAs may also alter cell sensitivity to chemotherapy, 

which is aimed at eradicating tumor cells by inhibiting cell 

growth and promoting cell apoptosis. It has been reported that 

lncRNA H19 contributes to doxorubicin resistance through 

regulating MDR1 expression.36 Du et al have reported that 

lncRNA-XIST promoted temozolomide resistance in glioma 

cells through DNA MMR pathway.37 Moreover, lncRNA 

UCA1 has been shown to promote 5-fluorouracil resistance 

in colorectal cancer cells by inhibiting miR-204-5p.38 In sum, 

growing evidence has indicated that dysregulated expres-

sion of lncRNAs in cancer cells plays an important role in 

the development of chemoresistance through altering the 

mechanisms of drug export, drug metabolism, DNA repair, 

cell proliferation, apoptosis, and autophagy.3,11

lncRNA and cisplatin resistance
As stated above, numerous studies over the years have dem-

onstrated that lncRNAs play a significant role in chemore-

sistance.11 Aiming to understand the roles and mechanisms 

of lncRNAs in cisplatin resistance, we searched PubMed for 

all articles associated with “lncRNA and cisplatin resistance” 

and found that 22 lncRNAs have been reported to play an 

important role in cisplatin resistance through various mecha-

nisms in multiple cancers (Table 1; Figure 2).

Influx/efflux of cisplatin
Previous studies have indicated that reduced drug uptake 

or increased drug efflux in cancer cells, which results in a 

reduced intracellular platinum accumulation, is an impor-

tant biochemical and cytological mechanism of cisplatin 

resistance.8 ATP-binding cassette transporters, including 

P-glycoprotein and MRPs, can increase the drug efflux. 

Hang et al39 have reported that Notch 1 could promote 

cisplatin resistance in gastric cancer (GC) through upregu-

lation of lncRNA AK022798 expression. When lncRNA 

AK022798 was knocked down, the expression of MRP1 and 

P-glycoprotein MDR1, two membrane drug efflux-porters, 

was significantly decreased, while cell apoptosis, caspase-3, 

and caspase-8 activities were significantly increased in 

SGC7901 and BGC823 cisplatin-resistant cancer cells. These 

results indicated that lncRNA AK022798 is a crucial media-

tor in Notch 1-induced cisplatin resistance in cancer cells.39 

In GC tissues and cells, high expression of lncRNA PVT1 

was significantly associated with the development of cispla-

tin resistance.40 PVT1 silencing could reverse the cisplatin 

resistance in cisplatin-resistant cell lines, while upregula-

tion of PVT1 decreased the sensitivity of parental GC cells 

to cisplatin, which was mediated through upregulation of 

MDR1, MRP, mTOR, and HIF-1a expression.40 The lncRNA 

ANRIL has also been reported to be highly expressed in 
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cisplatin-resistant and 5-fluorouracil-resistant GC tissues and 

cells.41 Further studies have revealed that ANRIL knockdown 

might inhibit cell proliferation and invasion, promote anti-

cancer agent-induced apoptosis, and reverse drug resistance 

in cisplatin- and 5-fluorouracil-resistant GC cell lines by 

downregulating MDR-related gene expression, including 

MDR1 and MRP1.41 CTR1, a copper influx transporter, plays 

a vital role in platinum drug uptake and the development of 

cisplatin resistance.42 In lung cancer cells, lncRNA nuclear-

enriched abundant transcript 1 (NEAT1) might enhance 

cisplatin sensitivity by upregulating (-)-epigallocatechin-3-

gallate (EGCG)-induced CTR1 expression.43 Furthermore, 

NEAT1 might act as a competing endogenous RNA (ceRNA) 

of hsa-mir-98-5p to regulate CTR1 expression.43

Intracellular detoxification
GSH is a kind of metallothionein, which shows a much higher 

affinity to cisplatin than DNA.44 Increased GSH synthesis 

was associated with cisplatin resistance, and GSH depletion 

increased sensitivity to cisplatin.45 As such, overexpression 

of enzymes involved in GSH synthesis and metabolism par-

ticipates in the process of cisplatin resistance. The lncRNA 

H19 was overexpressed in ovarian cancer tissues and cor-

related with cancer recurrence, whereas H19 knockdown 

in A2780-DR cells increased their sensitivity to cisplatin 

treatment with a lower GSH level. H19 contributed to cis-

platin resistance by regulating NRF2 and its target proteins 

including NQO1, GSR, G6PD, GCLC, GCLM, and GSTP1, 

which are involved in the GSH metabolism pathway.46

Table 1 Predictive lncRNAs involved in response to cisplatin

lncRNAs Role in 
response

Targets Mechanisms Cancers Ref

AC023115.3 S miR-26a/GSK3β ceRNA Glioblastoma 76
AK022798 R MRP1, P-gp N/A Gastric cancer 39
AK126698 R Wnt/β-catenin N/A NSCLC 69
ANRiL R MDR1, MRP1 N/A Gastric cancer 41
ANRiL R let-7a N/A Nasopharyngeal 

carcinoma
50

CASC2 S miR-21/PTEN ceRNA Cervical cancer 80
eNST00000457645 S Bax, caspase-3 N/A Ovarian cancer 59
GAS5 S miR-21/PI3K/Akt ceRNA Cervical cancer 83
GAS5 S miR-21/PTEN ceRNA NSCLC 81
HOTAiR R NF-κB By decreasing iκ-Bα Ovarian cancer 48
HOTAiR R p21Waf1/Cip1 N/A Lung adenocarcinoma 49
HOTAiR R Beclin-1, MDR, and P-gp N/A endometrial cancer 74
HOTAiR R Klf4 N/A NSCLC 78
HOTTiP R Wnt/β-catenin N/A Osteosarcoma 71
H19 R NRF2 N/A Ovarian cancer 46
H19 R FAS, BAK, BAX N/A Lung adenocarcinoma 58
LiNC00161 S miR-645/IFIT2 ceRNA Osteosarcoma 79
MeG3 S p53, β-catenin, survivin, Bcl-xl N/A Lung cancer 53, 54
MeG3 S miR-214 N/A Ovarian cancer 63
MeG3 S miR-21-5p/SOX7 ceRNA NSCLC 82
NeAT1 S CTR1 ceRNA Lung cancer 43
PDAM S p53, BCL2L1 N/A Glioma 51
PvT1 R MDR1, MRP, mTOR, HiF-1a N/A Gastric cancer 40
PvT1 R TGF-β1, p-Smad4, caspase-3 N/A Ovarian cancer 60
ROR R p53 N/A Nasopharyngeal 

carcinoma
52

SFTA1P S hnRNP-U-/ADD45A N/A LSCC 64
TRPM2-AS R p53-p66shc N/A NSCLC 56
UCA1 R miR-196a Affecting transcription 

by activating CReB
Bladder cancer 61

UCA1 R Caspase-3, CDK2, surviving, p21 N/A Cervical cancer 62
UCA1 R Wnt/β-catenin N/A Bladder cancer 70
XiST R miR-17/ATG7 ceRNA NSCLC 75

Abbreviations: ABCB1, ATP-binding cassette subfamily B member 1; ABCC1, ATP-binding cassette subfamily C member 1; ABCG2, ATP-binding cassette subfamily G 
member 2; ceRNA, competing endogenous RNA; CReB, cAMP response element-binding protein; CTR1, copper transporter 1; lncRNAs, long non-coding RNAs; LSCC, 
lung squamous cell carcinoma; MDR1, multidrug-resistant protein; MRP1, multidrug-resistant-associated protein 1; N/A, not available; NEAT1, nuclear-enriched abundant 
transcript 1; NSCLC, non-small-cell lung cancer; P-gp, P-glycoprotein; R, resistance; Ref, reference; S, sensitivity.
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DNA repair and cell cycle
Nuclear factor-κB (NF-κB) signaling-mediated activation of 

DNA damage response plays a role in the development of cell 

resistance to cisplatin.47 The lncRNA HOTAIR overexpres-

sion induced cisplatin resistance in ovarian cancer cells and 

resulted in sustained activation of DNA damage response 

after cisplatin treatment through NF-κB activation due to 

Iκ-Bα (NF-κB inhibitor) downregulation. Collectively, these 

data suggests that HOTAIR contributes to chemoresistance 

through DNA damage-induced NF-κB signaling pathways.48 

HOTAIR has also been reported to promote cisplatin resis-

tance by regulating p21WAF1 (p21), a cyclin-dependent kinase 

inhibitor which inhibits cell proliferation by inducing G0/G1 

arrest, in lung adenocarcinoma (LAD) cells.49 In nasopharyn-

geal carcinoma (NPC) cells, knockdown of lncRNA ANRIL 

inhibited cell proliferation, while it induced cell apoptosis 

and potentiated cisplatin-induced DNA damage by regulating 

microRNA let-7a expression.50

Apoptosis
As cisplatin-induced DNA damage causes cell apoptosis, 

inhibition of apoptosis may also be involved in the acquired 

cisplatin resistance. p53, a tumor suppressor gene, plays a 

critical role in the apoptosis pathway. Several studies have 

shown that lncRNAs were associated with the cisplatin 

chemoresistance by downregulating p53-induced cell apop-

tosis. The lncRNA p53-dependent apoptosis modulator 

(PDAM) silencing induced cisplatin resistance in glioma cells 

by harboring wild-type p53, while BCL2L1 knockdown in 

PDAM-suppressed cells abrogated the cisplatin-resistant phe-

notype.51 These data indicate that PDAM regulated cisplatin 

resistance by regulation of p53-dependent antiapoptotic genes 

(OTs).51 The long non-coding RNA regulator of reprogram-

ming (lncRNA-ROR), which played a crucial role in cell 

proliferation, migration, and apoptosis of NPC, promoted 

cisplatin resistance in NPC by improving cell proliferation and 

reducing cell apoptosis mediated by p53 signaling pathways.52 

In A549 cisplatin-resistant cells, lncRNA MEG3 expression 

was significantly downregulated and overexpression of MEG3 

restored cell sensitivity to cisplatin by suppressing cell prolif-

eration and inducing apoptosis and cell cycle arrest.53,54 Further 

studies elucidated that MEG3-mediated chemosensitivity was 

associated with the WNT/β-catenin signaling pathway by 

regulation of p53, as well as with the mitochondrial apoptosis 

pathway.55 In addition, Ma et al have revealed that downregu-

lation of lncRNA TRPM2-AS inhibited cisplatin resistance, 

induced cell apoptosis, and altered cell cycle distribution in 

NSCLC through activating the p53-p66shc pathway.56

The Bcl-2 family is a key member in mitochondrial 

apoptosis pathway, which consists of the antiapoptotic family 

Figure 2 Role of lncRNAs in cisplatin resistance.
Notes: lncRNAs that regulate drug efflux, drug uptake, apoptosis, DDR, cell cycle arrest, and autophagy of cancer cells are implicated in cisplatin resistance. Gray arrows 
indicate inhibition and black arrows indicate activation.
Abbreviations: DDR, DNA damage response; lncRNAs, long non-coding RNAs; MDR1, multidrug-resistant protein; MRP1, multidrug-resistant-associated protein 1.
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(such as BCL-2 and BCL-XL), the proapoptotic family (BAX 

and BAK), and the proapoptotic BH3-only protein family 

(such as BAD, BIK).57 The lncRNA H19 contributed to 

cisplatin resistance in LAD by promoting cell migration via 

vimentin and reducing apoptosis via FAS, BAK, and BAX. 

The clinical study has shown that in patients with LAD, a 

high tumor H19 expression was negatively correlated with 

cisplatin-based chemotherapy response and a significantly 

shorter median progression-free survival, which were con-

sistent with the data in in vitro experiment.58 The lncRNA 

ENST00000457645 could remarkably reverse cisplatin 

resistance by promoting apoptosis of cisplatin-resistant CP70 

cells, which was associated with altered levels of apoptosis 

proteins such as Bax and cleaved caspase-3.59

The lncRNA PVT1 was upregulated in ovarian cancer 

tissues from cisplatin-resistant patients and in cisplatin-

resistant cells. PVT1 overexpression promoted cisplatin 

resistance through regulating the expression of TGF-β1, 

p-Smad4, and caspase-3, molecules related to the apoptotic 

pathways.60 The upregulation of UCA1 lncRNA contributed 

to cisplatin resistance by promoting cancer cell proliferation 

while inhibiting apoptosis in bladder cancer and cervical 

cancer cells.61,62 In human bladder cancer cells, UCA1-

mediated chemosensitivity was associated with the apoptosis 

pathway by upregulating miR-196a-5p targeting p27Kip1.61 

In cervical cancer cells, UCA1 suppressed cell apoptosis by 

downregulating caspase-3 and upregulating CDK2, whereas 

cell proliferation was enhanced through inducing survivin 

and decreasing p21 expression.62 In ovarian cancer cells, 

curcumin-induced MEG3 lncRNA expression due to dem-

ethylation was directly associated with a decrease in miR-214 

and extracellular vesicle-mediated transfer of miR-214, 

resulting in an elevation of cisplatin-induced cell apoptosis 

and cell sensitivity to cisplatin-based chemotherapy.63 The 

lncRNA SFTA1P increased cisplatin chemosensitivity by 

enhancing cisplatin-induced apoptosis by increasing the 

expression of hnRNP-U and GADD45A in lung squamous 

cell carcinoma.64

It has also been reported that lncRNAs CUDR, HOTAIR, 

and HULC modulated cisplatin resistance through alteration 

of cell apoptosis, but their exact molecular mechanisms 

remain to be elucidated.65–67 Wang et al65 have reported that 

lncRNA CUDR (UCA1a) played a pivotal role in blad-

der cancer progression, and promoted cell proliferation, 

migration, and invasion in UM-UC-2 cells. In addition, 

CUDR overexpression might contribute to cisplatin resis-

tance by antagonizing apoptosis.65 HOTAIR also promoted 

cisplatin resistance in ovarian carcinoma. The knockdown 

of HOTAIR suppressed cell proliferation and invasion, and 

notably increased chemosensitivity to cisplatin specifically by 

promoting cisplatin-induced apoptosis in SKOV-3 cisplatin-

resistance cells.66 Patients with a high expression of HULC 

lncRNA in GC showed a significantly worse prognosis, and 

HULC knockdown enhanced the sensitivity of GC cells to 

cisplatin by enhancing cisplatin-induced apoptosis.67

Signaling pathways
Studies over the years have demonstrated that diverse sig-

naling pathways are involved in the development of drug 

resistance.68 Analysis of mRNA, lncRNA, and miRNA 

expression profiles by microarray in cisplatin-resistant 

A549 cells and parental A549 cells revealed that 1,471 

mRNAs, 1,380 lncRNAs, and 25 miRNAs were differentially 

expressed.69 Gene coexpression network analysis identified 

many genes including lncRNA AK126698 that potentially 

play a significant role in cisplatin resistance.69 Pathway 

analysis showed that the Wnt pathway was targeted by 

both miRNAs and lncRNAs including lncRNA AK126698. 

Moreover, in vitro cell culture experiments confirmed that 

AK126698 lncRNA induced cisplatin resistance in NSCLC 

through activating Wnt/β-catenin pathway.69 UCA1 lncRNA 

expression levels were significantly higher in T24-resistant 

cells and bladder cancer tissues from patients treated with 

cisplatin, and overexpression of UCA1 lncRNA promoted 

cisplatin resistance in bladder cancer cells through upregu-

lating Wnt6 expression, which consequently activated Wnt 

signaling.70 The lncRNA HOTTIP could promote cell pro-

liferation, cell cycle progression, and induce cell resistance 

to cisplatin by activating the Wnt/β-catenin pathway in 

osteosarcoma and ovarian cancer cells.71

Autophagy
Autophagy plays an important role in the maintenance of cell 

hemostasis, and LC3, Beclin-1, and Atg family members are 

important factors in autophagosome formation.72 Recently, 

several studies have reported that autophagy could act as a 

protective mechanism against cisplatin treatment in cancer 

cells.29 Like 3-MA, an autophagy inhibitor, lncRNA GAS5 

was shown to inhibit autophagy and, therefore, enhance cell 

sensitivity to cisplatin in NSCLC cells.73 In human endome-

trial cancer cells, HOTAIR lncRNA contributed to cisplatin 

resistance by regulating autophagy mediated through the 

regulation of Beclin-1 expression.74 The lncRNA XIST was 

upregulated in NSCLC cells and promoted the progression 

of NSCLC through regulating autophagy. Knockdown of 

XIST enhanced the chemosensitivity to cisplatin in NSCLC 
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cells, which was reversed by the administration of a miR-17 

inhibitor and overexpression of ATG7, a key factor in 

autophagosome formation. These data suggest that lncRNA 

XIST enhanced the chemoresistance of NSCLC cells to 

cisplatin by regulating autophagy via the miR-17/ATG7 

pathway.75 In human glioblastoma cells, the upregulation of 

lncRNA AC023115.3 promoted chemosensitivity to cisplatin 

by decreasing autophagy. Further mechanism experiments 

showed that AC02115.3 acted as a miR-26a sponge and 

increased its target gene GSK3β expression.76

Cancer stem cells (CSCs)
CSCs are a small population of specialized cells that have 

the potential to self-renew and differentiate into other tumor 

cell subtypes and are involved in tumor initiation, progres-

sion, distant metastasis, and chemoresistance. Emerging 

evidence indicates that lncRNAs play an important role in 

the maintenance of CSCs, increasing tumor cells’ resistance 

to chemotherapy.77 HOTAIR lncRNA could promote tum-

origenesis and tumor metastasis by affecting the stemness 

of CSCs. Moreover, Liu et al have found that HOTAIR 

contributed to cisplatin resistance by regulating the biology 

of tumor stem cells.78 HOTAIR was overexpressed in tumor 

tissues from NSCLC patients with drug resistance and in 

cisplatin-resistant A549 cells, and knockdown of HOTAIR 

expression increased the sensitivity of A549/cisplatin cells 

to cisplatin. Further mechanistic studies demonstrated that 

HOTAIR-induced cisplatin resistance might be associated 

with the promotion of tumor sphere cell growth through 

upregulating tumor stem cell-related Klf4 expression.78

ceRNAs
In recent years, accumulating evidence indicates that lncRNAs, 

such as ceRNAs, could regulate target mRNA levels by 

combining competitively with common miRNAs, which is 

a potential mechanism in the regulation of cisplatin resis-

tance. The lncRNA NEAT1-enhanced cisplatin sensitivity 

was mediated through upregulating EGCG-induced CTR1 

expression due to its sponging action on mir-98-5p in lung 

cancer cells.43 The lncRNA LINC00161 promoted cisplatin-

induced apoptosis and decreased cell resistance to cisplatin. 

Further studies revealed that the effect of LINC00161 was 

achieved through upregulation of IFIT2 protein expression 

mediated via competitively sponging miR-645 action on 

IFIT2 mRNA.79 Moreover, other lncRNAs such as CASC, 

GAS5, and MEG3 have also been reported to function as 

ceRNAs of miR-21 and miR-21-5p and upregulate PTEN and 

SOX7 expression, respectively, in NSCLC81,82 and cervical 

cancer cells,80,83 resulting in an alteration of cell sensitivity 

to cisplatin. In glioma cell, lncRNA AC023115.3 acted as a 

ceRNA for miR-26a and attenuated the inhibitory effect of 

miR-26a on GSK3β, which impaired cisplatin resistance.76

Conclusion
Cisplatin resistance, either intrinsic or acquired, is a signifi-

cant burden for successful cancer treatment. Here, we have 

discussed the roles of lncRNAs in cisplatin chemoresistance 

(Table 1) through mechanisms such as alterations in cellular 

uptake or efflux of the drug, intracellular detoxification, cell 

apoptosis, autophagy, DNA repair, CSC, and ceRNA action 

(Figure 2). Although the study of lncRNAs on chemoresis-

tance is still in its infancy, growing evidence suggests that 

lncRNAs may serve as biomarkers for cancer diagnosis and 

prognosis and molecular targets for cancer therapy, including 

chemoresistance. BC-819 (H19-DTA) is a DNA vector that 

carries the gene for diphtheria toxin-A under the control of 

the H19 promoter sequence, which therefore has the potential 

to treat various malignancies that overexpress H19 lncRNA. 

Current clinical trials indicate that BC-819 given locally in 

combination with systemic chemotherapy may provide an 

additional therapeutic benefit for the treatment of pancreatic, 

bladder, ovarian, or peritoneal cancer.84–86

Of course, considerable work needs to be done for the 

lncRNA-based cancer therapy to be applied in clinical prac-

tice. First, chemoresistance is a complicated biologic process 

in which the roles and mechanisms of lncRNAs are still poorly 

understood. The majority of studies are in in vitro systems. 

Second, informative functional studies rely on animal 

experiments. However, establishing lncRNA function model 

in mice is difficult. Third, the sequence conservation of 

lncRNAs is much poorer than that of protein-coding genes. 

Thus, the lncRNAs which have been successfully verified 

in animal models may be not able to translate into clinical 

practice. Fourth, as a therapeutic strategy, the technology for 

either elimination or overexpression of a specific lncRNA at 

specific target cells in vivo is still in development. Finally, it 

is currently unclear whether interference of an endogenous 

lncRNA expression in the body will generate deleterious 

biologic consequence. Nevertheless, studies over the last 

decades have provided sufficient data to warrant further 

investigation of lncRNAs on tumorigenesis, tumor progres-

sion, and tumor chemoresistance.
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