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Abstract: The central aim of this study is to evaluate the effect of polyethylene terephthalate (PET)
alongside two supplementary cementitious materials (SCMs)—i.e., fly ash (FA) and silica fume
(SF)—on the 28-day compressive strength (CS28d) of cementitious grouts by using. For the gene
expression programming (GEP) approach, a total of 156 samples were prepared in the laboratory
using variable percentages of PET and SCM (0–10%, each). To achieve the best hyper parameter
setting of the optimized GEP model, 10 trials were undertaken by varying the genetic parameters
while observing the models’ performance in terms of statistical indices, i.e., correlation coefficient (R),
root mean squared error (RMSE), mean absolute error (MAE), comparison of regression slopes, and
predicted to experimental ratios (ρ). Sensitivity analysis and parametric study were performed on the
best GEP model (obtained at; chromosomes = 50, head size = 9, and genes = 3) to evaluate the effect of
contributing input parameters. The sensitivity analysis showed that: CS7d (30.47%) > CS1d (28.89%)
> SCM (18.88%) > Flow (18.53%) > PET (3.23%). The finally selected GEP model exhibited optimal
statistical indices (R = 0.977 and 0.975, RMSE = 2.423 and 2.531, MAE = 1.918 and 2.055) for training
and validation datasets, respectively. The role of PET/SCM has no negative influence on the CS28d

of cementitious grouts, which renders the PET a suitable alternative toward achieving sustainable
and green concrete. Hence, the simple mathematical expression of GEP is efficacious, which leads to
saving time and reducing labor costs of testing in civil engineering projects.

Keywords: waste PET; supplementary cementitious materials; compressive strength; artificial
intelligence; GEP

1. Introduction

Plastic production and increased usage have led to significant environmental damage.
Plastic waste generation is increasing rapidly with increases in the global population, and
it is predicted that this worldwide generation may be doubled by 2050 [1]. An exponential
increase in the production of plastics has been reported such that, during 1950 and 2015, it
increased from 2.3 million tons to 448 million tons [2]. Another study showed that about
half of all plastic has been produced in the last 15 years. Of this plastic waste, approximately
8 million tons have been recorded as washing into the oceans every year [2]. It has been
estimated that more than 8.3 billion tons of plastic has been manufactured since 1950s
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and around 60% of that plastic has ended up in landfills and the natural environment [3].
Therefore, to cope with this global environmental issue, it is immensely pertinent to explore
the recycling of waste plastics. In this scenario, replacement of virgin materials used in
construction industries with waste materials is desideratum [4]. One such alternative is
recycling and reusing waste plastic in the construction of roads/highways. Waste plastic
has widely been used as a substitute for bitumen or as an aggregate replacement in asphalt
concrete pavements. Significant improvement in the performance properties of binder
and asphalt mixtures has been reported previously [5,6]. A significant contribution to
the economy and environment can be attained by recycling single-use waste plastic on a
wide scale.

Recycling of waste polyethylene terephthalate (PET) in cementitious materials and
its effect on mechanical properties have also been investigated in a few studies. In the
concrete industry, waste plastics are used as a fiber or replacement of fine and coarse
aggregates [7]. They have been used to replace aggregates in order to produce lightweight
concrete elements [8]. Studies have shown an increase in the tensile strength and crack
resistance of concrete by inclusion of recycled PET as a fiber in the concrete mixture [9,10].
However, the incorporation of PET as an aggregate or sand replacement with a volume of
more than 10% causes a significant reduction in compressive strength compared with that
of normal strength concrete [11,12]. Moreover, partial replacement of cement with plastic
waste has also been studied, where significant reduction in the compressive strength was
noticed. The reduction in compressive strength may reach up to 23% and 72% at 5% and
20% replacement of the cement, respectively [13]. Schaefer et al. [14] also used waste PET as
a partial replacement of cement in mortars and observed reduction in compressive strength.
However, using gamma irradiated PET instead of regular PET and additional replacement
of FA or SF in cement mortar resulted in improved strength properties [14]. Some other
studies also reported that the addition of gamma irradiated waste plastic ameliorated the
strength properties of cementitious grouts [15–18].

The utilization of natural resources can be reduced while using waste plastic instead
of aggregates or sand, which in return reduces environmental pollution and the cost of
construction alongside contributing to better engineering properties of asphalt concrete [19].
Moreover, recycling waste plastic would reduce the burden of landfilling and save marine
life [20]. Furthermore, industrial wastes and/or byproducts (such as FA and SF) are
increasing due to increase in populations and industrialization all over the world. Due to
shortage of land, many countries are facing problems of waste disposal which is a serious
concern affecting the ecosystem. Therefore, reuse and recycling of these wastes and/or
byproducts in the construction industries could be a viable alternative [21]. The perpetual
and rapid utilization of natural resources is polluting the environment and deteriorating
the surrounding environment [22]. FA and SF are categorized as supplementary cementing
materials (SCM) owing to their pozzolanic properties, and therefore they contribute to
the improvement in performance properties of cement concrete. The use of materials or
mineral admixtures to replace cement in mortar and concrete is almost unavoidable in
the effort to achieve sustainability, superior performance, and financial benefits [23,24].
Therefore, the recycling of municipal wastes (such as glass, plastic, rubber, wood, etc.) and
industrial wastes/byproducts (such as FA, SF, ground granulated blast-furnace slag, etc.)
as replacements for cement, sand, or aggregates could be beneficial to the environment in
terms of reducing the usage of non-renewable natural resources and to the construction
industry in terms of cost and enhancing the properties of concrete [21,25].

Artificial Intelligence (AI) approaches are becoming increasingly popular as a result
of their improved predictive capability opposed to earlier techniques, and they are be-
ing utilized to simulate the complicated behavior of a range of structural engineering
problems [26]. Data mining for processes in chemistry, materials, and especially civil engi-
neering, has been frequently documented since 2000, which is largely attributed to the rapid
growth of machine learning (ML) algorithms [27–29]. In the past few years, commonly
deployed AI techniques employing conventional statistical methods in civil engineering
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include, artificial neural networks (ANNs) [30], genetic algorithm (GA) [31], genetic ex-
pression programming (GEP) [32], multi expression programming (MEP) [33], support
vector machines (SVMs) [34], alternate decision trees (ADTs) [35], ensemble random forest
(RF) regression [36], etc. Note that Giustolisi and Doglioni [37] advocated using white,
black, and grey colors to categorize distinct mathematical models. The known variables
and parameters of the first kind—the white-box model—are based on physical laws, which
build correct physical connections and provide maximum transparency. Second, black-box
models rely on regressive data-driven systems with unknown functional forms of con-
nections among variables that must be approximated (e.g., ANN, ANFIS, etc.). Finally,
grey-box models represent logical systems where a mathematical framework better assesses
the behavior of the system (e.g., GEP, MEP, etc.). GEP can be classified as a ‘grey-box model’
because of its conceptualization of physical phenomena in a symbolic and easy way [38–40].
The GEP-based models are found to yield better results in contrast to other genetic-based
and ANN-based approaches [29,41,42]. It is also associated with the fact that a typical GEP
chromosome consists of head and tail that comprise particular symbols, thus providing
a better way to encode syntactically correct computer programs as compared with the
MEP approach [43]. In the past decade, GEP has been broadly and efficaciously used in
addressing specific structural engineering issues, for instance, evaluating the compression
strength of concrete incorporating (fly ash admixture, geopolymer, eco-efficient GGBS-
based geopolymer, nanomaterials, etc.), the splitting tensile strength from the compressive
strength [44], and the post-fire compressive strength of recycled PET aggregate concrete
reinforced with steel fibers [45], among others. The GEP approach is widely deployed in
solving regressions, modeling functions, predicting, detecting, and data mining [46,47]. In
addition, the formulated genetic programming models are efficient due to absence of the
assumption of fixed connection for developing a GEP model [48].

Furthermore, Ferreira and Jalali [49] predicted the early age compressive strength
using a technique based on the nondestructive testing data. According to [50], models
based on multi-layer feed-forward neural networks (MFNNs) may be built to forecast
concrete’s 28-day compression strength on the basis of its selective influencing parameters.
Rafi and Nasir [51] suggested an analytical approach for predicting concrete’s 28-day
strength (CS28d) based on its 7-day strength (CS7d) by proposing a mathematical equation
which was further expanded to forecast the strength of concrete constructed using Pakistani
cements. To date, no attempts were made by previous researchers to formulate empirical
models using the GEP approach for forecasting the 28-day compression strength (CS28d) of
waste PET/SCM blended cementitious grout despite of their practical significance. With
these uncertainties in consideration, the present research incorporates the GEP method
to compute the compression strength of waste PET/SCM blended cementitious grout to
compare the behavior of a variety of formulated GEP models.

2. Materials and Methods
2.1. Materials

Materials used in the experimental program were collected from local vendors, which
include ordinary Portland cement, waste PET, SF, FA, and superplasticizer. Waste PET
(particle size less than 150 µm) was used as a replacement of cement. The waste PET was
obtained from a plastics factory, where PET flakes are recycled into plastic-based products.
This process of recycling PET results in a sufficient amount of powder being discarded for
disposal. For use in cementitious grout, the PET powder obtained was sieved so that the
particle size was less than 150 microns. Table 1 shows the basic characteristics of waste PET.
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Table 1. Properties of waste PET (obtained from supplier).

Description Values

Density (g/cm3) 1.35

Tensile strength (MPa) 187

Glass transition temperature (◦C) 75

Melting point (◦C) 250

2.2. Cement Grout Preparation and Testing Methods

The mixing of cementitious grouts were performed in accordance with ASTM C305 [52].
The required quantity of cement, waste PET, and SCMs (i.e., FA and SF) were initially dry
mixed followed by adding two-thirds water and further mixing. The remaining water and
superplasticizer were added and mixed to ensure the homogeneity of cement grouts. The
mixed proportion of grouts containing PET and SCM are presented in Table 2.

Table 2. Mixed proportion of grouts containing PET and SCM.

Grout Type Quantity (g)

Cement PET SCM (SF/FA) Water

Control 3800 0 0 1330

5PET 3610 190 0 1330

10PET 3420 380 0 1330

5PET-5SCM 3420 190 190 1330

5PET-10SCM 3230 190 380 1330

10PET-5SCM 3230 380 190 1330

10PET-10SCM 3040 380 380 1330

The fresh cement grout was checked for the flow value using Malaysian flow cone
apparatus [53]. According to specifications, 11–16 s are required for 1 L of fresh grout to
flow-out of the cone [53]. The purpose of achieving such flow value (or flowability) is
required to ensure proper filling of voids in an open-graded asphalt mixture. Moreover,
mold (50 × 50 × 50 m3) were also prepared from all combination of grouts and tested
for evaluating the compressive strength. After demolding, the specimens were kept in
water bath for curing until test date. On completion of curing period (i.e., 1, 7, and 28 d),
specimens were tested using a universal testing machine (UTM) with a capacity 3000 kN
and at a rate of 0.90 kN/second for the determination of compressive strength (CS1d, CS7d,
CS28d, respectively) of hardened cement grouts following ASTM C109 [54]. The values of
the input and output parameters are given in Table S1 (Supplementary Materials).

2.3. Overview of GEP Method

A GEP approach based on Darwin’s evolution theory and Mendel’s genetic theory is
one of the most intellectually compelling computational intelligence approaches [55,56].
With GEP, there are two languages: the language of genes and the language of expression
trees (ETs), and understanding the sequence or structure of one is equivalent to under-
standing the other [57]. A typical GEP model involves the following steps, as shown in
Figure 1a.

a. In GEP modeling, chromosome numbers are randomly generated for designated
numbers, and the Karva language (which represents symbols) is used for introducing
the chromosomes. The chromosomes and genes typically consist of a head and a tail.
A head consists of either a function or a set of terminal symbols, while a tail consists
of only terminal symbols. A model’s head size depends on the complexity of each
parameter, whereas the number of genes determines the number of sub-ETs.
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b. The length of chromosomes is fixed, so the chromosomes can be transformed into an
algebraic expression [58] as illustrated in Figure 1b. GEP genes contain a fixed list of
terms, so each term represents a function; for example, arithmetic operations (+, −,
×, /), Boolean logic functions (AND, OR, NOT, etc.), mathematical functions (cos,
sin, ln), conditional functions (IF, THEN, ELSE), or other function categories [59].

c. The chromosomes are then represented by ETs, which come in diverse shapes and
sizes. After that, primary genetic operators—such as crossover, mutation, trans-
position, and gene recombination (1-point, 2-point, and gene recombination)—are
applied to each chromosome according to their ratios [60]. Figure 1b depicts a typical
expression tree (ET), illustrating how crossovers and mutations work. In Equation (1),
we can also see that the ET is expressed by means of a Karva notation or K-expression
(Figure 1b) [61].

ETGEP = log(i− 3
j
) (1)

Once the stopping condition (highest number of generations or best solution) is
reached, the process is complete [62].

d. When the maximum number of iterations or favorite fitness value is not achieved,
the roulette wheel method (as well as greedy over the selection, ranking selection,
tournament selection, and elite selection [27]) is adopted, which selects the viable
chromosomes of first-generation for continuation to the next. Herein, the process is
rewound for a specified number of generations or until the selection of the optimal
solution is made [63].

Materials 2022, 15, x FOR PEER REVIEW 5 of 24 
 

 

b. The length of chromosomes is fixed, so the chromosomes can be transformed into an 
algebraic expression [58] as illustrated in Figure 1b. GEP genes contain a fixed list of 
terms, so each term represents a function; for example, arithmetic operations (+, −, ×, 
/), Boolean logic functions (AND, OR, NOT, etc.), mathematical functions (cos, sin, 
ln), conditional functions (IF, THEN, ELSE), or other function categories [59]. 

c. The chromosomes are then represented by ETs, which come in diverse shapes and 
sizes. After that, primary genetic operators—such as crossover, mutation, transposi-
tion, and gene recombination (1-point, 2-point, and gene recombination)—are ap-
plied to each chromosome according to their ratios [60]. Figure 1b depicts a typical 
expression tree (ET), illustrating how crossovers and mutations work. In Equation 
(1), we can also see that the ET is expressed by means of a Karva notation or K-ex-
pression (Figure 1b) [61]. ETୋ୉୔ =  𝑙𝑜𝑔 (𝑖 − 3𝑗) (1)

Once the stopping condition (highest number of generations or best solution) is 
reached, the process is complete [62].  
d. When the maximum number of iterations or favorite fitness value is not achieved, 

the roulette wheel method (as well as greedy over the selection, ranking selection, 
tournament selection, and elite selection [27]) is adopted, which selects the viable 
chromosomes of first-generation for continuation to the next. Herein, the process is 
rewound for a specified number of generations or until the selection of the optimal 
solution is made [63]. 

 

Figure 1. Cont.



Materials 2022, 15, 3077 6 of 20Materials 2022, 15, x FOR PEER REVIEW 6 of 21 
 

 

 

Figure 1. (a) Basic working process of gene expression programming (GEP) [64]. (b) Expression tree, 

crossover, and mutation processes in a representative GEP model [42]. 

3. Results and Discussion 

3.1. Effect of Genetic Parameters on Performance of Models 

While exercising modeling using the GEP model, genetic parameters—namely, num-

ber of chromosomes, head size, and number of genes—were varied alongside the evalua-

tion of models in the form of statistical equations for the correlation coefficient (R), mean 

log

i

−

j

/

3

Root node

Functional 

nodes

Terminal 

nodes

Tree representation of GP model log{ −  
 

 
)}

5 7 1 2 4 9 6 3 8 9

1 2 4 8 9

Crossover pointParent. 1 Parent. 2

Offspring

Process of crossover

Process of mutation

log

i

−

j

/

3

log

i

+

j

/

3

(b) 

Figure 1. (a) Basic working process of gene expression programming (GEP) [64]. (b) Expression tree,
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3. Results and Discussion
3.1. Effect of Genetic Parameters on Performance of Models

While exercising modeling using the GEP model, genetic parameters—namely, number
of chromosomes, head size, and number of genes—were varied alongside the evaluation of
models in the form of statistical equations for the correlation coefficient (R), mean absolute
error (MAE), and root mean square error (RMSE) given as Equation (2) to Equation (4) in
accordance with the previous research [65–70]. Initially, number of chromosomes were
changed from 30 to 150 to select the best number of chromosomes for the next model
generation. The best model for variable setting chromosomes was based on the overall
MAE and R2 for the developed models. Subsequently, head size was changed between 8 and
10. Finally, number of genes was varied from 3 to 5. Further increase in the number of genes
may affect the performance of the model; however, it also complexifies the mathematical
equation. Figure 2 displays the effect of setting parameters on the performance of the
models. Figure 2a–f depict the performance of the models for the training data and
validation data with respect to number of chromosomes, head size, and number of genes,
respectively. It can be observed that increasing the number of chromosomes from 30 to 50
increased the performance in the sense of increasing R and decreasing MAE and RMSE for
both the training and validation data. In contrast, an additional increase in the number of
chromosomes from 50 to 100 decreased the performance of the models. The best number of
chromosomes was achieved at 50; therefore, more trials on developing the best models by
changing head size were exercised with 50 chromosomes.
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Figure 2. Evaluating the effect of genetic parameters on the performance of models (MAE, R, RMSE)
for the case of (a,b) number of chromosomes, (c,d) head size, and (e,f) number of genes.

To see the impact of changing head size on the performance of the developed models,
it can be seen that increasing the head size from 8 to 9 increased the values of R from 0.969
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to 0.977 for the training data; whereas, for the validation data, the value of R remained
unchanged for the 8 and 9 head size. Similarly, the values of RMSE and MAE decreased
from 3.267 and 2.218 MPa to 2.432 and 1.918 MPa for the training data. The counterpart
values of the validation data somehow increased; however, based on overall value of R, the
trials carried out with the 9 head size performed better. Trails 7, 8, and 9 were interpreted
with comparatively lower performance. The variation in number of genes from 3 to 5 did
not yield the fruitful performance of the model. In summary, the best setting parameters in
this comprehensive exercise were obtained as 50, 9, and 3 number of chromosomes, head
size, and number of genes, respectively.

MAE =
∑m

k=1|Ek − Pk|
m

(2)

RMSE =

√
∑m

k=1(Ek − Pk)
2

m
(3)

R =
∑m

k=1
(
Ek − Ek

)(
Pk − Pk

)√
∑m

k=1
(
Ek − Ek

)2
∑m

k=1
(

Pk − Pk
) (4)

In the above equations, Ek and Pk represent the actual observations and estimated
outcomes, respectively; Ek and Pk denote the average of the actual observations and
estimated outcomes, respectively; and m is the total number of records.

3.2. Prediction Performance of Models
3.2.1. Statistical Evaluation

Five input parameters (PET, SCM, Flow, CS1d, and CS7d) were selected in the current
study for determination of the output parameter (i.e., CS28d). Although the parameters
affecting the strength of cement-based materials are considered to be material mixing
ratios—such as the water/binder ratio and the ratio of fine aggregates used—are also
desideratum; however, these parameters were kept constant in this study, whereas the
aforementioned parameters were varied. The prediction was made based on the vary-
ing parameters and this study can be extrapolated in future regarding CS prediction of
PET/SCM blended cementitious grout for the design mix used in the study as presented in
Section 2.2. The formulation of CS28d of waste PET/SCM blended cementitious grout is
given by Equation (5) below.

CS28d = f(PET, SCM, Flow, CS1d, CS7d) (5)

Pearson’s correlation coefficient, abbreviated as r, is amongst the most widely em-
ployed metrics of depicting relationship [71]. Interdependency as well as multicollinearity
are better recognized to be examined since they present issues with the understanding of
a given AI model [72]. Therefore, the Pearson’s correlation matrix was computed for the
experimental database of waste PET/SCM blended cementitious grout considered here
which comprise five input parameters (PET, SCM, Flow, CS1d, and CS7d) for determination
of the output parameter (i.e., CS28d), as shown in Table 3. The correlation matrix is defined
with the help of a square symmetrical H ×H matrix such that the (uv)th element equals the
correlation coefficient Ruv among the (u)th and the (v)th variable. Note that the diagonal
members (correlations of the considered input parameters with each other) are always
1 [42,73]. The r varies from −1 and 1 (0 means zero correlation, while, ±1 depicts strong
positive and negative correlation, respectively). The correlation degree follows the order:
CS7d > CS1d > PET > SCM > Flow (r = 0.93, 0.85,−0.67, 0.64, and−0.52, respectively) which
indicates a major contribution of CS7d, CS1d, and PET on the CS28d of waste PET/SCM
blended cementitious grout. Since the r values of all parameters are exceedingly higher,
they were therefore considered while formulating the GEP models.
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Table 3. Pearson correlation matrix for the inputs and output parameters CS28d of waste PET/SCM
blended cementitious grout.

PET SCM Flow CS1d CS7d CS28d

PET 1
SF −4.495 × 10−18 1

Flow 0.7411116 0.072472 1
CS1d −0.8411645 0.3140399 −0.528282 1
CS7d −0.7553707 0.5103415 −0.5603769 0.86217187 1
CS28d −0.6680288 0.6363484 −0.5204947 0.84706071 0.9325534 1

The summary of descriptive statistics of the input (PET, SCM, Flow, CS1d, and CS7d)
and output parameter (CS28d) are given in Table 4. The minimum and maximum limits,
standard deviation (SD), kurtosis, as well as skewness values for all these parameters in
the considered database have been tabulated. A smaller value of SD suggests that the
values are mostly nearing the average (PET, SF, and Flow), while a larger SD represents
comparatively higher spread out (CS1d, CS7d) [74]. Skewness (value could be positive,
zero, negative, or undefined) helps in determining the magnitude of asymmetry of the
probability distribution in case of a real-valued arbitrary parameter from the standpoint
of its average value [75]. Furthermore, kurtosis generally ranges between −10 (heavy-
tailed) and + 10 (light-tailed), which helps in the elucidation of the shape of a probability
distribution, as described by Brown and Greene [76]. The kurtosis values for PET, SF, CS1d,
and CS7d are negative and range between −0.3 and −1.6 (follow mesokurtic distribution),
whereas the only positive value is obtained in case of Flow, i.e., 0.66 (follow leptokurtic
distribution) [77,78].

Table 4. Statistical evaluation of input and output parameters.

PET (%) SCM (%) Flow (Sec) CS1d (MPa) CS7d (MPa) CS28d (MPa)

Min 0.00 0.00 9.10 5.64 19.19 33.64
Max 10.00 10.00 28.60 33.32 61.81 82.54

Mean 5.00 4.62 16.30 18.66 37.20 53.74
Median 5.00 5.00 15.40 17.91 36.54 54.18

SD 3.67 4.14 4.18 7.64 9.44 11.23
Skewness 3.3 × 10−18 1.5 × 10−1 9.5 × 10−1 2.3 × 10−1 4.6 × 10−1 3.0 × 10−1

Kurtosis −1.3464 −1.5395 0.6675 −1.0730 −0.3549 −0.5814

Ten trials were run in order to determine the parametric combination with the overall
R (average of training and validation values) and MAE value as well as for CS28d of
waste PET/SCM blended cementitious grout (Table 5). The details of these undertaken
trials for identification of optimal combination of the GEP parameters yielding better
performance are presented (Table 4). The GEP algorithm is kept running indefinitely so that
the correlation, as well as fitness functions (RMSE in this case), do not alter their respective
values. Furthermore, while an arithmetic function is selected to connect them, the genes
alongside their corresponding head sizes are continuously increased (addition function is
taken into consideration here). The process is performed numerous times until the best
model is established. Table 6 shows the best settings for the GEP model utilized in this
study. The drop recorded in model error is determined by the R value, that is connected
to the inclusion of predictor parameters. Note that, the overall R was highest—i.e., 0.995—
while overall MAE was 2.059 for Trial 2 at default settings (chromosomes = 30, head size = 8,
genes number = 3). However, in case of Trial 5, the R value was 0.953 while its MAE was
1.9865, because of which the latter trial was considered to be the final optimized model.
Further changes in the GEP settings resulted in lower R values, higher R2, and lower MAE.
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Table 5. Summary of undertaken trials using GEP for evaluating the CS28d of waste PET/SCM
blended cementitious grout.

Trial
No.

No. of
Chromosomes

Head
Size

Number
of

Genes

Constants Per
Gene Literals Program

Size

Training Dataset Validation Dataset
Overall

RBest
Fitness RMSE MAE R2 R Best

Fitness RMSE MAE R2 R

1 30 8 3 10 10 39 272.9 2.664 2.122 0.944 0.972 261.1 2.829 2.368 0.943 0.971 0.944
2 50 8 3 10 8 35 288.6 2.465 1.969 0.952 0.976 280.4 2.566 2.149 0.958 0.979 0.955
3 100 8 3 10 12 41 274.0 2.565 2.107 0.945 0.972 234.3 3.267 2.535 0.913 0.956 0.929
4 150 8 3 10 9 36 191.0 3.267 2.218 0.939 0.969 201.8 2.519 1.974 0.951 0.975 0.945

* 5 50 9 3 10 11 41 292.1 2.423 1.918 0.954 0.977 283.2 2.531 2.055 0.951 0.975 0.953
6 50 10 3 10 17 52 310.0 2.230 1.825 0.961 0.980 269.4 2.712 2.240 0.938 0.969 0.950
7 50 11 3 10 16 53 270.7 2.693 2.142 0.943 0.971 294.2 2.398 1.911 0.954 0.977 0.949
8 50 12 3 10 21 59 278.3 2.594 2.037 0.947 0.973 247.8 3.035 2.334 0.923 0.961 0.935
9 50 9 4 10 16 46 252.4 2.960 2.359 0.932 0.965 247.8 3.035 2.484 0.928 0.963 0.930
10 50 9 5 10 21 74 289.5 2.454 1.929 0.953 0.976 276.0 2.623 2.149 0.948 0.974 0.951

Note: The number of used variables in all the trials was 5. * Trial 5 is the most optimal trial.

Table 6. Parameters setting for GEP algorithm (Trial 5) to determine CS28d of waste PET/SCM
blended cementitious grout.

Parameters GEP

Number of chromosomes 50
Number of genes 3

Head size 9
Linking function Addition

Function set +, −, ×, ÷, x2, x1/3

Maximum arity 2
Training records 109

Testing/validation records 47
Numerical constants
Constants per gene 10

Type of data Floating number
Maximum complexity 10

Ephemeral random constant [–10, 10]
Genetic operators

Strategy Optimal evolution
Rate of mutation 0.00138

Function insertion 0.00206
Permutation 0.00546

IS and RIS transposition 0.00546
Inversion rate 0.00546

Uniform recombination 0.00755
Random and best cloning 0.0026

Constant fine tuning 0.00206

3.2.2. Comparison of the Regression Slopes between Experimental and Predicted Results

Figure 3a–j presents the comparison of the regression slopes between modeled and
experimental results for all the 10 GEP trials (training and validation datasets are repre-
sented by blue and red, respectively). It can be seen in Figure 3 that the CS28 is accurately
predicted for almost all the proposed models wherein the lowest–maximum regression
slopes for training and testing datasets are 0.9468 (Trial 1)–0.9728 (Trial 6) and 0.947 (Trial
8)–0.9973 (Trial 4), respectively. In the previous studies, slopes ranging between 0.80 and
0.90 were considered indicators of the achievement of higher performance, when modeled
with GEP approach [29,79,80]. Based on their findings, it can be stated that all of the formu-
lated GEP trials exhibited comparatively better performance. Trial 5 was selected as the
optimal trial on the basis of overall R and MAE values (in the previous section). In addition,
the nearness of the points to the ideal fit (1:1 line) and the presence of the majority of the
points inside the allowable confidence interval elucidates the validity of GEP models [42].
The points which are closer to the regression line depict better prediction performance of a
formulated GEP model [81]. While considering the plots of regression slopes (in Figure 3),
it can be observed that Trial 6 and Trial 4 possessed the maximum slopes for training and
validation datasets, respectively. On the contrary, the values of slope in the case of Trial 5
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were recorded as 0.957 (training) and 0.961 (validation). Upon comparing the overall MAE
values of the three trials, it is found that Trial 5 has the lowest value (1.9865) in contrast to
Trial 4 (2.096) and Trial 6 (2.0325). Moreover, the comparatively higher R value (0.953) in
case of Trial 5 further makes it a final choice to be considered as the most optimal model.
Note that, an R value exceeding 0.8 illustrates better performance of the GEP model [79,82].
Therefore, the prediction accuracy of Trial 5 is higher.
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Figure 3. Comparison of the regression slopes between experimental and predicted results for all the
(a–j) 10 GEP trials using different combinations of hyper parameters.
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3.2.3. Predicted to Experimental Ratio (ρ)

A variety of statistical methods are used to investigate the performance of developed
models. The values obtained from the predicted models divided by the experimental
results—expressed as predicted-to-experimental ratio (ρ)—is also employed to evaluate
the performance of the developed model [83]. The ratios obtained from dividing predicted
results by experimental values are plotted in the form of Table 7, taking the bin range as
0.2. It can be observed that all models interpreted 100% ρ values in between 0.8 and 1.2.
This suggests that the accuracy of all the developed models is within ±20% error. The
results of ρ for Trial 5—which is concluded as the best model achieved from evaluation
in terms of statistical indices and comparison of regression slopes—was plotted in the
form of a histogram, decreasing the bin range from 0.2 to 0.1 to see the accuracy of the
respective model in a closer view shown in Figure 4. ρ values of 98.17% and 91.49% o
were obtained within 0.9 to 1.1 for the training and validation datasets, respectively. This
manifests the model error within ±10%, reflecting a more robust performance for the
selected optimum model.

Table 7. Histogram analysis of predicted to experimental ratios (ρ) to determine CS28 for all the
10 GEP trials undertaken in the current study.

Dataset
Bin

Ranges

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5

Frequency Cumulative
(%) Frequency Cumulative

(%) Frequency Cumulative
(%) Frequency Cumulative

(%) Frequency Cumulative
(%)

Training

0.8 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00
1 54 49.54 56 51.38 54 49.54 52 47.71 58 53.21

1.2 55 100.00 53 100.00 55 100.00 57 100.00 51 100.00

Trial 6 Trial 7 Trial 8 Trial 9 Trial 10

0.5 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00
0.8 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00
1 55 50.46 53 48.62 50 45.87 51 46.79 57 52.29

1.2 54 100.00 56 100.00 59 100.00 58 100.00 52 100.00

Validation

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5

0.5 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00
0.8 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00
1 19 40.43 21 44.68 21 44.68 17 36.17 20 42.55

1.2 28 100.00 26 100.00 25 97.87 30 100.00 27 100.00

Trial 6 Trial 7 Trial 8 Trial 9 Trial 10

0.5 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00
0.8 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00
1 24 51.06 18 38.30 22 46.81 18 38.30 21 44.68

1.2 22 97.87 29 100.00 25 100.00 29 100.00 26 100.00

Materials 2022, 15, x FOR PEER REVIEW 15 of 24 
 

 

3.2.3. Predicted to Experimental Ratio (ρ) 
A variety of statistical methods are used to investigate the performance of developed 

models. The values obtained from the predicted models divided by the experimental re-
sults—expressed as predicted-to-experimental ratio (ρ)—is also employed to evaluate the 
performance of the developed model [83]. The ratios obtained from dividing predicted 
results by experimental values are plotted in the form of Table 7, taking the bin range as 
0.2. It can be observed that all models interpreted 100% ρ values in between 0.8 and 1.2. 
This suggests that the accuracy of all the developed models is within ±20% error. The re-
sults of ρ for Trial 5—which is concluded as the best model achieved from evaluation in 
terms of statistical indices and comparison of regression slopes—was plotted in the form 
of a histogram, decreasing the bin range from 0.2 to 0.1 to see the accuracy of the respective 
model in a closer view shown in Figure 4. ρ values of 98.17% and 91.49% o were obtained 
within 0.9 to 1.1 for the training and validation datasets, respectively. This manifests the 
model error within ±10%, reflecting a more robust performance for the selected optimum 
model. 

 
Figure 4. Histogram analysis of predicted to experimental ratios (ρ) to determine CS28 for GEP Trial 
5 in case of (a) Training dataset, and (b) Validation dataset. 

Table 7. Histogram analysis of predicted to experimental ratios (ρ) to determine CS28 for all the 10 
GEP trials undertaken in the current study 

Dataset 
Bin 

Ranges 

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 

Frequency 
Cumulative 

(%) 
Frequency 

Cumulative 
(%)  

Frequency 
Cumulative 

(%) 
Frequency 

Cumulative 
(%)  

Frequency 
Cumulative 

(%) 

Training 

0.8 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 
1 54 49.54 56 51.38 54 49.54 52 47.71 58 53.21 

1.2 55 100.00 53 100.00 55 100.00 57 100.00 51 100.00 
  Trial 6 Trial 7 Trial 8 Trial 9 Trial 10 

0.5 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 
0.8 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 
1 55 50.46 53 48.62 50 45.87 51 46.79 57 52.29 

1.2 54 100.00 56 100.00 59 100.00 58 100.00 52 100.00 

0%

50%

100%

150%

0

20

40

60

0.8 0.9 1 1.1 1.2 More

Fr
eq

ue
nc

y

Bin

Frequency Cumulative

Training dataset

0%

50%

100%

150%

0
5

10
15
20
25

0.8 0.9 1 1.1 1.2 More

Fr
eq

ue
nc

y

Bin

Validation dataset

(a)

(b)

Figure 4. Histogram analysis of predicted to experimental ratios (ρ) to determine CS28 for GEP Trial
5 in case of (a) Training dataset, and (b) Validation dataset.
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3.2.4. GEP Formulation

The expression trees shown in Figure 5 and the MATLAB code obtained from the GEP
model were used to extract mathematical equation (Equation (6)) to predict the compressive
strength of PET containing SCM based grout in accordance with the previous literature [84].
The prediction equations were obtained for the best model, Trial 5, in this study. The
complexity of the mathematical equation depends upon the number of sub-ETs which
depends on the number of genes. It is evident that Trial 5 contains three genes in its setting
parameters; hence, four sub-ETs can be observed in Figure 5. Furthermore, Figure 5 shows
linking functions (+, −, /, ×, cubic root), constants (C1 to C8), and variables in the form of
d0 to d4 denoting PET percentage, percentage of SCM, flow, 1-day compressive strength,
and 7-day compressive strength of cementitious grout, respectively, used in the formulation
of GEP mathematical model.

CS28d = ((((X1 − X2)− 1.75) + (X3 − (X4 − 9.94)))/1.75) + (((((X0 − X1)
−(X1 − 2.55))/(2.55− X4))− 6.8) ∗ (−2.2)) + (X4

+( 3
√

X1 − 0.92) ∗ 3
√
(11.98 + X0))) + 11.98)

(6)

where, X0 = PET, X1 = SCM, X2 = Flow, X3 = CS1d, and X4 = CS7d.
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3.3. Sensitivity and Parametric Analysis

It is critical to conduct a number of assessments over AI formulated models to guaran-
tee that the suggested models possess robustness and that they perform well for different
unseen data. Sensitivity and parametric tests demonstrate their robustness [72,85]. The
sensitivity analysis (SA) on the entire database determines how susceptible a constructed
model is to changes in the variables under consideration [79,86]. The relative contributions
of the input factors (PET, SCM, Flow, CS1d, and CS7d) are taken into consideration here to
forecast the CS28d of waste PET/SCM blended cementitious grout by performing the SA.

For a particular input variable, Si, the SA can be computed using the Equations (7)
and (8), respectively (such that t = 156, in the present study).

ti = fmax(Si)− fmin(Si) (7)

SA (%) =
Ti

∑
j=1
n Tj

∗ 100 (8)

where fmax (Si) and fmin (Si) denotes, respectively, the maximum and minimum of fore-
casted CS28d on the basis of the ith input domain, whereas the rest of the input variables
remain constant at their mean.

The SA value ranges from 0 to 1, indicating the relative contribution of each input
variable to the predicted output compression strength (SA = 1 indicates higher impact,
SA = 0 indicates least effect) [87,88].

Firstly, the results of sensitivity analysis in Figure 6a shows a rising trend of input
parameter contributions to determine the CS28d of waste PET/SCM blended cementitious
as CS7d (30.47%) > CS1d (28.89%) > SCM (18.88%) > Flow (18.53%) > PET (3.23%). Therefore,
CS7d is most substantial factor that influences the long term CS28d of cementitious grout
mixes, followed by CS1d, flow, and proportion of the SCMs.
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Figure 6. (a) Sensitivity analysis and (b–f) parametric study of all the considered input parameters
(i.e., PET, SCM, Flow, CS1d, and CS7d, respectively).
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Secondly, the parametric study in Figure 6b–f shows that with an increase in the dosage
levels of the PET (0–10%), proportioning of SCM (0–10%), CS1d, and CS7d led to a positive
growth in the CS28d of cementitious grout mixes. Generally, the increase in PET leads to a
decrease in the compression strength; however, in the current study, it was found that with
increasing PET the CS28d increased very slightly (up to 3.61%). This can be attributed to the
inclusion of the SCMs (i.e., fly ash, silica fume, and metakaolin). It is pertinent to mention
that when the percentage of recycled PET fiber is higher, the slump test and compressive
strength values decreased [89]. Generally, the inclusion of plastic fragments to concrete
reduces the fresh and dry density, thus decreasing the weight of the generated concrete [90];
however, since SCMs were used in conjunction, the CS28d of cementitious grout mixes
increased with higher dosages of PET. In addition, the cementitious materials (fly ash as
well as silica fume) compensate the loss of CS28d due to addition of the PET content [91].
Inclusion of PET fibers alongside silica fume-cemented sand increases the unconfined
compression strength, as well as the energy absorption capacity [92] because silica fume
tends to decrease the detrimental consequences on strength characteristics while increasing
the compression strength [93,94]. On the other hand, the increase in flow values negatively
impacted the CS28d of cementitious grout mixes, which agrees with the findings of the past
researchers—i.e., when the slump flow of concrete decreases, the CS increases [95–98].

4. Conclusions

This study aims to determine the impact of PET/SCM (polyethylene terephthalate
(PET) and two supplementary cementitious materials (SCMs)—i.e., fly ash (FA) and sil-
ica fume (SF)—on the 28-day compressive strength (CS28d) of cementitious grouts using
GEP. A new predictive model in the form of a simple mathematical expression has been
formulated to compute the CS28d of cementitious grout mixes using easily determinable
input parameters, such as, PET, SCM, flow, CS1d, and CS7d. Based on this investigation, the
following conclusions can be drawn:

1. Ten GEP trials were conducted, and several performance indices were recorded for
each trial. While investigating the effect of varying genetic setting parameters (chromo-
somes, head size, genes) to evaluate the CS28d of cementitious grout mixes, it was noticed
that the best hyper parameter for a particular GEP model strongly depended on trial and
access method. The optimal genetic parameter for one GEP model for computation of CS28d
may be completely different from the optimum parameter for another model. Depending
on variety of indices, the best GEP model was obtained for number of chromosomes = 50,
head size = 9, and number of genes = 3.

2. The optimum statistical indices obtained in the case of the finally selected optimal
model (Trial 5) were obtained as RMSE (2.423 and 2.531), MAE (1.918 and 2.055), and R
(0.977 and 0.975) for training and validation datasets, respectively. In addition, the MAE
values depict 3.6% (training) and 3.8% (validation) averaged error in the developed model.
These values are significantly lower, which indicates accuracy and robust performance in
terms of experimental and modeled values of the CS28d of cementitious grout mixes in the
formulated GEP model.

3. The GEP model performance was further supplemented with the help of other
statistical evaluating indices, such as: (i) slope of regression line between experimental
and predicted results; and (ii) predicted to experimental ratios (ρ) for all the models. It it
worth noting that the best model yielded regression slopes of 0.966 (training) and 0.985
(validation), which are more proximal to unity (i.e., ideal slope). The ρ values for all the 10
trials interpreted 100% of the values lying within ±20%. Furthermore, the optimal model
resulted in 98.17% and 91.49% of the ρ values within ±10% error, which further confirms
the final selection of the optimum model.

4. The MATLAB code extracted from the final GEP model was used to form a mathe-
matical equation comprising easily determinable input parameters to evaluate the CS28d of
cementitious grout mixes, thus avoiding the laborious, time-consuming, and costly testing
of the samples and thereby improving the cost-effectiveness of civil engineering projects.
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5. The sensitivity analysis revealed that CS7d is the most significant parameter which
impacts the long term CS28d of cementitious grout mixes followed by CS1d, flow, and
proportion of the SCM. Alongside incorporating the different SCMs, it is imperative to men-
tion that the negative influence of the PET dosage on CS28d was substantially neutralized
(depicting only a slight increase). Moreover, the parametric study revealed that increasing
the PET and proportioning of SCM (0 to 10% each), CS1d, and CS7d resulted in a positive
increase in the CS28d of cementitious grout mixes. Conversely, the increase in flow values
negatively impacted the CS28d. The current GEP model may be effectively deployed for
future purposes to evaluate the 28-day compression strength of cementitious grout mixes.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/ma15093077/s1, Table S1: Experimental database of five
input parameters (PET, SCMs, Flow, CS1d and CS7d) to evaluate the 28-d compression strength (CS28d)
of waste PET/SCM stabilized cementitious grout.
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