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Dynamic gene expression is a major regulatory mechanism that directs hematopoietic 
cell fate and differentiation, including eosinophil lineage commitment and eosinophil 
differentiation. Though GATA-1 is well established as a critical transcription factor 
(TF) for eosinophil development, delineating the transcriptional networks that regulate 
eosinophil development at homeostasis and in inflammatory states is not complete. Yet, 
recent advances in molecular experimental tools using purified eosinophil developmen-
tal stages have led to identifying new regulators of gene expression during eosinophil 
development. Herein, recent studies that have provided new insight into the mechanisms 
of gene regulation during eosinophil lineage commitment and eosinophil differentiation 
are reviewed. A model is described wherein distinct classes of TFs work together via 
collaborative and hierarchical interactions to direct eosinophil development. In addition, 
the therapeutic potential for targeting TFs to regulate eosinophil production is discussed. 
Understanding how specific signals direct distinct patterns of gene expression required 
for the specialized functions of eosinophils will likely lead to new targets for therapeutic 
intervention.

Keywords: hematopoiesis, eosinophilopoiesis, transcriptional regulation, eosinophil development, eosinophil 
lineage commitment

inTRODUCTiOn

Eosinophils differentiate in the bone marrow from an eosinophil lineage-committed progenitor 
(EoP) that is derived from the granulocyte/macrophage progenitor (GMP) in mice and the com-
mon myeloid progenitor or an upstream multipotent progenitor in humans (1, 2). Cell fate choices, 
including lineage commitment, are specified by the action of primary, or lineage-determining, 
transcription factors (TFs) and then reinforced by induction of secondary TFs that orchestrate 
gene expression and lineage commitment and differentiation. TF concentrations can be important, 
as lineage-determining TFs can antagonize each other’s activity (3, 4). We have recently shown that 
markedly more transcriptome changes (1,199 genes) are associated with eosinophil maturation 
from the EoP than with eosinophil lineage commitment (EoP from GMP, 490 genes), highlighting 
the greater transcriptional investment necessary for terminal differentiation (5). These dynamic 
changes in gene expression during eosinophil development included a repertoire of TFs, many 
of which had never previously been associated with eosinophil development (5). New informa-
tion from genome-wide and single-cell RNA sequencing (scRNA-seq) studies have built upon 
well-established models of transcriptional regulation of eosinophilopoiesis. The molecular regula-
tory network that yields functional, mature eosinophils from EoPs is slowly being delineated. 
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FiGURe 1 | Transcription Factor (TF) expression during eosinophil 
development. Eosinophils differentiate in the bone marrow from an eosinophil 
lineage-committed progenitor (EoP) that is derived from the granulocyte/
macrophage progenitor (GMP) in mice and the common myeloid progenitor 
(CMP) in humans. For eosinophil lineage commitment to occur, the myeloid 
progenitor (GMP or CMP) must express C/EBPα, C/EBPε, interferon 
regulatory factor 8 (IRF8), and PU.1. Expression of friend of GATA-1 (FOG-1) 
declines, allowing for increasing expression and activity of GATA TFs, which 
is necessary for EoP production. Following lineage commitment, eosinophil 
granule protein gene expression is markedly increased with the collaborative 
interaction between C/EBPε, PU.1, and GATA-1. To assist with the elevated 
granule protein synthesis in the EoP and eosinophil precursors, XBP1 
expression is increased and promotes survival during the demanding 
maturation process. Expression of activator isoforms of C/EBPε peaks during 
eosinophil maturation and then declines during the final stages. Expression of 
ID2 increases during eosinophil maturation and enhances the rate of 
maturation.
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Defining how eosinophil production is regulated is critical 
to understanding how dysfunction of the immune response 
results in eosinophil overproduction and will likely lead to new 
eosinophil-targeting therapeutics.

eOSinOPHiL LineAGe COMMiTMenT

The first stage in eosinophil development is commitment to 
the eosinophil lineage by a myeloid multipotent progenitor to 
generate an EoP (Figure  1). The EoP is identified via surface 
expression of CD34, interleukin 5 (IL-5) receptor alpha (IL-5Rα, 
a.k.a. CD125), and low levels of c-KIT (CD117) in murine bone 
marrow (1). In humans, EoPs are identified by surface expression 
of CD34, CD38, and CD125 (2). EoPs reside in small numbers 
primarily in the bone marrow (~0.05% of lineage-negative CD34+ 
cells), with even lower levels found in peripheral blood and in 
human umbilical cord blood (2). Targeting the EoP and the steps 
determining eosinophil lineage fate for treatment purposes is an 
attractive strategy, as it would prevent the production of mature 
eosinophils and all of their immune-activating contents; thus, 
delineating the factors that are essential for eosinophil lineage 
commitment will likely be clinically relevant.

eosinophil Lineage instruction by  
GATA-1 and GATA-2
It is well established that myeloid progenitor expression of the TF 
GATA-1 is essential for eosinophil lineage commitment (6–9). 
The findings of these earlier studies were supported recently by 

global gene expression profiling of single murine multipotent 
progenitor cells revealing that the commitment to the eosinophil 
lineage segregated with Gata1 expression (10). In addition, 
scRNA-seq of murine GMPs (Lin−CD34+c-KIT+CD16/32hi) 
revealed a rare GMP subset with eosinophil lineage potential and 
that maintained expression of Gata1 (11).

Two nuclear factors, friend of GATA-1 (FOG-1; Zfpm1) and 
interferon regulatory factor 8 (IRF8; Irf8 or Icsbp), have been 
shown to be important for regulating Gata1 expression and/
or function in myeloid progenitors and, consequently, to affect 
eosinophil production. FOG-1 is a transcriptional cofactor that 
facilitates binding of GATA factors to DNA and recruits chroma-
tin remodeling complexes (12–14). FOG-1 is highly expressed 
by multipotent progenitors, antagonizes GATA-1 transcriptional 
activity, and must be downregulated to allow for eosinophil lineage 
commitment (15, 16). Loss of FOG-1 expression in mice is early 
embryonic lethal from severe anemia due to the requirement for 
FOG-1 for the formation of erythroid-lineage progenitors (17). 
FOG-1 deficiency in hematopoietic stem cells results in increased 
commitment along the myeloid lineages and aberrant expression 
of myeloid-related genes in megakaryocytic and erythroid cells 
(18), highlighting the role for FOG-1 in suppressing myeloid cell 
development. In contrast, loss of Irf8 expression in mice resulted 
in reduced EoP (and eosinophil) frequency in the bone marrow 
and lower Gata1 expression in the EoPs that were produced 
(19), suggesting that the TF IRF8 is critical for upregulating  
and/or maintaining GATA-1 expression in myeloid progenitors 
for eosinophil lineage commitment. Notably, murine GMPs  
with eosinophil lineage potential and that maintained Gata1 
expression also expressed intermediate levels of Irf8 (11).

Murine EoPs express both GATA-1 and GATA-2, whereas 
GMPs express no GATA-1 and low to no level of GATA-2  
(5, 20). Ectopic expression of GATA-2 in murine GMPs and 
human CD34+ hematopoietic progenitors was sufficient to 
instruct commitment to the eosinophil lineage (7, 20) and induce 
expression of GATA-1 (20). GATA-1 and GATA-2 have identical 
DNA sequence binding preferences, but their target genes and 
transcriptional responsibilities can be cell specific and/or over-
lapping, likely via a multitude of coregulators (e.g., FOG-1) (21). 
Targeted deletion of GATA-1 or GATA-2 has revealed that they 
control distinct biological processes that affect multiple hemat-
opoietic lineages (21). Taken together, these studies emphasize 
the essential and instructive role for GATA TFs in eosinophil 
development; yet, targeting GATA-1 or GATA-2 therapeutically 
is likely to have significant and unacceptable effects on other 
hematopoietic lineages.

C/eBPα Co-expression with GATA-1  
or GATA-2
In addition to expressing GATA-1 and GATA-2, EoPs express 
relatively high levels of the TF CCAAT/enhancer-binding pro-
tein alpha (C/EBPα) (20). C/EBPα is necessary for eosinophil 
development, as C/EBPα-deficient mice lack eosinophils (and 
neutrophils) (22). The level of C/EBPα expression is important 
for eosinophil- vs neutrophil-lineage commitment, as elevated 
expression of C/EBPα in GMPs due to an impaired protein deg-
radation pathway results in increased neutrophil differentiation 
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at the expense of eosinophils (23). In addition, the order of 
expression of GATA factors and C/EBPα is critical for eosinophil 
lineage commitment (8, 20, 24). Enforced expression of GATA-1 
or GATA-2 in a C/EBPα-expressing progenitor results in eosino-
phil lineage commitment (20). In contrast, ectopic expression of 
GATA-2 prior to C/EBPα expression leads to basophil-lineage 
commitment (20). It is believed that C/EBPα is at least partially 
responsible for the downregulation of FOG-1 expression in 
myeloid progenitors promoting eosinophil development (15).

C/eBPε Promotes eosinophil Cell Fate
Multiple isoforms of the TF C/EBPε with distinct transcriptional 
functions (e.g., activators and repressors) are expressed during 
eosinophil maturation, and expression levels of the varying iso-
forms change with developmental stage (25, 26), reinforcing that 
ratios of TFs with combinatorial and even antagonistic activities 
are highlights of the eosinophil developmental program. Low 
levels of the activator C/EBPε isoforms are expressed in CD34+ 
hematopoietic progenitors, and all isoforms increase in expres-
sion during IL-5-mediated differentiation, with the repressor 
isoforms predominating during later stages of maturation (25). 
Mice deficient in C/EBPε fail to generate mature eosinophils or 
normal neutrophils (27), supporting a critical role for C/EBPε 
in a common upstream myeloid progenitor. Notably, ectopic 
expression of the activator isoforms of C/EBPε in umbilical 
cord blood CD34+ progenitors resulted in markedly increased 
commitment to the eosinophil lineage (25). In contrast, expres-
sion of the repressor isoforms decreased eosinophil cell fate, 
but not other myeloid lineages (25), suggesting that inducing 
expression of repressor isoforms in early myeloid progenitors 
may specifically inhibit eosinophil production. Expression of the 
four isoforms of C/EBPε results from differential splicing and 
alternative use of promoters (26, 28), but the critical transcrip-
tional regulators that orchestrate the expression of the different 
isoforms is not known.

Unclear Roles for PU.1
The TF PU.1 is a member of the ETS family of DNA-binding 
proteins with an essential function in both myeloid and lym-
phoid development (29, 30). Though the PU.1 expression level 
in myeloid progenitors has been shown to be important in 
regulating macrophage and neutrophil cell fates (3, 31), a defini-
tive early role for PU.1 in eosinophil lineage commitment has 
not been defined. Gene expression analysis of PU.1-deficient 
fetal liver cells revealed expression of eosinophil peroxidase and 
major basic protein (Prg2), but little to no Il5ra (32), suggesting 
that PU.1 is not essential for eosinophil lineage commitment, but 
studies with a specific focus on the eosinophil lineage potential of 
hematopoietic cells deficient in PU.1 are needed.

Summary of eosinophil Lineage 
Commitment
In summary, eosinophil lineage commitment occurs in a myeloid 
multipotent progenitor that expresses C/EBPα, C/EBPε, and 
IRF8 followed by concomitant declining FOG-1 expression and 
increasing GATA-1 and GATA-2 expression (Figure  1). This 

hierarchical combination of TFs has been shown to be necessary 
for eosinophil lineage commitment.

eOSinOPHiL MATURATiOn

Human eosinophils have characteristic morphologic features, 
including a bilobed nucleus and cytoplasmic granules filled 
with cationic proteins that are packaged in a specific manner 
(Figure  1). Eosinophils are terminally differentiated and do 
not proliferate once they leave the bone marrow. We noted that 
mature eosinophils share expression of 60 TFs with EoPs and 
express an additional 35 TFs that EoPs do not (5), suggesting that 
it requires a greater number of TFs to produce a more complex 
and differentiated cell. Identifying the critical TFs for specific 
eosinophil functional responses will provide potential new thera-
peutic targets.

PU.1 Priming for Transcription
Recent studies in macrophages have revealed a collaborative inter-
action between PU.1 and other lineage-determining TFs, such as 
C/EBPα, to open chromatin and “prime” genes for transcription 
(33, 34). Consistent with this role as a “pioneer” TF, PU.1 has 
been shown to cooperatively regulate the expression of eosinophil 
granule protein genes (35–37), including PRG2 (major basic pro-
tein) and RNS2 (eosinophil-derived neurotoxin), highlighting an 
important role for PU.1 in eosinophil maturation. Future studies 
are needed to determine how the distribution of PU.1 across the 
genome differs between granulocytes (eosinophils, neutrophils, 
basophils, and mast cells) and what partnerships are critical for 
terminal differentiation of the distinct cell types.

C/eBPε interaction with PU.1
One of the PU.1 collaborators in regulating gene expression 
during eosinophil maturation is the TF C/EBPε. The peripheral 
blood and bone marrow of adult mice deficient in C/EBPε 
have a pronounced increase in immature myeloid precursors, 
indicating a blockade in terminal granulocyte differentiation in 
the absence of C/EBPε (27). In addition, ectopic expression of  
C/EBPε in CD34+ hematopoietic progenitors increased the rate of 
eosinophil maturation (25). C/EBPε is important for the expres-
sion of secondary granules in both neutrophils and eosinophils 
(36, 37), and C/EBPε deficiency results in impaired functional 
responses for neutrophils (27). Individuals with mutations that 
abolish C/EBPε expression produce abnormal neutrophils and 
eosinophils that lack specific granules; thus, these individuals 
suffer from early and frequent bacterial infections (26, 38, 39),  
providing clinically relevant support for a critical role for  
C/EBPε in terminal differentiation of granulocytes. Interestingly, 
peripheral blood eosinophils predominantly express one of the 
repressor isoforms of C/EBPε (36), suggesting that C/EBPε’s 
repressive activity is more important during late-stage eosinophil 
maturation.

XBP1 is Required for eoP Survival
Murine EoPs have been shown to contain nascent granules (1, 5) 
and express granule protein mRNAs at a higher level than mature 
eosinophils (5); thus, early EoP differentiation likely represents 
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a developmentally restricted period during eosinophilopoiesis 
when protein production and endoplasmic reticulum (ER) 
demand peaks. XBP1 (Xbp1) is a TF that is involved in the unfolded 
protein response triggered by ER stress (40). In response to ER 
stress, Xbp1 mRNA is spliced by the endoribonuclease IRE1α 
followed by translation of the active TF XBP1. Accumulation 
of the spliced Xbp1 mRNA was higher in GMPs and EoPs than 
eosinophil precursors, and no spliced Xbp1 mRNA was noted in 
mature eosinophils, which is consistent with activation of the ER 
stress pathway during high protein synthetic demands through 
eosinophil maturation (41). Notably, loss of Xbp1 expression in 
hematopoietic cells resulted in a compete loss of mature eosino-
phils (41). EoPs were present in the bone marrow but at a lower 
frequency in Xbp1-deficient than Xbp1-sufficient mice, likely 
due to poor survival (41); thus, Xbp1 is essential for eosinophil 
maturation but not lineage commitment.

iD2 enhances Terminal Differentiation
Inhibitor of DNA-binding (ID) proteins is a family of negative 
transcriptional regulators that heterodimerizes with basic helix-
loop-helix TFs and prevents binding to the DNA (42). Expression 
of ID2 was upregulated during eosinophil maturation, and 
ectopic expression of ID2 in human CD34+ hematopoietic pro-
genitors resulted in increased mature eosinophils, with no change 
in frequency of the earlier precursors (43), suggesting that ID2  
enhances terminal differentiation. In contrast, expression of ID1 
declines during eosinophil maturation and inhibits terminal  
differentiation (43).

eOSinOPHiL FUnCTiOn

In addition to orchestrating eosinophil production, TFs also 
participate in eosinophil functional responses and survival. 
Glucocorticoids are the first-line therapy for eosinophil-associated 
disorders, such as allergy, asthma, eosinophilic gastrointestinal 
disorders and hypereosinophilic syndrome (44, 45); yet, there 
are a subset of individuals with severe asthma with eosinophilia 
despite high doses of glucocorticoids (46–48) and patients 
with hypereosinophilic syndrome often become glucocorticoid 
refractory (49, 50). The TF NFIL3 has recently been shown to be 
induced by IL-5 stimulation in eosinophils and to protect against 
glucocorticoid-induced apoptosis (51), suggesting that targeting 
NFIL3 in patients may restore glucocorticoid sensitivity. STAT6 is 
another TF that has been shown to regulate eosinophil functional 
responses, specifically in experimental asthma. Sensitized mice 
with STAT6-deficient eosinophils were protected against mucus 
overproduction and airway hyperresponsiveness following aller-
gen challenge (52), highlighting an important role for STAT6 sign-
aling in eosinophils in allergic asthma. Yet, eosinophil-intrinsic 

STAT6 was not required for eosinophil recruitment into tissues 
in response to parasitic infection (53), highlighting the need for 
further investigations to delineate the impact of environmental 
signals on gene regulatory programs. Together, these studies 
suggest that targeting TFs in specific clinical settings may impact 
eosinophil function and survival.

COnCLUSiOn AnD FUTURe DiReCTiOnS

As there have been no described TFs that are specific to the 
eosinophil lineage, targeting eosinophil production currently 
has been achieved primarily via indirect means. A wealth of 
evidence support a critical role for the cytokine IL-5 in mediating 
disease-associated eosinophilia, and neutralizing IL-5 indirectly 
suppresses eosinophil maturation (54). IL-5 is produced by type 
2 helper T (Th2) cells and the TF GATA-3 has been shown to 
control expression of IL-5 in Th2 cells (55). In addition, group 
2 innate lymphoid cells (ILC2s) produce large amounts of IL-5 
upon activation by epithelial-derived cytokines (56, 57) and 
GATA-3 is essential for ILC2 development (58); thus, GATA-3 
is an attractive therapeutic target to prevent IL-5 expression. 
Notably, treatment with a DNA enzyme that cleaved GATA3 
mRNA resulted in reduced airway eosinophilia and plasma lev-
els of IL-5 in individuals with asthma (59, 60), highlighting the 
feasibility of targeting TFs in patients with eosinophil disorders. 
With emerging technology and public databases of information 
available to investigators around the world, the future for research 
in eosinophil development is bright. Many new questions have 
arisen as our knowledge expands. Recently, a new regulatory 
eosinophil subset has been described in the murine lung and 
with a transcriptome that differed from that of inflammatory 
eosinophils (61). In addition, thymus-resident eosinophils have 
a distinct phenotype from other tissue-resident eosinophils (62). 
Together, these studies indicate that extrinsic signals from the 
local environment likely affect gene expression via changes in the 
regulatory program or that these eosinophil subsets are produced 
via a differential developmental program. Understanding how 
specific signals direct distinct patterns of gene expression required 
for the specialized functions of tissue-resident eosinophils will 
likely lead to new targets for therapeutic intervention.
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