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The quality of super resolution images obtained by stochastic single-molecule microscopy critically depends
on image analysis algorithms. We find that the choice of background estimator is often the most important
determinant of reconstruction quality. A variety of techniques have found use, but many have a very narrow
range of applicability depending upon the characteristics of the raw data. Importantly, we observe that when
using otherwise accurate algorithms, unaccounted background components can give rise to biases on scales
defeating the purpose of super-resolution microscopy. We find that a temporal median filter in particular
provides a simple yet effective solution to the problem of background estimation, which we demonstrate
over a range of imaging modalities and different reconstruction methods.

T
he diffraction limit, which has traditionally limited the ability of light microscopy to discern biological
structures at nanometer resolution, has been circumvented by a number of different super-resolution
techniques1. In one class of widely used methods, including (F)PALM, STORM, dSTORM, and GSDIM2,

individual fluorescent molecules are stochastically switched to a temporary detectable state, during which the
location of the individual molecules is determined at higher resolution using image analysis algorithms3–5. Several
different methodologies for performing stochastic single-molecule super-resolution reconstructions have been
described and generally fall into two broad categories: localization based3,4,6,7 and grid based reconstruction
methods5,8. Localization based methods typically utilize a Gaussian fit or a center of mass calculation, while grid
based reconstruction methods rely on an inverse modeling approach by deconvolution or compressed sensing.

However, a typical super-resolution dataset may contain significant non-sparse, structured background com-
ponents, complicating the analysis regardless of the method chosen for analysis. This background may accrue for
a variety of reasons, such as weakly, continuously emitting fluorescent molecules attached to cellular structures or
cellular auto-fluorescence9,10. In order to accurately reconstruct a super-resolution image, all analysis algorithms
require that the foreground signal from sparsely distributed emitters (containing the super-resolution informa-
tion) is sufficiently separated from this background.

For each data frame the observed fluorescence can be modeled as a sparse distribution of emitters that is
convolved with a given or estimated point spread function and a spatio-temporal background:

model~convolve PSF, distributionð Þzbackground ð1Þ

The first term (foreground) contains the super resolution information and is fitted to the PSF model, given a
certain estimated or fitted background. We find that the quality of this background estimate is critical to attaining
reliable reconstructions; in many practical circumstances this can have a much greater impact on the fidelity of the
final image than the specifics of the treatment of the foreground term.

The vast majority of published super-resolution reconstruction algorithms utilize spatial filtering or local
background fitting for background estimation. While foreground and background can be distinguished with
some limited specificity on the basis of their spatial frequencies and intensity, there typically exists no clear band-
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gap between these spatial frequencies across the whole data set. This
makes spatial filtering a limited tool for robustly separating fore-
ground from complex, structured background.

A key difference between non-specific (background) fluorescence
and emitters of interest is that the latter appear and disappear over

relatively rapid timescales. In the general signal processing literature,
there are many different methods described for background estimation
that exploit temporal information, which can greatly differ in compu-
tational complexity11. Although a few previous super-resolution stud-
ies have mentioned, obliquely, some form of temporal filtering12,13 for

Figure 1 | Background and foreground estimation by temporal median filtering. Panels in the left column (a,d,g) show raw data frames from LifeAct-

mEos3.2, MyosinIIa-Alexa532 and MyosinIIa-Alexa647 data sets. Middle column (b,e,h) shows the background estimated for that frame using the

temporal median filter (window size of 101 frames with 10 frame interpolation). Right column (c,f,i) shows the foreground calculated by subtracting the

estimated background from the raw frames. For display purposes the values were clipped at zero in order to only show the fluorescence that is higher than

the estimated background. Panel j shows the raw fluorescence trace (MyosinIIa Alexa 647 data set) at two adjacent pixels (arrow in panel h) and the

corresponding background estimate.
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estimating the background component, the importance and effect of
this type of background estimation has not been rigorously studied or
reported. For this reason, we have explored temporal background
estimation methods in the context of super-resolution. We found that
a running median filter applied to each pixel in the dataset along its
temporal axis represents a straightforward and particular effective
background estimator that greatly enhances the quality of the recon-
struction. The logic behind the median filter as a background estim-
ator is that super-resolution data is always somewhat sparse, and
insofar as it is sparse, foreground contributions will tend be discarded
by the median filter as outliers and therefore readily separated from
background components. The running nature of the filter allows for
gradual temporal changes in background and an arbitrary spatial
shape of the background is permitted.

We have applied temporal median filtering to data obtained from
several different stochastic super resolution techniques, reconstruc-
tion methods, and probes. Furthermore, we have performed a num-
ber of simulations that mimic realistic conditions for stochastic super
resolution data in order to validate and check the effect of the various
techniques.

Results
Estimation of background component using temporal median
filter. The ability of a temporal median filter to separate
background and foreground is illustrated in Figure 1. The panels
in the left column (a,d,g) show raw data frames from LifeAct-
mEos3.2, MyosinIIa-Alexa532 and MyosinIIa-Alexa647 data sets.
The middle column (b,e,h) shows the background estimated for
that frame using the temporal median filter (window size of 101
frames with 10 frame interpolation, see material and methods).
The right column (c,f,i) shows the foreground obtained by directly
subtracting the estimated background from the raw frames. Static or
very slowly varying fluorescence in the image largely ends up in the
background. Notable are the fiducial beads visible in panels a and b
that are no longer apparent in the foreground image, as well as the

ridge at the cell border (arrow). Panel j shows the raw fluorescence
trace (MyosinIIa Alexa 647 data set) at two adjacent pixels (arrow in
panel h) and the corresponding background estimate. The
background level is different for these two adjacent pixels, but after
correction for background, the foreground traces, shown in panel k,
are now strongly correlated. The two traces exhibit a number of
switching events that are now more accurately separated from the
background. The estimated background is relatively smooth
compared to the noise in the raw data, which depends on the
window size used for the running median filter (see material and
methods).

Note that the part of the signal that the median filter deems to be
background is not sparse, which would confound attempts at dedu-
cing its origin of emission with any super resolution algorithm. The
implied foreground component, by contrast, is very sparse. The
dataset in the top row contains a very dominant and complex back-
ground. Many of the strong foreground events are barely recogniz-
able as such in a single raw data frame. The Myosin-Alexa dataset of
the third row does not appear to contain much background upon
inspection of the raw data, but the temporal median filter nonetheless
reveals a substantial non-sparse signal component.

Dual-color GSDIM co-localization experiment. We performed
several dual-color GSDIM co-localization experiments using the
probes Alexa532 and Alexa647 attached to different secondary
antibodies recognizing the same primary antibody, which binds to
myosinIIa in one experiment (Fig. 2) and vinculin in another
experiment (Supplementary Fig. S1). Hence, a clear colocalization
of the Alexa 532 and 647 color channels is expected in the super
resolution reconstructions. However, for both experiments we
observed large discrepancies between the reconstructed color
channels (Fig. 2b,f, Supplementary Fig. S1a,c) using three represen-
tative (existing) super-resolution analysis algorithms, including
Gaussian fitting3, center of mass localization4 (Supplementary
Fig. S2a,d), and a (multi-fitting) grid based method5 (Supplementary

Figure 2 | Application of a temporal median filter prior to localization analysis improves fidelity of two-color GSDIM data. GSDIM imaging of

myosinIIa independently labeled with Alexa532 (a–c) and Alexa647 (e–g). Without the utilization of the temporal median filter, the RapidSTORM

reconstruction of the Alexa532 data set shows localizations that are skewed towards regions of high fluorescence (b) and exhibit poor co-localization with

the Alexa647 (f) based on Pearson’s cross-correlation analysis (f, inset). Use of the temporal median filter prior to running the localization eliminates these

artifacts in the Alexa532 reconstruction (c) and shows higher correlation with the Alexa647 reconstruction (g, inset). Intensity traces (d, h) are normalized

to the area under the trace. Similar analysis for alternative reconstruction methods can be found in supplemental Figs S2,3. Scale bar: 3 mm.
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Fig. S3a,d). Specifically, in the Alexa532 data-sets, the presence of a
moderately high background (Fig. 2a, supplementary video 1) results
in a systematic bias such that the reconstruction is skewed towards
regions with high fluorescence intensities. This gives the appearance of
distinct foci along the fibers and subtle deformations, such as over-
sharpening (compare Fig2. b and f, Fig2. b and c, Intensity profile,
Fig. 2d). These artifacts were no longer observed when background
was accounted for (see material and methods) using the temporal
median filter prior to reconstruction (Fig. 2c, Supplementary Figs.
S2, 3). Prior application of the temporal background-estimation
filter results in a higher co-localization index as determined by
cross-correlation analysis of the Alexa532 and Alexa647 data-sets
(Fig. 2, insets).

LifeAct-mEos3.2 PALM data with structured background. In PALM
data structured-background occurs quite frequently, as a slow buildup
of cellular auto-fluorescence with complex spatial characteristics can
develop during the acquisition13,14. In a HeLa cell expressing LifeAct-
mEos3.215,16 we observed this phenomenon (Fig. 1a,b, arrow, and
Supplementary video S2), which gives rise to errant super resolution

localizations yielding a spurious structure along the edge of the
background (Fig 3a,c) and deformations. These types of artifacts are
no longer present after improved background correction (Fig 3a–c),
regardless of reconstruction method. Improper estimates of structured
background of such large relative magnitude may easily lead to
artifacts in the reconstruction on a micrometer scale, nullifying the
intent of super resolution microscopy.

Intricate structures in LifeAct-Venus GSDIM data sets. Figure 4
shows two additional GSDIM data sets obtained with LifeAct-Venus,
a different fluorescent probe. Panel 4a shows the sum of all frames in
the data sets; panel 4b, shows the sum of all background subtracted
frames, both represent a diffraction limited image. Panels 4c and
4d show the RapidSTORM3 reconstruction obtained without and
with application of the temporal median filter. The analysis of
these data sets revealed that temporal median filtering reduces the
presence of strong foci at filament crossings, which appear to induce
deformations that are not apparent in the diffraction limited images
(arrow 4a,d). The fact that panel 4c has features that deviate from
panels 4a, 4b and 4d can be attributed to the inappropriate

Figure 3 | Reconstructions for LifeAct-mEos3.2 HeLa cell using RapidSTORM, QuickPALM and deconvolution with and without the temporal
median filter applied. An area that shows a high-degree of structured (heterogeneous) background fluorescence indicated with an arrow in Fig S1a-b leads

to a spurious structure when using RapidSTORM (median smoothing 5 px setting) or deconvolution if the temporal median was not applied. When the

temporal median filter prior to running the reconstruction analysis was applied (b, e, h) the effect of structured background is greatly reduced in the

reconstruction such that the intensity profiles are now in much closer agreement for the different methods (c, f, i). This illustrates the relative importance

of background estimation in the overall reconstruction process. Scale bar: 3 mm.

www.nature.com/scientificreports
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application of a super resolution algorithm to a dataset that is not
sufficiently sparse.

Panels 4e and 4f show the RapidSTORM reconstruction obtained
without and with application of the temporal median filter of another
HeLa cell with LifeAct-Venus. The background-corrected recon-
struction reveals more intricate details in the F-actin structures,
which are otherwise lost to background-related localization errors.
Also the deformation induced by a hot-spot (arrow 4e,f) is greatly
reduced in the background corrected reconstruction.

Analysis of synthetic datasets. A number of simulations that mimic
realistic conditions for stochastic super resolution data were
performed in order to validate and check the effect of the various
techniques. Key parameters such as event amplitude, event density,
and background conditions were varied. For the latter, uniform
background conditions and structured background conditions

were used. These parameter variations were applied to ring
structures and filament structures, for which the ring size and the
distance between filaments was varied respectively.

Previous work in synthetic analysis has aimed to characterize the
performance of a method in terms of accuracy, and a false positive
and false negative rate. A different approach is taken here, as these
measures are not necessarily adequate to characterize the effect of
structured background on reconstruction quality. Specifically, the
method described here is aimed to better quantify the systematic bias
induced by correlated errors in the reconstruction, which is not
conveyed by localization standard error of the mean alone. An image
may appear very sharp, which in the absence of bias may be regarded
as an indication of high accuracy, but in the presence of systematic
biases, the result may in fact be substantially distorted.

A quantification of localization events in isolation makes it fun-
damentally difficult to consider correlations between localization
errors. But by quantifying the appearance of structures as a whole,
a measure of correlated errors can be derived. Line and ring patterns
can be used to characterize the behavior of an algorithm. Line pat-
terns (Fig. 5) test the ability to resolve nearby features, whereas ring
patterns (Fig. 6) additionally test the influence of curved geometries
as well. In order to quantitatively characterize the accuracy of a
method, the symmetry axis of these 2D patterns is utilized to obtain
a 1D distribution of localizations (profiles). The repeatability of the
localizations can be characterized in term of the width of these dis-
tributions and the systematic bias is given by the offset between the
distribution of localizations and the underlying structure. It is in this
measure of bias that the different methods investigated here show the
biggest performance differences and where the necessity of accurate
background estimation becomes most apparent.

Figure 5 shows the results of simulations of 10 nm wide filament
pairs separated at decreasing distances (Fig. 5a) that were positioned
at different distances (d) and placed on structured background (see
material and methods). A simulated data set containing structured
background (Fig. 5b) can result in reconstructions that show both
artifacts and distorted structures (Fig. 5c). These effects are mitigated
by the utilization of a temporal median filter prior to performing the
localization analysis (Fig. 5d), resulting in a more accurate rendering
of the structures. Fig. 5e shows the quantification of synthetic fila-
ments shown in Fig. 5c–d. The profiles shown in red and green
represent the quantified mean profile of the reconstructed filaments
measured from the midline outward. The red profiles were obtained
using RapidSTORM without applying the temporal median filter
prior to analysis and the green profiles were obtained using
RapidSTORM after application of the temporal median filter.
Application of the temporal median filter removes the artifactual
structure in between the filaments (zero position), which was caused
by the structured background. Furthermore, the application of the
temporal median filter removed the inward bias visible in the top row
panels (red), which is no longer present in the bottom row panels
(green).

Figure 6 shows the effect of application of the temporal median
filter prior to reconstruction with RapidSTORM on rings with a
radius of 75 nm (see material and methods). The left column in both
figures shows the reconstruction of the ring when there is no struc-
tured background. For all amplitudes, we find that without the pres-
ence of background the ring can be reconstructed reliably (left
column), independent of the temporal median filter. However, if
the structured background increases, localizations are increasingly
biased by the structured background, not only skewing the localiza-
tions towards the center of the ring, yielding a smaller ring, but also
generating false positives caused by the structured background.
When the background, estimated using the temporal median filter,
is accounted for prior to analysis with RapidSTORM, in all cases it
was observed that the ring can be constructed without any bias
towards the center of the ring giving a similar result independent

Figure 4 | GSDIM data of two HeLA cells with LifeAct-Venus Panel a

shows the sum of all frames in the data sets; panel b, shows the sum of all

background subtracted frames, both represent a diffraction limited image.

Panels c and d show the RapidSTORM reconstruction obtained without

and with application of the temporal median filter. The analysis of these

data sets revealed that temporal median filtering reduces the presence of

strong foci at filament crossings, which appear to induce deformations that

are not apparent in the diffraction limited images. Panels e and f show the

RapidSTORM reconstruction obtained without and with application of

the temporal median filter of another HeLa cell with an intricate F-actin

network. The used threshold for all reconstructions was the same and the

Gaussian smoothing filter was selected in this case (1 sigma). Color scale

for images in panels c,d and e,f were chosen to be equal (scale bar 3 mm).

www.nature.com/scientificreports
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of the background level. As expected from the Thompson equation17,
at higher background levels and lower amplitudes the accuracy is
reduced, yielding a wider ring wall but the result remains unbiased
and its position is conserved.

We have also explored the effect of increasing event densities on
the reconstruction of the rings with a radius of 150 nm using the
same simulation parameters as used for the 75 nm ring. It was
observed that an increasing overlap of events can introduce a recon-
struction bias towards the center of the ring (Figs. S7). Application of
the temporal median filter will compensate for this bias when using
RapidSTORM (Fig. S8) because the temporal median filter removes
part of the fluorescence that stems from overlapping events.
However, this result is particular to RapidSTORM. The median filter
in combination with a deconvolution reconstruction in fact shows a
slight outward bias of the ring at extreme event density (Fig S9). This
highlights the importance of choosing an appropriate combination
of background estimator and localization algorithm (see Discussion).

Discussion
We have shown that appropriate background estimation is of pivotal
importance for obtaining reliable super resolution reconstructions,
which we illustrate with data obtained from (d)STORM, GSDIM,
and PALM using several different probes representing a range of data
types and qualities. Especially in case of spatially complex background,
the advantages of temporal median background filtering can be pro-
found. Application of the proposed background estimator eliminates
the large discrepancies that are otherwise observed when analyzing the
same data with different super-resolution algorithms (Fig. 7), under-
lining the relative importance of background estimation in the overall
reconstruction process. By using an appropriate background estim-
ator, a wider range of imaging conditions, type of probes, and samples
are tolerated for stochastic super-resolution microscopy.

Use of a temporal median filter enables background estimation for
each pixel in a given data frame from the temporal distribution; an

estimate of the background is obtained in this way without interfer-
ing with the spatial resolution of the original image. Ideally, the use of
temporal median filtering and estimation of the background is
directly incorporated in the reconstruction software, taking into
account the appropriate statistical model. However, we observe that
background subtraction with uniform offset can be applied as a pre-
processing step and that reconstruction on the background corrected
data set using existing software in general works robustly and the
added uncertainty generally is negligible compared to the det-
rimental effects structured background can have. In the case of local-
ization based algorithms, special care could be taken when
calculating the localization error as the background estimate will
introduce some extra noise. The standard error of the median is by
good approximation proportional to the standard error of the mean,
which scales with a 3 s/!N, where N denotes the median filter
window size, s2 the variance, and a denotes a proportionality factor
that depends on the distribution. For Poissonian data, the variance
scales with the mean intensity m, s25k2 3 m, where k denotes the
detector gain. Then the added variance due to the background estim-
ate becomes sb

2 5 a2 3 s2/N. The relative increase in the variance is
approximately sb

2/s2 5 a2/N. The approximate proportionality fac-
tor for a normal like distribution is about 1.253, hence for a window
size of ,100 frames the variance increases by 1.6%.

We have compared a variety of existing widely used background
estimation methods. The local fitting of background as employed in3

generally turns out to be the least robust method (Fig 3). Under-
standably, this method cannot discern the peak of a background
feature from a foreground event, nor can one effectively discriminate
a peak on a slope, from a displaced peak. Therefore, using such a
method leads to both false positives and biases, respectively.

A spatial (Gaussian) filter as a background estimate4 works some-
what better, but is sensitive to sharp background features, which get
mistaken for foreground, and high density areas, which readily get
mistaken for background in a distortive manner (Fig S2).

Figure 5 | Thin filaments at different inter-filament distances (a) simulated with structured background (b). The structured background leads both

artifacts and distorted structures (c), which are mitigated by the utilization of a temporal median filter prior to performing the localization analysis (d),

resulting in a more accurate rendering of the structures. (e) Quantification of synthetic filaments shown in c-d. Pairs of filaments, each with thickness

10 nm (black bar). The profiles shown in red and green represent the quantified mean profile of the reconstructed filaments measured from the

midline outward. Reconstructions were obtained from RapidSTORM, with settings median smoothing (5 px) and threshold 100 and rendered using the

obtained amplitude blurred with a Gaussian with a SEM of 2 nm. Prior to reconstruction by RapidSTORM the background was accounted for using

the temporal median filter, with a filter size of 101 frames and 10 frame interpolation.

www.nature.com/scientificreports
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The published temporal filters have been implemented and are
found to be generally superior to the spatial filters. The method in12

proposes a ten frame running mean filter. This works reasonably well
for guarding against errors in localization accuracy, but we find that
for high density, high S/N data, the median filter captures up to four
times as much of the foreground signal, compared to the short mean
filter, which may result in substantial distortions of appearance (sup-
plemental Fig. S10). The differences of frames method employed in18

can be viewed as a 1-frame mean filter and consequently shares
similar shortcomings, but to a stronger degree.

The background estimation method employed in13 may also be
considered a temporal filter. In essence, the first principal compon-
ent of the dataset is taken as a background estimate. This may be
regarded as a truncated eigenbackground11. For datasets with simple
background behavior, this method works well. But according to
expectation, we find a single principal component as a background
estimate breaks down for datasets where the background dynamics
are too complex to be well represented by a single component (sup-
plemental Fig. S11).

We find that the temporal median filter generally works best over
the range of parameter conditions tested. That said, at extreme event
densities background estimation becomes fundamentally more dif-
ficult and potentially significant errors may remain in the final recon-
struction (supplemental Fig. S9–11).

Temporal median filtering can be easily integrated into existing
workflows and consistently shows profound improvements in

combination with several different classes of reconstruction algo-
rithms and over a wide-range of data types and qualities. As our
results demonstrate, without a conscious choice of background
estimator appropriate for the given data quality, one is not guar-
anteed to achieve any super resolution at all. Because of the signifi-
cant impact background can have on the fidelity of the final
reconstructed image, it is highly recommended that an appropriate
consideration of background estimation be a fundamental part of
any stochastic super-resolution analysis workflow.

Methods
Estimation of the background component. For most datasets with slow varying
mean frame intensities the temporal median filter can be applied directly. However,
because the average frame intensity can sometimes vary significantly due, for
example, to an overall loss of fluorescence caused by depletion of fluorescent
molecules or variations in the intensity of the excitation laser, a direct application of a
temporal median filter on the raw data may be filtering other temporal signal
components than event switching. To correct for entire frame intensity fluctuations,
first the mean fluorescence intensity for each frame is determined and subsequently
the data is scaled according to this mean fluorescence profile13. A temporal moving
median filter is then applied to the scaled data. The obtained median values are then
rescaled by multiplying the median values with the mean frame intensity.

Dt~ Dx,y,t
� �

x,y ð2aÞ

Nx,y,t~
Dx,y,t

Dt
ð2bÞ

Figure 6 | RapidSTORM reconstructions of a ring with radius 75 nm with a threshold of 10 photons and using the standard spatial median filter
without (a) and with (b) application of the temporal median filter prior to reconstruction. Background corrected reconstruction no longer show artifacts

in the reconstructions and in all cases reliably reconstruct the ring. For these simulations the event cycle amplitude A 5 [200, 800, 3200] was varied and the

structured background, where the peak of the structured background was varied using the values bs 5 [0, 10, 20, 30, 40, 50] photons using the same event

list for each case with simulations settings as described in the supplementary information. The radial profiles of the rings were calculated for each panel

and are shown together with the original ring in the right hand side column. The intensity scale in each panel was adjusted to show the full intensity range

independent of the other panels. The localizations were obtained from RapidSTORM with settings median smoothing (5 px) and threshold 100 and

rendered using the obtained amplitude blurred with a Gaussian with a SEM of 2 nm. Prior to reconstruction by RapidSTORM the background was

accounted for using the temporal median filter, with a filter size of 101 frames and 10 frame interpolation.

www.nature.com/scientificreports
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Figure 7 | Line scan profiles for the LifeAct-mEos3.2, MyosinIIa-Alexa532 and MyosinIIa-Alexa647 data sets from (Fig. 2, 3,S2, S3) put side by side,
using three reconstruction methods without and with application of the temporal median filter. The panels a, c and e reveal that the different methods

give different results for the same data set when no temporal median filter is applied. The panels b, d and f reveals that application of the temporal

median filter yields results that are in close agreement for the three reconstruction methods used.

www.nature.com/scientificreports
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Bx,y,t~Dt|median Nx,y,t{w , Nx,y,t{wz1,� � �, Nx,y,t ,� � �, Nx,y,tzw{1, Nx,y,tzw
� �

ð2cÞ

Where Dt denotes the mean frame intensity for frame t, Nx,y,t denotes the normalized
data frame and w denotes the window size for applying the temporal median filter.
The size of the time window should be chosen such that it is significantly longer than
the typical slow-switching events (?10). For our datasets, we typically use a window
size of about 100 frames to calculate the moving median.

We have implemented two ways of computing the running temporal median. One
way of efficiently computing the filter is by incrementally updating a list of sorted
values for each pixel and taking the center of the list. Another way of increasing
efficiency is by means of computing the median only at certain keyframes and linearly
interpolating those. Such keyframe interpolation is well justified by the slowly varying
nature of the background itself. Both methods produce virtual indistinguishable end-
results. We find that the keyframe method is roughly equally efficient as the incre-
mental method, given keyframes spaced 12 frames apart. With a 50 frame median
filter radius (101 frames), of 512x512 pixels, this processing takes ,0.1 seconds per
frame on an Intel i7-2700k at 3.8 GHz. This makes the keyframe method somewhat
preferable; it could be made faster still by increasing the distance between keyframes
without significantly affecting quality and it does not rely on low level language
extensions to attain this speed, making it easier to integrate as a technique (a python
script is provided). It is preferable that each stochastic super resolution software
package integrates an optimized version of calculating the median filter, depending
on the used programming language or hardware architecture (e.g. parallel computing
or GPU) different approaches can be followed for calculating the running median19.

Constructs and sample preparation. The LifeAct-mEos3.2 was a kind gift from Tao
Xu15,16. HeLa cells were obtained from the American Tissue Culture Collection
(ATCC). Cells were maintained in Dulbecco’s Modified Eagle Medium supplemented
with GlutaMAX and 10% Fetal bovine serum (Invitrogen, Bleiswijk NL) and grown
for at least 2 days in phenol-free media before imaging. Cells were plated on 24 mm #1
round cover-glasses (Menzel-Gläser) in six well plates. Transfections were done with
Lipofectamine 2000 reagent according to the manufacturer’s protocol (Invitrogen,
Bleiswijk NL). Twenty-four hours after transfection, cells were transferred to an
Attofluor sample chamber (Invitrogen) and imaged live in microscopy medium
(137 mM NaCl, 5.4 mM KCl, 1.8 mM CaCl2, 0.8 mM MgSO4, 20 mM D-glucose,
20 mM HEPES).

Optical setup and imaging. PALM imaging was performed on an inverted Nikon
Eclipse Ti microscope equipped with a TIRF system using a 60x ApoTIRF 1.49 oil
objective. A Coherent OBIS 488 50 mW laser was used to locate cells producing pre-
converted mEos3.2. Photo-conversion of mEos3.2 was elicited by continuous
illumination with a Coherent 50 mW 405 Cube laser with power settings of ,1 mW,
while the converted FP was excited and bleached with a 1 W 561 Coherent OPSL with
power settings typically in the range of 200–300 W/cm2. Excitation light was passed
through a quad-band dichroic 405/488/561/640 (Chroma). Emission light was passed
through a 561 nm RazorEdge ultrasteep long-pass edge filter (Semrock). Images were
recorded with an Andor iXon 897 EMCCD with 50 ms exposure times at a frame rate
at 12.2 Hz. Pixel size in the image was 67 nm.

Super-resolution imaging of Non-muscle MyosinIIA filaments and vinculin. A7r5
cells were cultured on #1.5 coverslips. After 48 hours cells were washed briefly with
PBS, fixed with 4% PFA for 10 min at room temperature and extracted with 0.1%
Triton X-100. Samples were extensively washed with PBS and blocked with 5% BSA
for 30 min at room temperature. MyosinIIA was labeled with a monoclonal primary
antibody raised in rabbit (Sigma-Aldrich) diluted to a final concentration of 1 mg/ml,
for one hour at room temperature, washed, and incubated with anti-rabbit IgG
polyclonal antibody conjugated to Alexa Fluor 647 dye molecules (Invitrogen) and
anti-rabbit IgG polyclonal antibody conjugated to Alexa Fluor 532 dye molecules
(Invitrogen) both at a final concentration of 0.01 mg/ml, for 30 minutes at room
temperature. Cells were imaged in the presence of an oxygen scavenging system (10%
glucose, 0.5 mg/ml glucose oxidase, 40 mg/ml catalase, 50 mM MEA).

HeLa cells were cultured on #1.5 coverslips. After 24 hours cells were washed
briefly with PBS, fixed with 4% PFA for 10 min at room temperature and extracted
with 0.1% Triton X-100. Samples were extensively washed with PBS and blocked with
5% BSA for 30 min at room temperature. Vinculin was labeled with a monoclonal
primary antibody raised in mouse (abcam) diluted 15400, for one hour at room
temperature, washed and incubated then with anti-mouse IgG polyclonal antibody
conjugated to Alexa Fluor 647 dye molecules (Invitrogen) and-anti mouse IgG
polyclonal antibody conjugated to Alexa Fluor 532 dye molecules (Invitrogen) both at
a final concentration of 0.01 mg/ml, for 30 minutes at room temperature. Cells were
imaged in the presence of an oxygen scavenging system (10% glucose, 0.5 mg/ml
glucose oxidase, 40 mg/ml catalase, 50 mM MEA).

Imaging of the samples was carried out on a Leica SR-GSD microscope. Images
were taken in TIRF mode at 100 frames per second. Colors were sequentially imaged
in order of decreasing wavelength. The setup consisted of the following components:
an inverted microscope (DMI6000 B, Leica Microsystems GmbH), a 1.47-NA TIRF
objective (HCX PL APO 1003 NA 1.47), a tube lens providing an extra factor of 1.63

in magnification, a 488-nm fiber laser (2RU-VFL-P-300-488), a 532-nm fiber laser
(2RU-VFL-P-1000-532-B1R, MPB Communications), a 642-nm fiber laser (2RU-
VFL-P-1000-642-B1R, MPB Communications) and an EMCCD camera (iXon
DU-897, Andor) with an effective EM gain of 148. Images were taken in TIRF mode at

100 frames per second for ,5100 time frames, giving a total measurement time of
about 1 min for each color. Colors were imaged in order of decreasing wavelength.
The filter cube (642HP-T) for imaging with the 642-nm laser consisted of an
excitation filter (zet405/642x), a dichroic mirror (t405/642rpc) and emission filters
(et710 100lp and ET650LP). The epifluorescence filter cube (532HP-T) for imaging
with the 532-nm laser consisted of an excitation filter (zet405/532x), a dichroic mirror
(t405/532rpc) and emission filters (et600/100 m and ET550LP). Pixel size in the
image was 93.11 nm.

Super-resolution imaging of Actin. HeLa cells were cultured on #1.5 coverslips.
After 24 hours cells were transiently transfected using PolyEthylene Imine (PEI)
using 1 mg of DNA and 3 mg of PEI per well on a 6-well plate, with a plasmid bearing
LifeAct tagged with the yellow fluorescent protein variant Venus. After 24 hours cells
were washed briefly with PBS and fixed with PFA for 10 min at room temperature.
Samples were extensively washed with PBS and imaged in the presence of PBS.

Imaging of the samples was carried out on a Leica SR-GSD microscope. Images
were taken in TIRF mode at 100 frames per second. The setup consisted of the
following components: an inverted microscope (DMI6000 B, Leica Microsystems
GmbH), a 1.47-NA TIRF objective (HCX PL APO 1003 NA 1.47), a tube lens
providing an extra factor of 1.63 in magnification, a488-nm fiber laser (2RU-VFL-P-
300-488), a 532-nm fiber laser (2RU-VFL-P-1000-532-B1R, MPB Communications),
a 642-nm fiber laser (2RU-VFL-P-1000-642-B1R, MPB Communications) and an
EMCCD camera (iXon DU-897, Andor) with an effective EM gain of 148. Images
were taken in TIRF mode at 100 frames per second for ,5100 time frames, giving a
total measurement time of about 1 min for each color. Colors were imaged in
decreasing wavelength order. The filter cube (642HP-T) for imaging with the 642-nm
laser consisted of an excitation filter (zet405/642x), a dichroic mirror (t405/642rpc)
and emission filters (et710 100lp and ET650LP). The epifluorescence filter cube
(532HP-T) for imaging with the 532-nm laser consisted of an excitation filter (zet405/
532x), a dichroic mirror (t405/532rpc) and emission filters (et600/100 m and
ET550LP). Pixel size in the image was 93.11 nm.

Synthetic data. We have performed a number of simulations that mimic realistic
conditions for stochastic super resolution data in order to validate and check the effect
of the various techniques. Key parameters, such as event amplitude, event density,
and background (both uniform and structured) were varied. These parameter
variations have been applied to ring structures and filament structures, with variable
ring size and the distance between filaments respectively (see Supplementary Material
for more details).

Reconstruction algorithms and rendering. For analysis of stochastic real and
simulated data two localization based methods and a direct reconstruction,
deconvolution based method were used. For the localization techniques, we utilized
RapidSTORM 33,7, which performs a Gaussian based fit, and QuickPALM 1.14, which
performs a center of mass based calculation. Background was corrected for as a
preprocessing step for these two algorithms, the corrected data was offset with a
constant value to prevent negative values. For the grid based method we implemented
the deconvolution variant without regularization as described in5,20. For this
algorithm the background estimate was directly incorporated into the statistical
model. Prior to application of the reconstruction algorithms any drift was corrected if
present. The user defined parameters for each of these methods, such as width of the
PSF and intensity thresholds, were estimated from the experimental data or obtained
directly from the synthetic input. The threshold was chosen in such a way that the
number of detected events was minimal outside the cell or in regions without
structures. Other user defined settings are mentioned in the appropriate figure
legends. In order to ensure consistency and to allow direct comparison between the
final images, we utilized our own rendering program written in Matlab R2010a (code
made available in supplementary material). From the localization lists obtained from
RapidSTORM or QuickPALM the location and amplitude of each event was extracted
and rendered; the zoom factor of the final image was set to 8. Each localization was
rendered using a Gaussian (integral normalized to unity) with a FWHM of 23.55 nm
(s 5 10 nm) and localizations from simulated data were rendered with a FWHM of
4.71 nm (s 5 2 nm).
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