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ABSTRACT

We are motivated by biological studies intended to
understand global gene expression fold change. Bi-
ologists have generally adopted a fixed cutoff to
determine the significance of fold changes in gene
expression studies (e.g. by using an observed fold
change equal to two as a fixed threshold). Scien-
tists can also use a t-test or a modified differen-
tial expression test to assess the significance of
fold changes. However, these methods either fail to
take advantage of the high dimensionality of gene
expression data or fail to test fold change directly.
Our research develops a new empirical Bayesian
approach to substantially improve the power and
accuracy of fold-change detection. Specifically, we
more accurately estimate gene-wise error variation
in the log of fold change. We then adopt a t-test
with adjusted degrees of freedom for significance as-
sessment. We apply our method to a dosage study
in Arabidopsis and a Down syndrome study in hu-
mans to illustrate the utility of our approach. We also
present a simulation study based on real datasets
to demonstrate the accuracy of our method rela-
tive to error variance estimation and power in fold-
change detection. Our developed R package with a
detailed user manual is publicly available on GitHub
at https://github.com/cuiyingbeicheng/Foldseq.

INTRODUCTION

Detecting genes that express differently between case and
control conditions is a fundamental problem in functional

genomic studies. There are two different ways to quantify
differential expressions, either by mean gene expression dif-
ference or by fold change. These two criteria lead to two dif-
ferent ranked lists of significant genes. Top ranked genes se-
lected by the expression difference method often have higher
mean expression levels but relatively smaller fold change,
and the opposite is true when using the fold change crite-
rion. The vast majority of available statistical methods and
software packages test significant gene expression differ-
ence between treatment groups. However, there are scenar-
ios where testing expression fold change is a more natural
question to inquire. This calls for development of sophisti-
cated data analysis methods to satisfy the need.

Aneuploidy, or the presence of an abnormal number of
individual chromosomes in the genome, is a well-known
phenomenon found in many different organisms. Aneu-
ploidy originates during cell division when sister chromo-
somes do not separate properly between two cells. An ex-
tra or missing copy of a chromosome is a common cause
of genetic disorders, including human birth defects such as
Down syndrome (DS) and Edwards syndrome. DS, other-
wise known as trisomy 21, arises from an extra copy of chro-
mosome 21. English physician John Langdon Down (1) first
documented the condition in 1866, hence its name ‘Down
syndrome.’ The additional genetic materials from chromo-
some 21 is thought to alter the course of normal develop-
ment and thus lead to characteristics associated with DS.
Similarly, Edwards syndrome (also known as trisomy 18)
features an extra copy of chromosome 18 due to errors in
cell division, known as meiotic nondisjunction. Different
from DS, the developmental problems resulting from tri-
somy 18 pose greater threats to health in the early months
and years of life; among babies with the condition who are
carried to term, approximately only half will be born alive.
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Aneuploidy has long been known to produce severe phe-
notypic consequences. Similar phenomena have been ob-
served and documented in eukaryotes, including yeast, pro-
tozoa, vertebrates and especially the plant kingdom (2–
7); more specifically, the addition or subtraction of a sin-
gle chromosome in the entire set is more detrimental than
altering the dosage of the complete complement. To bet-
ter understand global gene expression differences in aneu-
ploidy, a comprehensive analysis of such differences for all
five trisomies and in diploids, triploids and tetraploids of
Arabidopsis thaliana was conducted (8). Results indicated
that, in general, gene expression on the varied chromosome
ranged from compensation to a dosage effect, whereas genes
from the remainder of the genome exhibited anywhere from
no effect to reduced expression approaching the inverse
level of chromosomal imbalance. In addition, gene func-
tional analysis indicated that ribosomal, proteasomal and
gene body methylated genes were less modulated compared
with all gene classes, whereas transcription factors, signal
transduction components and organelle-targeted protein
genes were more tightly inversely affected (8). These find-
ings suggest that the addition or subtraction of a single
chromosome will invoke global gene expression changes, in-
cluding in the varied chromosome and the remainder of the
genome. Such altered regulatory stoichiometry is a major
contributor to genetic imbalance.

An important task when analyzing aneuploid data com-
pared to normal diploid data is to identify gene groups
(both cis- and trans-genes) that exhibit a dosage effect, com-
pensation effect, or inverse dosage effect. Statistically, this
task requires testing the fold change of gene expression
in comparison between aneuploidy and diploid data. At
present, no sophisticated data analysis methods or ready-
to-use software package is available for detecting genome-
wide fold changes; researchers typically use computational
tools designed to detect differentially expressed (DE) genes.
For example, in a recent trisomy study on Arabidopsis (8)
and transcriptomic analysis of DS (9), edgeR and DESeq
(10–12) were used to identify genes with an expression level
greater or less than normal; however, this strategy is sub-
optimal because edgeR and DESeq are intended to test
gene expression differences rather than to test fold-change
statistics directly. In this paper, we demonstrate that testing
fold change directly can identify more fold change-relevant
genes than testing expression differences in search of fold
change.

Specifically, we propose a hierarchical model on the log
of fold change between two comparison groups. In an ane-
uploid experiment or observational study, the comparison
groups include an aneuploid group (disease group) and
diploid group (control/healthy group). For the constructed
hierarchical model, we put an inverse gamma prior on the
error variance for each gene. An empirical Bayesian ap-
proach is adopted to produce gene-specific error variance
estimation, which generates more accurate estimates than
currently available approaches as information is borrowed
across observations from all genes. We then use the im-
proved error variance estimates to test null hypotheses of
fold change. We also construct a t-type test on the log of
fold change statistics using our improved error variance esti-
mate and its corresponding adjusted degrees of freedom. To

evaluate performance, we adopt public RNA-seq datasets
along with simulation studies based on real datasets. We
demonstrate that, compared to the usual t-test, edgeR and
DESeq methods, error variance estimation is substantially
improved by our new approach. The power of detecting
true fold change while controlling the false discovery rate
(FDR) is also greatly enhanced. We call our new method the
Foldseq approach, and our developed R package is publicly
available on GitHub at https://github.com/cuiyingbeicheng/
Foldseq.

MATERIALS AND METHODS

Data model

To ground our method, we will first introduce relevant no-
tations. Let Xg

i j denote the normalized gene expression of
gene g of replicate j in treatment group i, where i = 1 for
the control group and i = 2 for the treatment group, j = 1,
. . . , ni and g = 1, . . . , G. Our proposed method can be easily
extended to a multiple-group comparison scenario. To illus-
trate our approach, we use a two-group comparison as an
example here.

Suppose the control group and the treatment group have
the population mean expression μ

g
1 and μ

g
2, respectively.

The objective of our study is to detect whether the ratio of
μ

g
2 and μ

g
1 (i.e. fold change) is within or outside a region of

interest, such as

μ
g
2/μ

g
1 ≥ d0, or μ

g
2/μ

g
1 ≤ d0, or d1 ≤ μ

g
2/μ

g
1 ≤ d2, (1)

among others, with strong statistical evidence.
As the mean gene expression ratio is of interest for our

purposes, we define variable Yg
j = log ((Xg

2 j + 0.5)/(X̄g
1 +

0.5)), where X̄g
1 = ∑n1

j=1 Xg
1 j/n1 and g = 1, . . . , G. This loga-

rithmic transformation permits the fold-change variable to
be modeled on the entire real space. Typically, the log of fold
change uses base 2. We retain this conventional approach
and thus use base 2 in our method. The 0.5’s in the numer-
ator and denominator are intended to avoid extreme obser-
vations when taking the log transformation.

We model that Yg
j ∼ N(cg, σ

2
g ), where cg and σ 2

g denote
the gene-specific mean and variance of the log fold change,
respectively. Often there are only a few replicates (i.e. two or
three) in gene expression studies due to the expenses asso-
ciated with biological replicate acquisition and sequencing
experiments. A usual t-test that is only based on Yg

j , cg, and
σ 2

g is unreliable because gene-wise estimation of the variance
parameter σ 2

g is not accurate when using only a few repli-
cates. To improve the estimation of σ 2

g , we adopt a Bayesian
approach to borrow information across genes. Specifically,
we assume σ 2

g ∼ IG(α0, β0), which is a commonly used con-
jugate prior for variance parameters.

Let yg denote all observations from gene g; that is, yg =
(Yg

1 , . . . , Yg
n2 )T. We derive that the posterior distribution of

σ 2
g given yg is

σ 2
g |yg ∼ IG (α = α0 + n2

2
, β = β0 + 1

2

n2∑
j=1

(Yg
j − cg)2).

(2)
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We propose using the posterior mean of σ 2
g , σ̃ 2

g , as the esti-
mate of σ 2

g , where

σ̃ 2
g = E(σ 2

g |yg) = β0 + ∑n2
j=1(Yg

j − cg)2/2

α0 + n2/2 − 1
. (3)

To test our hypotheses of interest, such as the null hy-
potheses in (1), we construct the following t-statistic

tg = Ȳg − log d0√
σ̃ 2

g /n2

=
∑n2

j=1 Yg
j /n2 − log d0√
σ̃ 2

g /n2

, (4)

where d0 can be replaced by d1 and d2 to test regions with
two-sided boundaries. At last, we use Storey’s method (13)
to control the FDR at a desired level.

Hyperparameter estimation

To implement our method, we still need to estimate hyper-
parameters �0 and �0. A number of methods have been
proposed to infer the gene-wise hyperparameters using Em-
pirical Bayes (EB) methods. For microarray data, New-
ton et al. proposed to use Gamma and log-normal distri-
butions to model microarray expression data and applied
EB models to estimate hyperparameters (14). Smyth popu-
larized the hierarchical model proposed by Lönnstedt and
Speed (15) and applied EB method to estimate hyperparam-
eters. More EB methods have been developed for analyzing
sequencing-based transcriptomic data. In particular, Hard-
castle and Kelly developed baySeq, in which the authors
used EB method to determine the prior distributions (16).
Robinson et al. developed edgeR, where an EB method was
to moderate the degree of overdispersion across transcripts
(10). Wu et al. presented an improved EB shrinkage estimate
of dispersion parameters and demonstrated improved DE
detection (17). Love et al. developed DESeq2 (18), where
an EB method was used for dispersion estimation.

Inspired by the method in limma (19), we propose
the following estimation approach. Specifically, we com-
pute the sample estimate of gene-wise variance, denoted
by s2

g , where s2
g = ∑n2

j=1(Yg
j − Ȳg)2/(n2 − 1). We can show

that s2
g |α0, β0 ∼ β0/α0F(n2 − 1, 2α0), which is a scaled F-

distribution. Let zg denote log s2
g with a natural base, such

that zg is distributed as a constant plus Fisher’s z distri-
bution as demonstrated in (19). The distribution of zg is
roughly normal with

E(zg) = log(
β0

α0
) + ψ(

n2 − 1
2

) − ψ(α0) + log(
2α0

n2 − 1
), and

(5)

Var(zg) = ψ ′(
n2 − 1

2
) + ψ ′(α0), (6)

where �( · ) and � ′( · ) denote the digamma and trigamma
functions, respectively.

Let eg = zg − �((n2 − 1)/2) + log((n2 − 1)/2), in
which case we have E(eg) = log(�0/�0) − �((n2 − 1)/2)
+ log((n2 − 1)/2), and E{(eg − ē)2G/(G − 1) − ψ ′((n2 −

1)/2)} ≈ ψ ′(α0) where ē = ∑
eg/G. We therefore esti-

mate �0 by solving ψ ′(α0) = mean{(eg − ē)2G/(G − 1) −
ψ ′((n2 − 1)/2)}. To solve this equation, we use Newton’s
iteration. Specifically, let a denote mean{(eg − ē)2G/(G −
1) − ψ ′((n2 − 1)/2)}. In the initial iteration, we set α

(0)
0 =

0.5 + 1/a. In the kth iteration, we let �(k + 1) = �(k) +
� ′(�(k)){1 − � ′(�(k))/a}/� ′(�(k)). The iteration stops once
|�(k + 1) − �(k)|/�(k) < �, where � is a small positive number.
After convergence, the estimate of �0 is denoted by α̂0. We
estimate β̂0 = α̂0 exp{ē + ψ(α̂0) − log(α̂0)}.

RESULTS

Simulation study

Simulation setting. To ensure that our simulation results
are reproducible in real data analysis, we simulated data
based on real datasets in (8); we simulated 18 000 genes in
total. Each gene has n1 replicates in the control group and
n2 replicates in the treatment group. We let n1 = 3 based on
the number of replicates in (8) for the dosage effect analy-
sis in Arabidopsis. To assess the parameter estimation and
detection power of our proposed method, we let n2 be 3, 5,
7 and 9, respectively. To simulate observations for the con-
trol group, we randomly selected 18,000 genes from the con-
trol group of trisomy 1 in the Arabidopsis analysis and di-
rectly used their observations as X11, X12 and X13. We first
simulated the log fold change (with base 2); that is, Yg

j ’s, and
then simulate observations for the treatment group. Specif-
ically, we follow the procedure as described below:

(i) Set �0 and �0 based on Arabidopsis trisomy 1 dataset.

Then simulate σ 2
g

iid∼ IG(α0, β0).
(ii) Randomly select certain proportion p� (e.g. p� = 30%)

genes to have significant fold change (i.e. DE genes) of
c0 with cg = log2(c0). For the other (1-p) genes, we set
them to have no change, i.e. cg = log2(1) = 0. Simulate

Yg
j

iid∼ N(cg, σ
2
g ).

(iii) Calculate the observations in the treatment group with
Xg

2 j = (X̄g
1 + 0.5) · 2Yg

j − 0.5.

We consider three different parameter settings for � and
�, respectively, with α = 3, 4, 5 and β = 0.15, 0.18, 0.20 and
three choices for the magnitude of fold change c0: 1.3,1.5
and 2.0. For each of these 27 settings, we repeated 100 times.

Simulation results. We compared our proposed Foldseq
method with five competing methods: (i) the usual t-test
without a Bayesian shrinkage prior; (ii) the edgeR method;
(iii) the DESeq2 method; (iv) the voom method (20); and
(v) a two-group EB t-test method, which modifies the one
group EB t-test in our proposed Foldseq method. By com-
paring our method to the naive t-test, we examined the
power gain of using a Bayesian prior. We chose the edgeR,
DESeq2 and voom algorithms for comparison because they
are the most commonly used methods for testing DE genes.

Figure 1 shows the absolute biases of �0 estimates (left
panel) and absolute biases of �0 (right panel); specifically,
|α̂0,k − α0| and |β̂0,k − β0|, where k = 1, . . . , K and K = 100
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Figure 1. Absolute biases of estimates with 3, 5, 7 and 9 treatment replicates, respectively. Left panel shows absolute biases of estimates of �0; right panel
shows absolute biases of estimates of �0.

Table 1. Average bias and MSE across 100 simulations

rep =3 rep = 5 rep = 7 rep = 9

True Bias MSE Bias MSE Bias MSE Bias MSE

� 1.221 0.020 0.001 0.013 0.000 0.012 0.000 0.012 0.000
� 0.189 0.005 0.000 0.003 0.000 0.003 0.000 0.003 0.000

index the 100-round simulation. Figure 1 suggests that with
n1 = n2 = 3, the absolute biases of �0 and �0 estimates are
small. When n1 = 3 and n2 increases to 5, 7 and 9, respec-
tively, the absolute biases of the estimates of �0 and �0 de-
cline as the sample size increases. Table 1 summarizes the
averaged bias (

∑K
k=1(α̂0,k − α0)/K) and mean squared error

(MSE) (
∑K

k=1(α̂0,k − α0)2/K) across 100 simulations. The
results in Table 1 suggest satisfactory and stable estimation
results across repeated simulations.

We next compared the performance of error variance es-
timate , σ̃ 2

g ’s, of Foldseq, with the usual sample estimates
that are used in t-tests, s2

g ’s. We set n1 = n2 = 3; Figure 2
plots the MSEs, variances and biases of s2

g ’s and σ̃ 2
g ’s with

respect to the true σ 2
g ’s, which shows that our variance es-

timates σ̃ 2
g ’s are closer to the truth on average than sample

estimates obtained without Bayesian shrinkage.
Additionally, we compared the power of fold-change de-

tection between Foldseq and the five competing methods.
To be precise, the null hypothesis considered by edgeR, DE-
Seq2 and voom methods is μ

g
1 − μ

g
2 = 0; whereas for t-test,

the two group test and Foldseq, the hypothesis is μ
g
2/μ

g
1 =

1. The two null hypotheses are equivalent, but the former
focuses on the mean difference whereas the later focuses on
the mean ratio (i.e. fold change). Thus, we expect the tests
using different statistics (either difference or ratio) to exhibit
different power, and the one using the observed fold-change
statistics to detect fold change will have higher power than
methods using mean-difference statistics. Figure 3 summa-
rizes mean AUCs (n1 = n2 = 3) of all these methods in
comparison across 100-round simulation for each simula-
tion setting. As expected, Foldseq demonstrated a larger
AUC compared to other methods, suggesting improvement
in the power of fold-change detection as well as better gene
ranking.

Furthermore, we examined the top 5000 most significant
genes declared by each method. Averaging across 100-round
simulation, 82.6% of these genes selected by Foldseq were
true positives. The proportion of true positives were 58.1,
78.0, 63.7 and 76.1%, respectively, for DESeq2, usual t-test,
voom and the two group test. Figure 4 shows a Venn di-
agram illustrating the overlapping pattern among the top
5000 significant genes selected by each method in four-
round simulation when α = 3, β = 0.18 and true positives
have fold change 1.3. The Venn diagram suggests that our
proposed Foldseq method has the most number of overlap-
ping genes than any other method in comparison.

Finally, we examined the true FDRs produced by these
methods when controlling empirical FDRs at 0.2, 0.1,
0.05 and 0.01, respectively. The results for simulation setting
with α = 3, β = 0.18 and fold change of 1.3 are presented
in Table 2. Table 2 indicates that only Foldseq, the usual t-
test and DESeq2 control empirical FDRs under true FDRs.
In addition, the usual t-test is more conservative than both
Foldseq and DESeq2. The edgeR, voom and two group
methods are liberal under most FDR thresholds.

Analysis of dosage effects and dosage compensation in Ara-
bidopsis thaliana

Changes in the dosage of part of the genome have long been
known to produce much more severe phenotypic conse-
quences than changes in the number of whole genomes (2–
4). Therefore, a simple assumption emerged that this phe-
notypic effect resulted from varied genes showing a dosage
effect; in other words, the gene expression fold change
matches the gene copy number change for genes on the
varied chromosome. However, other evidence in maize and
Drosophila has revealed the presence of global genome-wide
cascading modulations (21–25), presumably because tran-
scription factors and signal transduction components are
dosage-sensitive (26–30) and their targets would be modu-
lated regardless of the chromosomal locations of the latter.

To more comprehensively understand the molecular ba-
sis of genetic imbalance characterized by aneuploidies, re-
searchers (8) gathered a complete set of primary trisomies
of Arabidopsis and compared their gene expression fold
changes with the normal diploid. Specifically, mature leaf
tissues from all five trisomies and the normal diploid of A.
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Figure 2. MSE, variance and bias for naive variance estimator and Bayesian estimator. In each plot, the left box plot shows the result for the naive estimator,
and the right box plot shows the result for the Bayesian estimator.

Figure 3. Mean AUC across 100 simulations for our proposed Foldseq method, the two group test, the usual t-test, voom, DESeq2 and edgeR for each
simulation setting.

thaliana were collected. There were two biological replicates
for each trisomy and three biological replicates for the nor-
mal diploid. RNA-seq experiments were conducted for each
replicate to measure gene expressions. Raw gene expression
data were then normalized using an External RNA Con-
trols Consortium (ERCC) spike-in followed by polyA RNA
isolation to detect any transacting effects of aneuploidy on
global gene expression (31).

We retrieved normalized gene expression data published
in (8) and reanalyzed them using our new statistical method.
Figure 5 plots the sample averages of fold changes, indi-
cated by X̄g

2/X̄g
1 ’s across biological replicates, respectively,

for cis- and trans-genes for each trisomy. Figure 5 presents
a wide spread in gene expression ratio distributions compar-
ing trisomies with the normal diploid. We further examined
the ratio distributions for two gene categories: genes present
on the varied chromosome (cis) and genes in the remainder
of the genome (trans). For each trisomy, the ratio distribu-
tion of the cis-genes suggests a mode between 1.0 (dosage
compensation) and 1.5 (dosage effect) with a wide spread
that extends above and below these levels. For each trisomy,
the ratio distribution of the trans-genes suggests a mode be-
tween 2/3 (inverse dosage effect) and 1.0 (no modulation),
also with a wide spread. The fact that the cis and trans ef-
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Figure 4. Venn diagram showing 4 times of simulation results of top 5000 most significant genes selected selected by Foldseq, DESeq2, t-test, limma/voom
and the two group test where � = 3, � = 0.18 and fold change of 1.3.

Table 2. True FDRs when controlling empirical FDRs at 0.2, 0.1, 0.05 and
0.01 for the simulation setting with α = 3, β = 0.18 and fold change as 1.3
for true positive genes

FDR Foldseq 2Group t-test voom DESeq2 edgeR

0.2 0.020 0.228 0.000 0.532 0.030 0.065
0.1 0.010 0.176 0.000 0.431 0.010 0.050
0.05 0.010 0.150 0.000 0.345 0.010 0.030
0.01 0.000 0.126 0.000 0.000 0.010 0.020

fects are modulated coordinately to some extent suggests a
common influence of the aneuploid state on gene expression
on the varied and unvaried chromosomes.

To statistically test the above conclusions, we applied our
method to these trisomies. We estimated hyperparameters
using the method illustrated in the ‘Materials and Meth-
ods’ section. For instance, to compare trisomy 1 and the
diploid, our estimate of �0 is 1.22 and of �0 is 0.19. Then,
for each cis-gene, we tested H0 : μ

g
2/μ

g
1 = 1.5. We controlled

the FDR at the 0.05 level. By rejecting the null hypothesis,

we further clustered genes with μ
g
2/μ

g
1 > 1.5 and genes with

μ
g
2/μ

g
1 < 1.5. For each trans-gene, we tested H0 : μ

g
2/μ

g
1 =

1. By rejecting the null hypothesis, depending on the fold-
change direction, we also clustered genes with μ

g
2/μ

g
1 > 1

and genes with μ
g
2/μ

g
1 < 1. We summarized the number of

genes in each category using our inference procedure for all
five trisomies compared to the diploid; findings appear in
Table 3.

Our test results substantiate the observations in (8) and
provide detailed numerical evidence of the global gene ex-
pression effects of the additional chromosome in each tri-
somy. For instance, for cis-genes in trisomy 1, we found
2736 genes with a fold change <1.5 and only 50 genes with
a fold change >1.5 with strong statistical support. This
pattern reinforces the observations that the cis-genes’ dis-
tribution has a median between a dosage effect (1.5 fold
change) and dosage compensation (no fold change). Our
finding also suggests that numerically, ∼45% of the cis-
genes ((2736 + 50)/(2736 + 3455 + 50)) and approximately
one-fifth of the trans-genes are being modulated in trisomy
1. Similar conclusions can be drawn for all these five tri-
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Figure 5. Observed sample average fold-change distributions of gene expression in each trisomy compared with diploid. A ratio of 1.50 represents a gene-
dosage effect in cis, whereas 1.00 represents dosage compensation. A ratio of 0.67 represents the inverse ratio of gene expression in trans. Ratio values are
demarcated with labeled vertical lines at 0.67, 1.00 and 1.50.

Table 3. Fold-change detection results for Arabidopsis trisomies

cis-genes trans-genes

Trisomy μ
g
2/μ

g
1 < 1.5 μ

g
2/μ

g
1 = 1.5 μ

g
2/μ

g
1 > 1.5 μ

g
2/μ

g
1 < 1 μ

g
2/μ

g
1 = 1 μ

g
2/μ

g
1 > 1

1 2736 3455 50 2984 14 217 409
2 2302 1379 206 4315 13 448 2595
3 3892 744 338 8506 8474 2741
4 1496 2159 26 3008 16 733 530
5 2122 3389 127 1872 15 331 1439

somies. Specifically, higher percentages of cis-genes in tri-
somies 2 and 3 are modulated than for cis-genes in trisomies
1, 4 and 5; and higher percentages of trans-genes in tri-
somies 2 and 3 are modulated compared to those in tri-
somies 1, 4 and 5.

Analysis of trisomy 21 Down syndrome gene expression data

Trisomy 21, most often caused by the non-disjunction of
chromosome 21 in oocytes, leads to DS and is the most
common autosomal aneuploidy among live births. Due to
its high frequency, DS has become an important model for
exploring the consequences of trisomy in humans. Several
studies have focused on elucidating the molecular conse-
quences attributable to the presence of an extra copy of the
chromosome 21 (9,32–34). Among them, a study in 2018
by Gonzales et al. (9) analyzed gene expression levels via
RNA-seq data analysis from trisomic- and disomic-induced
pluripotent stem cells (iPSCs) and differentiated cortical
neurons derived from the same individual with DS. In the

original study, researchers (9) applied DESeq to identify dif-
ferentially expressed genes. To evaluate Foldseq, here we re-
analyze their data from iPSC cultures using our proposed
Foldseq algorithm. To ensure a fair comparison, we only
considered genes that appeared in both analyses: 217 genes
from chromosome 21 and 25 621 genes in the rest of the
genome. Between DESeq and Foldseq, when using the same
FDR level of 0.1, Foldseq identified eight upregulated genes
compared to 13 identified by DESeq, five of which were
identified by both methods. We found that the actual ex-
pression levels of the three genes identified solely by Fold-
seq (S100B, EVA1C and OLIG2) were low and their vari-
ance was relatively high, which may explain why DESeq did
not identify them as differentially expressed. By contrast,
the variance between the log fold change was stable and
relatively moderate, which enabled these genes to be iden-
tified by our method. Interestingly, S100B is a gene known
to have increased expression levels in DS and is associated
with Alzheimer’s disease, a pathology that manifests early
in adults with DS (35–38). Also, OLIG2, a gene known to
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have altered expression in DS, is associated with key conse-
quences during brain development (39,40). At last, EVA1C,
a slit receptor located in the DS critical region, has been
shown to be expressed in axons and to serve a key function
in neural circuit formation in the developing nervous system
of mice (41).

The differences between methods are even more striking
upon examining downregulated genes on chromosome 21:
our method identified the four genes deemed downregulated
by Gonzales et al. (CBR3, COL6A1, DSCAM and TRPM2)
along with six new genes not previously considered down-
regulated by DESeq. Among them, we found BACE2, a
gene identified in previous investigations for its influence
in Alzheimer’s disease and DS. Although the exact role of
BACE2 has not been clearly identified (42–44), (38) pointed
out that this gene may have a protective role in the develop-
ment of Alzheimer’s disease in adults with DS. The down-
regulation of this chromosome 21 gene identified by our
method may provide insight into the gene’s association with
DS-related Alzheimer’s disease, further highlighting the im-
portance of Foldseq.

Analysis of genome-wide expression values for 25 621
genes indicated that Foldseq detected no significant fold
changes in expression levels between trisomic and disomic
cells in 23 567 genes (91.98%), whereas DESeq found 24 700
genes (96.4%) with no significant change. Strikingly, Fold-
seq found 1528 genes (5.96%) that were statistically upreg-
ulated in trisomic cells compared to only 429 genes (1.67%)
found by DESeq, a difference of 1099 genes. At last, the
number of downregulated genes identified by both meth-
ods was similar: 526 genes (2.05%) and 492 genes(1.92%)
for Foldseq and DESeq, respectively. We believe that these
differences, particularly in the high number of upregu-
lated genes solely identified by Foldseq, could influence
enrichment analysis. To test this supposition, we used
DAVID (45), a Gene Ontology (GO) term (46) enrichment
analysis method, to identify enriched pathways, similar
to (9).

Our results show a similar pattern to that described by
(9), wherein iPS trisomic cells exhibit increased transcript
levels of genes involved in neurogenesis and neuronal func-
tion. The main difference is that certain genes, which Fold-
seq identified as significantly upregulated in trisomic cells
and which have known functions in the neuronal pathway,
were undetected by DESeq. For example, CNTN2, a known
gene with an important function in axon elongation or ax-
onal guidance (47), was considered upregulated by Fold-
seq but found to have no statistical significance by DESeq.
This gene was in turn detected by GO analysis in different
pathways related to axon guidance (GO:0007411) or central
nervous system development (GO:0007417). Among other
genes considered differentially expressed by Foldseq and
not DESeq, we found additional key genes involved in ax-
onal growth and guidance; examples include RET (48), neu-
roligin Y (NLGN4Y) and neuroligin X (NLGN4X ), which
are synaptic cell-adhesion molecules that connect postsy-
naptic neurons at synapses. Along with neurexins, these pro-
teins are key components of the molecular machinery that
controls synaptic transmission (49) and SPTBN4, a spec-
trin protein known as �IV with key functions at the axon
initial segments and nodes of Ranvier (50,51).

Table 4. Computational time (in seconds) of FoldSeq for different number
of genes and sample size in each treatment group

No. of genes 3 replicates 5 replicates 7 replicates 9 replicates

10 000 0.58 0.57 0.52 0.59
12 000 0.56 0.68 0.52 0.68
15 000 0.32 0.57 0.54 0.75
18 000 0.41 0.53 0.58 0.84
20 000 0.42 0.53 0.60 0.74

We believe that these results demonstrate the benefit of
using Foldseq to analyze gene expression data from aneu-
ploid genomes. As we discovered, Foldseq can detect statis-
tically significant gene expression fold changes (that went
unnoticed by DESeq) with known and proven functions
in the pathology of DS, the organization and development
of the nervous system, and axonal growth. These findings
show that Foldseq could provide a more accurate picture of
genome-wide variations in genomic expression occurring in
aneuploidies.

DISCUSSION

Tests of differential expression and fold change involve two
related hypotheses. Many gene expression experiments con-
cern the former hypothesis while others concern the latter.
Several sophisticated statistical methods have been devel-
oped to address differential expression. The vast biological
community tends to directly apply methods of differential
expression to test fold change, although others have applied
the naive t-test. We used two real datasets to demonstrate
that, if data analysis concerns fold change, then a test based
on fold-change statistics provides more accurate and pow-
erful results. In addition, a Bayesian prior that shares infor-
mation across genes can substantially improve inferential
results compared to a naive method without priors.

Computational time is an important factor for algo-
rithms analyzing high throughput genomic data. For Fold-
seq, we conducted a comprehensive survey on the computa-
tional time cost for various combinations of gene numbers
and sample sizes on a commodity compute server. The re-
sults are presented in Table 4. The survey results show that
Foldseq’s computational time is <1 s for all of these settings.

CONCLUSION

In this paper, we have proposed a new approach to de-
tect gene expression fold change between two compari-
son groups. Our method could be generalized to any high-
throughput microarray and sequencing experiment. Specif-
ically, we constructed a model on the log of fold change
for each gene, where the error variance of each gene was
modeled as a random sample from an inverse gamma distri-
bution. Hyperparameters in the inverse gamma prior were
estimated by observations from all genes. Due to the large
number of genes in a typical gene expression experiment,
our hyperparameter estimation was accurate. A t-type test
with adjusted degrees of freedom was developed for hypoth-
esis testing. Real data analysis and simulation data analysis
that mimicked actual datasets revealed our new approach,
the Foldseq method, to be superior to existing methods for
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detecting gene expression fold change; specifically, our ap-
proach demonstrated improved power while controlling the
FDR at a desired level. Our R package is freely available on
GitHub at https://github.com/cuiyingbeicheng/Foldseq.

DATA AVAILABILITY

Sequencing gene expression data for the A. thaliana study
described in this paper have been deposited in the Gene
Expression Omnibus (GEO) database with accession no.
GSE79676. Sequencing gene expression data for the DS
study described in this paper have been deposited in GEO
with accession no. GSE101942. The Foldseq R package is
available on GitHub at https://github.com/cuiyingbeicheng/
Foldseq.
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