

RESEARCH ARTICLE

Open Access

Different K_{CO} and V_A combinations exist for the same DL_{CO} value in patients with diffuse parenchymal lung diseases

Jean Pastre¹, Laurent Plantier², Carole Planes³, Raphaël Borie⁴, Hilario Nunes⁵, Christophe Delclaux⁶ and Dominique Israël-Biet^{1*}

Abstract

Background: DL_{CO} is the product of the CO transfer coefficient (K_{CO}) by the "accessible" alveolar volume (V_A). In theory, the same DL_{CO} may result from various combinations of K_{CO} and V_A values, each of which reflect different injury sites and mechanisms. We sought to determine in this study the potential variability of both V_A and K_{CO} for fixed values of DL_{CO} in diffuse parenchymal lung diseases (DPLD).

Methods: To this end, we designed a retrospective, cross-sectional study of three distinct types of DPLD and analysed pulmonary function test (PFT) datasets.

Results: We show here that for the same value of DL_{CO} (50 % predicted), K_{CO} varied from 60 to 95 % predicted and V_A from 55 to 85 % predicted in various types of DPLD idiopathic pulmonary fibrosis, sarcoidosis and connective tissue disease-associated DPLD, indicating distinct pathogenic mechanisms in these diseases. In addition, a comparison of V_A with total lung capacity may help to evidence the distal airway obstruction sometimes associated with certain DPLD particularly sarcoidosis.

Conclusion: Clinicians should take into account not only DL_{CO} but also V_A and K_{CO} values when managing patients with DPLD.

Keywords: Carbon monoxide diffusing capacity, DL_{CO}, Carbon monoxide transfer coefficient, K_{CO}, Interstitial lung disease

Background

The single-breath carbon monoxide diffusing capacity (DL_{CO}) is the product of two measurements during breath holding at full inflation: the rate constant for carbon monoxide uptake from alveolar gas (K_{CO} [minute⁻¹]) and the "accessible" alveolar volume (V_A). Consequently, the same DL_{CO} may result from various combinations of K_{CO} and V_A values. Changes in each of K_{CO} and V_A may reflect different injury sites and mechanisms. In theory, the decrease in DL_{CO} may result from a fall in V_A (mainly due to restrictive and/or obstructive defects) and/or a fall in K_{CO} (due to alveolar/capillary damage or a microvascular disease). Few studies have focused on the significance of

DL_{CO} in diffuse parenchymal lung diseases (DPLD) [1–5], highlighting the prognostic value of its component K_{CO} . No study to our knowledge has sought to assess the validity of the above mentioned theory in the context of DPLD. Our primary objective in the present study was to assess in a large cohort of distinct types of DPLD the potential variability of both V_A and K_{CO} for fixed values of DL_{CO}. A secondary objective was to determine whether a low V_A value in this context might reflect a distal airway obstruction in addition to a potential restrictive defect. To this end, we designed a retrospective, cross-sectional study of three distinct types of DPLD: idiopathic pulmonary fibrosis (IPF, the prototype for fibrotic pulmonary diseases predominantly affecting the lower lobes), stage IV sarcoidosis (predominantly affecting the upper lobes) and connective tissue disease-associated interstitial lung

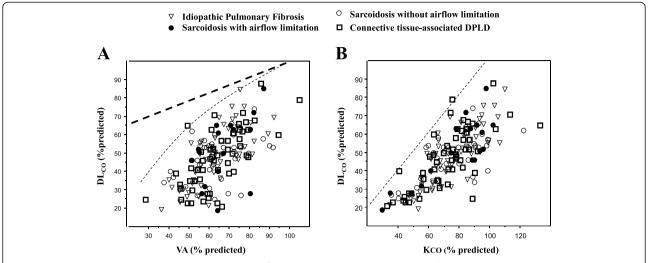
¹Université Paris Descartes, Sorbonne Paris Cité and AP-HP, Service de Pneumologie, Hôpital Européen Georges Pompidou, Paris, France Full list of author information is available at the end of the article

^{*} Correspondence: dominique.israel-biet@egp.aphp.fr

diseases (CTD-ILDs, which are usually characterized by diffuse, inflammatory lesions rather than fibrotic damage).

Methods

Each of three university hospitals in France provided pulmonary function test (PFT) datasets from around 80 DPLD patients (75, 80 and 87 patients, respectively). Pulmonary function tests had been performed according to international recommendations and had used similar quality criteria [6–8]. Only raw PFT data were provided and % predicted values were subsequently calculated by a single investigator (CD2) for the whole population according to Stanojevic for spirometry [9] and other international recommendations for DL_{CO} and static lung volumes respectively [10, 11]. The PFTs (spirometry, body plethysmography and single-breath carbon monoxide transfer) using routine techniques had been performed for


clinical purposes. We got approval from the Institutional Review Board of the French learned society for respiratory medicine – Société de Pneumologie de Langue française, which judged our study as fully observational and which therefore did not require any informed consent.

Two-hundred and forty-two patients with complete datasets were retrospectively assigned to IPF (n = 85), sarcoidosis (n = 73) or CTD-ILD (n = 84) groups. Patients with IPF and CTD-ILD exhibited lower values of DL $_{\rm CO}$ than those with sarcoidosis (43 ± 18 % predicted (11-89 %), 44 ± 15 (12-88 %), and 56 ± 18 % (19-115 %), in IPF, CTD-ILD and sarcoidosis, respectively, p < 0.0001). Then, three PFT datasets (one per group) were matched for DL $_{\rm CO}$ % predicted (agreement 5 %, by a single investigator (CD2)) to allow comparisons of the groups at similar levels of DL $_{\rm CO}$. Consequently, 77 patients were excluded from the analysis due to matching selection (for instance

Table 1 Demographic and functional characteristics of the study participants

	IPF n = 55 gr. 1	Sarcoidosis	CTD-ILD n = 55 gr. 3	P value (ANOVA)	Between-groups difference
		n = 55 gr. 2			
Centre 1/2/3, n	15/22/18	12/25/18	29/12/14	0.007	Not tested
Gender, F/M	15/40	27/28	24/31	0.048	Not tested
Age, years	71 ± 8	52 ± 11	60 ± 14	< 0.001	2<3<1
Height, cm	167 ± 9	168 ± 10	167 ± 9	0.812	
History of smoking	23/27/5	33/19/3	25/26/4	0.383	
(never/ex/current smokers)					
FEV ₁ , L	2.17 ± 0.69	1.87 ± 0.65	2.18 ± 0.66	0.023	Not tested
FEV ₁ , % predicted	82 ± 21	59 ± 17	74 ± 15	< 0.001	2<3<1
FVC, L	2.65 ± 0.68	2.66 ± 0.81	2.65 ± 0.89	0.994	
FVC, % predicted	74 ± 19	66 ± 15	68 ± 15	0.053	
FEV ₁ /FVC	0.83 ± 0.07	0.71 ± 0.14	0.84 ± 0.07	< 0.001	Not tested
FEV ₁ /FVC, % predicted	109 ± 10	90 ± 17	108 ± 9	< 0.001	2<1-3
TLC, L	4.50 ± 1.23	4.67 ± 1.20	4.39 ± 1.15	0.486	
TLC, % predicted	75 ± 16	80 ± 17	75 ± 15	0.147	
FRC, L	2.51 ± 0.69	2.65 ± 0.64	2.53 ± 0.70	0.582	
FRC, % predicted	77 ± 18	87 ± 25	81 ± 20	0.038	1<2
RV, L	1.76 ± 0.47	1.90 ± 0.69	1.67 ± 0.41	0.078	
RV, % predicted	73 ± 18	97 ± 30	80 ± 22	< 0.001	1-3<2
RV/TLC	0.40 ± 0.06	0.41 ± 0.09	0.39 ± 0.07	0.362	
V _A , L	3.66 ± 0.96	3.70 ± 0.92	3.66 ± 1.01	0.972	
K _{CO} , mmol/min/kPa/L	1.00 ± 0.23	1.20 ± 0.30	1.07 ± 0.30	< 0.001	
K _{CO} , % predicted	75 ± 17	77 ± 20	72 ± 19	0.507	Not tested
DL _{CO} , mmol/min/kPa	3.68 ± 1.37	4.45 ± 1.65	4.02 ± 1.66	0.040	
DL _{CO} , % predicted	48 ± 15	49 ± 14	47 ± 16	0.737	Not tested
V _A /TLC	0.81 ± 0.06	0.80 ± 0.08	0.83 ± 0.06	0.047	3>2

Abbreviations: *IPF* idiopathic pulmonary fibrosis, *CTD-ILDs* connective tissue disease-associated interstitial lung diseases, *FVC* forced vital capacity, *FEV*₁ forced expiratory volume in 1 s, *FRC* forced respiratory capacity, *TLC* total lung capacity, DL_{CO} carbon monoxide diffusing capacity, K_{CO} rate for carbon monoxide uptake, V_A alveolar volume

Fig. 1 Relationships between DL_{CO} on one hand and V_A (left panel) and K_{CO} (right panel) on the other. Circles represent sarcoidosis (closed: with airflow limitation, n = 17; open: without airflow limitation). **a** Dotted lines describe "reduced expansion" (upper bold line) and "loss of units" effects, calculated according to Hughes and Pride [4]. Patients with DPLD lied in the discrete to diffuse loss of alveolar unit areas. **b** The dotted line is the identity line for the DL_{CO} - K_{CO} plot; patients along this line have normal V_A and the reduced DL_{CO} is related to a decrease in K_{CO} due to microvascular pathology

IPF and CTD-ILD subjects with very low DL $_{\rm CO}$ % predicted values and sarcoidosis subjects with high DL $_{\rm CO}$ values). Results were expressed as means \pm SD. Continuous variables were compared using the Student's t-test or the analysis of variance (ANOVA, see Table) as appropriate. The chi-squared test was used for the comparison of qualitative variables (smoking history). Statistical significance was defined by a p value <0.05. All analyses were performed using the Statview 4 package (SAS institute, Grenoble, France).

Results

One hundred and sixty-five PFT datasets (55 per group) were analysed (Table 1). The three study groups had similar mean values for $K_{\rm CO}$ and $V_{\rm A}$ as well as for $DL_{\rm CO}$ (the matching criterion). However, on an individual patient basis, a similar $DL_{\rm CO}$ could be obtained from various combinations of $K_{\rm CO}$ and $V_{\rm A}$ (Fig. 1). This figure clearly shows that $K_{\rm CO}$ can vary from decreased (diffuse loss of units) to normal or barely increased (discrete loss of units) values. We show here that for a similar $DL_{\rm CO}$ value of 50 % predicted, for instance, $K_{\rm CO}$ varied from 60 to 95 % predicted and $V_{\rm A}$ from 55 to 85 % predicted.

In addition, 17 patients exhibited an airflow limitation (FEV $_1$ /FVC < lower limit of normal). They all belonged to the sarcoidosis group (Table 1). The reduction in alveolar volume (measured using a dilution technique) relative to total lung volume (TLC, measured using body plethysmography), expressed as V $_A$ /TLC, was correlated with parameters of central airway obstruction (FEV $_1$ /FVC: r^2 = 0.10, p < 0.001) and even more strongly with distal airway obstruction (RV/TLC: r^2 = 0.25, p < 0.001).

Since the V_A/TLC value of the population as a whole may seem lower than expected (Table 1) even in patients without significant airflow limitation (n = 148, FEV $_1/FVC$ = 0.82 ± 0.06), we further evaluated whether some patients exhibited a small airways obstructive syndrome defined by a normal FEV $_1/FVC$ ratio and a greater reduction of both FEV $_1$ and FVC than TLC (FVC % predicted/TLC % predicted < 0.80). We found 20 such subjects, described in Table 2. Similarly to proximal airflow limitation,

Table 2 Small airway obstructive syndrome (SAOS) in patients without proximal airflow limitation (FEV1/FVC > lower limit of normal)

Characteristic	With SAOS	Without SAOS	P value
	N = 20	N = 128	
IPF/sarcoidosis/CTD-ILD, n	2/11/7	53/27/48	0.002
Gender, F/M	14/6	45/83	0.006
Age, years	54 ± 14	64 ± 13	0.003
Body mass index, kg.m ⁻²	25.8 ± 5.3	26.2 ± 3.8	0.664
FEV ₁ , % predicted	55 ± 13	78 ± 17	< 0.001
FVC, % predicted	54 ± 14	72 ± 16	< 0.001
FEV ₁ /FVC, % predicted	101 ± 13	107 ± 10	0.031
TLC, % predicted	75 ± 17	76 ± 15	0.786
FRC, % predicted	83 ± 23	78 ± 19	0.309
RV, % predicted	98 ± 27	76 ± 19	< 0.001
RV/TLC	0.48 ± 0.07	0.38 ± 0.06	< 0.001
V _A /TLC	0.77 ± 0.07	0.83 ± 0.05	< 0.001

Abbreviations: *IPF* idiopathic pulmonary fibrosis, *CTD-ILDs* connective tissue disease-associated interstitial lung diseases, *FVC* forced vital capacity, FEV_1 forced expiratory volume in 1 s, *FRC* forced respiratory capacity, *TLC* total lung capacity, V_A alveolar volume

small airways obstructive syndrome was predominantly present in sarcoidosis.

Discussion

Our present study confirms that an abnormally low DL_{CO} can result from very different combinations of the primary measurements K_{CO} and V_A. This was the case for all three types of DPLD. Furthermore, the assessment of V_A/TLC [12], the latter being obtained from body plethysmography, may suggest both central or peripheral airway obstruction and this was observed particularly in sarcoidosis thereby providing additional clues to the pathogenic features of this condition. We recently described diseases associated with a small airway obstructive syndrome (a non-specific pattern frequently observed in pulmonary function testing units [13]). It is noteworthy that in that study, sarcoidosis and interstitial pneumonia were two of the conditions associated with this pattern. In the present work, we extend our previous data showing that a DPLD can exhibit a mixed pattern associating both a restrictive syndrome and a small airways obstructive syndrome.

Conclusions

In conclusion, we confirmed that the components of DL_{CO} (K_{CO} and V_A) may largely vary in DPLD while DL_{CO} appears constant. The magnitudes of K_{CO} and V_A values might indicate distinct disease mechanisms and thereby bear a relative prognostic value in addition to giving clues to pathogenesis of these diseases. For these reasons, clinicians should take into account not only DL_{CO} but also V_A and K_{CO} when seeking to assess DPLD, in order to provide a more informed and better care to these patients.

Abbreviations

 DL_{CO} : carbon monoxide diffusing capacity; K_{CO} : rate for carbon monoxide uptake; $V_{\rm A}$: alveolar volume; DPLD: diffuse parenchymal lung disease; IPF: idiopathic pulmonary fibrosis; CTD-ILDs: connective tissue disease-associated interstitial lung diseases; PFT: pulmonary function test; SDS: standard deviation score; FVC: forced vital capacity; FEV $_{\rm 1}$: forced expiratory volume in 1 second; FRC: forced respiratory capacity; TLC: total lung capacity; sRaw: specific airway resistance.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

JP, DIB and CD2 designed the cohort design and analysis plan. Analyses were performed by CD2. All authors (JP, LP, CP, RB, HN, CD2 and DIB) contributed to recruitment, data collection, discussion of results and final approval of the submitted manuscript.

Acknowledgements

The authors thank Mr David FRASER (Biotech Communication) for his writing assistance.

Author details

¹Université Paris Descartes, Sorbonne Paris Cité and AP-HP, Service de Pneumologie, Hôpital Européen Georges Pompidou, Paris, France. ²Université Paris Diderot, Sorbonne Paris Cité and AP-HP, Service de Physiologie, Hôpital Bichat-Claude Bernard, Paris, France. ³Université Paris 13, Sorbonne Paris Cité

and AP-HP, Service de Physiologie, Hôpital Avicenne, Bobigny, France. ⁴Université Paris Descartes, Sorbonne Paris Cité and AP-HP, Service de Pneumologie, Hôpital Bichat-Claude Bernard, Paris, France. ⁵Université Paris 13, Sorbonne Paris Cité and AP-HP, Service de Pneumologie, Hôpital Avicenne, Bobigny, France. ⁶Université Paris Descartes, Sorbonne Paris Cité and AP-HP, Service de Physiologie, Hôpital Européen Georges Pompidou, Paris, France.

Page 4 of 4

Received: 23 January 2015 Accepted: 29 July 2015 Published online: 03 September 2015

References

- Van der Lee I, Zanen P, van den Bosch JMM, Lammers J-WJ. Pattern of diffusion disturbance related to clinical diagnosis: The K(CO) has no diagnostic value next to the DL(CO). Respir Med janv. 2006;100(1):101–9.
- Corte TJ, Wort SJ, MacDonald PS, Edey A, Hansell DM, Renzoni E, et al. Pulmonary function vascular index predicts prognosis in idiopathic interstitial pneumonia. Respirol Carlton Vic mai. 2012;17(4):674–80.
- Peelen L, Wells AU, Prijs M, Blumenthal JP, van Steenwijk RP, Jonkers RE, et al. Fibrotic idiopathic interstitial pneumonias: mortality is linked to a decline in gas transfer. Respirol Carlton Vic nov. 2010;15(8):1233–43.
- Hughes JMB, Pride NB. Examination of the carbon monoxide diffusing capacity (DL(CO)) in relation to its KCO and VA components. Am J Respir Crit Care Med. 2012;186(2):132–9.
- Berend N. Respiratory disease and respiratory physiology: Putting lung function into perspective interstitial lung disease. Respirol Carlton Vic oct. 2014;19(7):952–9.
- Wanger J, Clausen JL, Coates A, Pedersen OF, Brusasco V, Burgos F, et al. Standardisation of the measurement of lung volumes. Eur Respir J sept. 2005;26(3):511–22.
- Miller MR, Crapo R, Hankinson J, Brusasco V, Burgos F, Casaburi R, et al. General considerations for lung function testing. Eur Respir J juill. 2005;26(1):153–61.
- Macintyre N, Crapo RO, Viegi G, Johnson DC, van der Grinten CPM, Brusasco V, et al. Standardisation of the single-breath determination of carbon monoxide uptake in the lung. Eur Respir J oct. 2005;26(4):720–35.
- Stanojevic S, Wade A, Stocks J, Hankinson J, Coates AL, Pan H, et al. Reference ranges for spirometry across all ages: a new approach. Am J Respir Crit Care Med. 2008;177(3):253–60.
- Cotes JE, Chinn DJ, Quanjer PH, Roca J, Yernault JC. Standardization of the measurement of transfer factor (diffusing capacity). Eur Respir J. 1993;6 Suppl 16:41–52.
- Quanjer PH, Tammeling GJ, Cotes JE, Pedersen OF, Peslin R, Yernault JC. Lung volumes and forced ventilatory flows. Report Working Party Standardization of Lung Function Tests, European Community for Steel and Coal. Official Statement of the European Respiratory Society. Eur Respir J Suppl mars. 1993;16:5–40.
- Roberts CM, MacRae KD, Seed WA. Multi-breath and single breath helium dilution lung volumes as a test of airway obstruction. Eur Respir J mai. 1990;3(5):515–20.
- Chevalier-Bidaud B, Gillet-Juvin K, Callens E, Chenu R, Graba S, Essalhi M, et al. Non specific pattern of lung function in a respiratory physiology unit: causes and prevalence: results of an observational cross-sectional and longitudinal study. BMC Pulm Med. 2014;14:148.