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Abstract

Background: Nicotianamine (NA), a ubiquitous molecule in plants, is an important metal ion chelator and the main
precursor for phytosiderophores biosynthesis. Considerable progress has been achieved in cloning and
characterizing the functions of nicotianamine synthase (NAS) in plants including barley, Arabidopsis and rice. Maize
is not only an important cereal crop, but also a model plant for genetics and evolutionary study. The genome
sequencing of maize was completed, and many gene families were identified. Although three NAS genes have
been characterized in maize, there is still no systematic identification of maize NAS family by genomic mining.

Results: In this study, nine NAS genes in maize were identified and their expression patterns in different organs
including developing seeds were determined. According to the evolutionary relationship and tissue specific
expression profiles of ZMNAS genes, they can be subgrouped into two classes. Moreover, the expression patterns of
ZmNAS genes in response to fluctuating metal status were analysed. The class | ZmNAS genes were induced under
Fe deficiency and were suppressed under Fe excessive conditions, while the expression pattern of class Il genes
were opposite to class |. The complementary expression patterns of class | and class Il ZmNAS genes confirmed the
classification of this family. Furthermore, the histochemical localization of ZmNAST;1/1,2 and ZmNAS3 were
determined using in situ hybridization. It was revealed that ZmNAST;1/1,2, representing the class | genes, mainly
expressed in cortex and stele of roots with sufficient Fe, and its expression can expanded in epidermis, as well as
shoot apices under Fe deficient conditions. On the contrary, ZmNAS3, one of the class Il genes, was accumulated in
axillary meristems, leaf primordia and mesophyll cells. These results suggest that the two classes of ZmNAS genes
may be regulated on transcriptional level when responds to various demands for iron uptake, translocation and
homeostasis.

Conclusion: These results provide significant insights into the molecular bases of ZmNAS in balancing iron uptake,
translocation and homeostasis in response to fluctuating environmental Fe status.
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Background

Iron is an essential micronutrient with numerous cellu-
lar functions in animals and plants. The anemia caused
by iron-deficiency is still a prevalent nutrient problem
affecting more than half of the world’s population, espe-
cially in developing countries [1]. Besides, iron is also an
essential metal nutrient factor for plants, as it plays crit-
ical roles during many development processes, including
photosynthesis, respiration, and other biochemical reac-
tions that need Fe as a co-factor. Iron deficiency in
plants may lead to leaf senescence, and in turn severely
reduced the yield and quality. The total amount of Fe in
soil is not limited; however, it can be merely soluble
under aerobic conditions, especially in alkaline and cal-
careous soil [2]. In order to acquire enough Fe without
toxicity, plants have developmented iron uptake,
utilization and storage system regulated by environmen-
tal Fe availability. The mechanism of Fe acquisition in
plants can be divided into two categories: strategy I
and strategy II [3]. The strategy I was applied by
nongraminaceous plants, which includes the reduction
of ferric to ferrous on the root surface, and absorption
of ferrous across the root plasma membrane by Fe*
transporters. The FRO2 [4] and IRT1 [5] were firstly
cloned from Arabidopsis and responsible for these pro-
cesses. The graminaceous plants, such as rice, corn and
barley, applied strategy II, which includes the synthesis
and secretion of mugineic acid (MAs) family phyto-
siderophores (PS) from roots and the uptake of Fe**-PS
complexes by specific plasma membrane transporters.
MAs can be synthesized by a conserved pathway begin
with trimerization of three molecular of S-adenosyl-L-
methionine into nicotianamine (NA) by nicotianamine
synthase (NAS) [6], and then NA is converted into 2'-
deoxymugineic acid (DMA), the precursor of MAs, by
nicotianamine aminotransferase (NAAT) [7] and deoxy-
mugineic acid synthase (DMAS) [8]. In some gramin-
aceous plants MAs can be obtained by hydroxylation of
DMA [9,10]. NA is known as a metal chelator, which
can bind a range of metals, including Fe, Zn, Mn and Cu
[11-15]. When iron was absorbed in plants, its transloca-
tion is thought to be associated with appropriate chela-
tors, such as citrate [16,17], NA [1,14], and MAs [18,19].
Citrate is essential in Fe transportation in xylem sap
[16], while NA play a dominant role in the chelating and
trafficking of Fe in phloem [20]. In graminaceous plants,
yellow strip like (YSL) family transporter, YS1, was
reported facilitating the Fe**-DMA uptake from rhizo-
sphere [21], while AtYSL1 and AtYSL3 involved in long-
distance translocation of Fe**-NA in nongraminaceous
plants [20,22-24]. A tomato NA synthesis mutant,
chloronerva (chin), show phenotype defects in Fe
utilization and homeostasis [25,26]. In addition, trans-
genic tobacco plants that continuously expressed barley
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NAAT exhibited disorders in internal metal transport,
such as interveinal chlorosis in young leaves and abnor-
mally shaped and sterilized flowers [14]. In the NAAT
tobacco, the endogenous NA was consumed as a result
of excessive produced NAAT, suggesting that NA play
critical roles in the regulation of metal transfer in plants,
and maintaining sufficient amount of NA is required for
inner metal homeostasis. A recent study reported that
activation of OsNAS3 resulted in elevated Fe and Zn
content in both vegetative tissue and seeds. Anemic mice
fed with the OsNAS3 activated rice recovered more rap-
idly than those with wild type rice. Moreover, activated
OsNAS3 expression also leads to increased tolerance to
both Fe/Zn deficiencies and heavy-metal toxicity [27].
This report suggested that NA is critical for Fe acquisi-
tion and storage, as well as detoxification of excessive
intracellular Fe in plants.

Maize (Zea mays) is a major crop plant for feed indus-
try and food, as well as a research model for monocoty-
ledon plant. Although the iron content in corn is
relatively higher than that in brown rice [28], it can
barely meet the increasing demand for feed production.
Therefore, investigating the mechanisms of iron acquisi-
tion, translocation and homeostasis in maize may
support a model for understanding that in other crop
plants, and provide gene resources for further breeding
maize varieties with enhanced iron content. Since NA is
the key for regulating Fe homeostasis in plants, consid-
erable progress has been achieved in cloning and charac-
terizing the functions of NAS in plants, including barley
[29,30], Arabidopsis [31], rice [32], tomato [25] and
maize [33]. Although it has been demonstrated that NA
facilitate iron acquisition and translocation by forming
Fe>’-NA complexes and serving as the precursor of
MAs, the mechanism regulating these two pathways
under fluctuating environmental iron status is still un-
clear. Systematic analyses in NAS gene families revealed
that there are three NAS genes in rice and four in
Arabidopsis, which suggested that NAS are encoded by a
few genes instead of a gene family [31,34]. However, nine
NAS members were mapped in barley by combined ap-
proaches [30]; and it was also suggested that there are
five genes encode NAS in maize, though only three of
them were cloned due to the lack of genome informa-
tion [33]. The relatively larger numbers of NAS genes in
barley and maize indicates that NAS may duplicate and
evolve during the emergence of new species and breed-
ing process.

The maize genome had been thoroughly sequenced
and assembled recently, whereas there is still no system-
atic identification and characterization of NAS family.
To better understand the roles of ZmNAS genes in iron
uptake, translocation and homeostasis, the sequences
encoding NAS were analyzed by searching the maize
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inbred line B73 genome database. Nine similar se-
quences encoding putative NAS family members were
explored. In this study, we provided detailed information
on the phylogeny, subcellular localization, expression
patterns and histochemical localization of the family. In
particular, the ZmNAS family was subgrouped into class
I and II depending on the phylogenetic relationship
between graminaceous and nongraminaceous plants.
Moreover, a comparison of the expression in different
tissues and under various metal status provides further
evidence for the specialization of ZmNAS in iron acqui-
sition and homeostasis.

Results

Identification and cloning of ZmNAS genes

To detect all members of the ZmNAS family in the
maize genome, a systematic TBLASTN search against
the maize (B73) genome database was performed using
protein sequence of ZmNASI1 as a query. Based on an
e-value threshold of 10®%° and the present of the intact
NAS domain, nine genes encoding putative ZmNAS
were identified (Table 1), including three published
genes, ZmNASI (ZmNASL;1), ZmNAS2 (ZmNAS21I)
and ZmNAS3. The additional genes were named based
on the similarity between previously identified ZmNASs
(Additional file 1) and their positions in 10 chromo-
somes. Among the predicted ZmNASs, three of them
(ZmNAS4, ZmNASS and ZmNAS6;1) were confirmed by
RT-PCR cloning and sequencing. Since the ZmNASI;1/
ZmNASIL2, ZmNAS21/ZmNAS22 and ZmNAS6;1/
ZmNAS6;2 share high similarity even in the 3'-
untranslated region (Additional file 2) and the ZmNASs
are intron-less, ZmNASI;2, ZmNAS2;2 and ZmNAS6;2
were cloned from maize genomic DNA. Motif scan in
Pfam database (http://pfam.sanger.ac.uk/) confirmed that
all ZmNAS proteins contain an intact NAS domain, ex-
cept ZmNAS2;1 and ZmNAS2;2 contain two full length
NAS domains in tandem position.
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To understand the link between the function and evo-
lutionary relationship of ZmNASs, the phylogenetic tree
between all NASs from maize, barley, rice, Arabidopsis
and tomato was established by the neighbor-joining
method (Figure 1). The result shows that there exists a
divergence between graminaceous and nongraminaceous
plants, and the NASs from graminaceous plants were
distinctly divided into two groups, class I and class II. In
addition, it can be found that there are relatively more
class I NAS genes existed in maize and barley than in
rice. It was also shown that the class I ZmNAS genes fall
into sister pairs, ZmNASIL;1/ZmNASIL2, ZmNAS2;1/
ZmNAS2;2 and ZmNAS6;1/ZmNAS6;2, and the duplica-
tion of ZmNAS was associated with the chromosomal
block duplications [35]. Moreover, The ZmNAS paralogs
were closer to each other than their orthologs in barley
and rice, indicating that these gene pairs arose during
the whole genome duplication after the divergence from
the common ancestor of maize and barley. Since NA is
an important metal-chelator in plants, it can be assume
that NAS family enlarged to meet the increasing demand
for iron in maize and barley during environmental pres-
sures and artificial breeding. The protein sequences of
ZmNASs were aligned with AtNAS1 and OsNASI, and
the tandem domains of ZmNAS2;1 and ZmNAS2;2 were
separated and aligned as partl and part2 (Figure 2). This
result revealed that all ZmNASs contain a highly con-
served NAS domain of about 280 amino acid residues,
including the two parts of ZmNAS2;1 and ZmNAS2;2.
In addition, it is worthy to note that the class II
ZmNASs contain a variable N-terminal domain, which
may associated with their physiological function or sub-
cellular localization.

Subcellular localization of ZmNASs

To verify whether the N-terminal variable domain of
class II ZmNASs may determine their specific subcellu-
lar localization, the coding regions of ZmNASs were

Table 1 BLAST analysis for the maize Nicotianamine Synthase genes (ZmNAS) based on the genome database

Designated Maize genome

Given name (previous name) cDNA Chromosome no. Genomic locus (bp) cDNA length (bp) Amino acids
ZmNAST;1 (ZmNAST) GRMZM2G385200 9 135,550,861-135,552,092 1232 327

GRMZM2G034956 9 135,796,454-135,797,695 1242 327
ZmNAST,2 GRMZM2G312481 9 135,720,514-135,721,745 1232 327
ZmNAS2;1 (ZmNAS2) GRMZM2G030036 1 49,287,309-49,289,760 2452 601
ZmNAS2;2 GRMZM2G124785 1 49,320,819-49,323,269 2451 601
ZmNAS3 GRMZM2G478568 1 259,776,858-259,778,542 1685 359
ZmNAS4 GRMZM2G439195 5 15,799,611-15,801,603 1993 356
ZmNAS5 GRMZM2G050108 7 174,402,882-174,404,870 1989 422
ZmNAS6; 1 GRMZM2G704488 9 135,299,182-135,300,357 1176 327
ZmNAS6,2 AC233955.1_FGT003 9 135,306,483-135,307,466 984 327
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Figure 1 Neighbor-joining phylogenetic tree of the NAS members. The tree was constructed with the amino acid sequences of NAS
proteins from Maize (Zm), Barley (Hv), Rice (Os), Arabidopsis thaliana (At) and Solanum lycopersicum (chIN) using the neighbor-joining method in
MEGA 4.0 software. For proteins and accession numbers used in phylogenetic analysis, refer to “Methods”. The scale bar corresponds to a
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C-terminal fused with green fluorescent protein (GFP)
and the fusion protein was expressed under cauliflower
mosaic virus 35S promoter. Then the resulting plasmids
were transformed into Arabidopsis mesophyll proto-
plasts, respectively. The fluorescence of all ZmNAS-
GFP was detected in the cytoplasm, which is similar to
that of GFP-transformed cells (Figure 3). This result
revealed that ZmNAS localized in cytoplasm, indicating
that the specific N-terminal domain of class II ZmNASs
and the phylogenetic difference between two classes
of ZmNASs do not interfere with their subcellular
localization.

Complementary expression patterns of class | and class Il
ZmNAS genes

Although the two classes of ZmNASs shared identical
subcellular localization, we hypothesized they may be
differentially regulated in expression. Therefore, to
analyse the physiological functions of ZmNAS in iron
uptake, translocation and storage, their mRNA accumu-
lation patterns were examined by quantitative reverse
transcription PCR in various organs and developing
seeds, with maize Actinl as an internal control (Figure 4).
Since, the class I ZmNAS genes share high sequence
similarity even in the 3’-untranslated region (Additional
file 2), they were detected as sister pairs: ZmNASI;1/
ZmNASI;2, ZmNAS2;1/ZmNAS22 and ZmNAS6;1/
ZmNAS6;2. The results showed that ZmNAS genes were
merely accumulated in reproductive organs and
exhibited complementary expression patterns in vegeta-
tive organs. The class I ZmNAS genes predominantly
expressed in roots and stems; whereas class II were

mainly accumulated in leaves and sheaths, with the ex-
ception of ZmNASS, which was abundantly expressed in
stems. This result suggested that class I ZmNAS genes
may be involved in the Fe uptake in roots and long
distance translocation in stems, while class II may con-
tribute to the local transportation of Fe.

The expression of ZmNAS genes in seedlings subjected
to Fe deficient and excessive conditions were investi-
gated (Figure 5). The transcripts of class I ZmNAS genes
were dramatically induced by Fe deficiency and were
suppressed by Fe excess in both shoots and roots. On
the contrary, the accumulation of class II ZmNAS genes
were down-regulated by Fe deficiency in both shoots
and roots, while they were up-regulated in roots in re-
sponse to Fe excess. In addition, the expression level of
ZmNAS3 and ZmNASS5 remained at a high level in
shoots under excessive Fe status, though that of
ZmNAS4 was induced. Since NA can chelate various
metals [20,36,37], the expression profiles of ZmNAS
genes in response to other metal conditions were inves-
tigated (Figure 6). The result revealed that class I
ZmNAS genes were stimulated under Zn deficiency,
while they were suppressed in response to Zn excess and
Cu/Mn deficiency. In contrast, the class II genes were
induced under excessive Zn and deficient Cu/Mn condi-
tions. These results showed that class I and class II
ZmNAS genes were independently regulated in tran-
scription and have complementary expression patterns
under the same metal nutrient condition, which sug-
gested that they may have different physiological func-
tions associated with the uptake, translocation and
storage of metal ions.



Zhou et al. BMC Genomics 2013, 14:238 Page 5 of 15
http://www.biomedcentral.com/1471-2164/14/238

ZmNAS1;1
ZmNAS1;2
ZmNAS2;1-1 :
ZmNAS2;1-2
ZmNAS2;2-1 :
ZmNAS2;2-2 :
ZmNAS3 et e bkttt bt btk MAVMGKEEE-EQQ--QQHKEEEVVQGDVRVVVQQETAADEE :
ZmNAS4 I T e e e e e e e e e e e ————— e ] MVVMGKHDDDEKQ--QQQOMEMEDVH---EVGAVEVL PLE\:;E : 36
ZmNASS : MHANPTRRGRPMASVGLPCPASCHLIYIYAASGRPLQSSKTKQKQPSSLORLTPPHSTVMVVMGKEQQHEEEEVQGKVVQEEVQVVQETVVPVPSEEDKE : 100
ZmNAS6;1
ZmNAS6;2
AtNAS1
OsNAS1

[
o
N

AN TIAKLPSLE PSP A A
DR T DA : A AR : 102
B L BSLEPS B : A AR ;102

ZmNAS1;1
ZmNAS1;2
ZmNAS2;1-1
ZmNAS2;1-2
ZmNAS2;2-1
ZmNAS2;2-2

ZmNAS3
ZmNAS4 ATVKLESLSPSBY A A A -‘ . 132

ZmNAS5 : R 'A;IkLPSLSPS =E) : A A A : 196

ZmNAS6;1 : A A HIR LESLSPSP» A AR : 102
. : - K AATIAKLPSLSPSP)) K A AR : 102

ZmNAS6;2 o

AtNAS1 YDQRIS) ‘SI@PSI! : B : 103

OsNAS1 AATSKLBSLSPSH A A A : 102

INKLESLSPSP® K : AR 98
RI LESLSPSPI A A AR : 134

BHATNKLPSLSPSP» AR 98
i Ia]‘:LPSLSPS -D K A AR : 102

ZmNAS1;1
ZmNAS1;2
ZmNAS2;1-1
ZmNAS2;1-2
ZmNAS2;2-1
ZmNAS2;2-2
ZmNAS3
ZmNAS4
ZmNAS5
ZmNASE;1
ZmNAS6;2
AtNAS1
OsNAS1 A A : R A A A
3S6VLA rHLP FANSD ¢ ANdrAr Lvr aD L arM FhT DVa T L YD VF

* 340 360 400
ZmNAS1;1 : AK A Ay GAALVVRSAHGAREFLYPIVDPED IRRGGFDVLA'
ZmNAS1;2 : A D GAALVMRSAHGARgFLYPIVDPEDIREGGFDVLA
ZmNAS2;1-1 : A ;D GAALVVRSAHGAR!FLYPIVDPEDIRRGGFDVL
ZmNAS2;1-2 : A D GAALVVRSAHGAREFLYPIVDPEDIRRGGFDVLA
ZmNAS2;2-1 : D GAALVVRSAHGAP!FLYPIVDPEDIRRGGFDVL
ZmNAS2;2-2 : D GAALIVRSAHEAR!FLYPIVDPEDIRREGFDVLA
ZmNAS3 : AXGAALVVRSAHGAREFLYPVVDPEXIRRGGFDVLA'
ZmNAS4 : AGAALVVRSAHGARNFLYPVVD IRRGGFDVLA'
ZmNASS5 : R Al GAALVVRSAHGA! !FLYPVVDPFJ IRRGGFDVLA'
ZmNAS6;1 : B Ay GAALVVRSAHGARAFLYPIVDPED IRRGGFDVLA'
ZmNAS6;2
AtNAS1
OsNAS1

LAALVG6aaE Ka HLg HMa GAaL66R AHgaR FLYP6VDped64rgGFd6éLa6é HP eV6NSV66aRK 6
* 420 *

ZmNAS1:1 : SP'-E -KﬁE’-‘NALQ—; TTTELSI- : 327

ZmNAS1;2 : SP; - *KMEENALQ—E TTTELSI- : 327

ZmNAS2;1-1 :

ZmNAS2;1-2 : PiRYSPE-EKZERIVINTLEQTIREEMATA -~~~ -~ ¢ 319

ZmNAS2;2-1

ZmNAS2;2-2 : M
aEﬁ-
C1M A
e

ZmNAS3
ZmNAS4
ZmNAS5
ZmNASE;1
ZmNASE;2
AtNAS1
OsNAS1

SKiH\IMNN-;GKKNMIEEFSTIE : 320
.K“EESAVE—H FAANKELSV- : 332
p ¢ cc a e

Figure 2 The multiple sequence alignment of maize NAS members with AtNAS1 from Arabidopsis thaliana and OsNAS1 from rice.
The first and second NAS region in ZmNAS2;1 (ZmNAS2;2) were designed as ZmNAS2;1-1 (ZmNAS2;2-1) and ZmNAS2;1-2 (ZmNAS2;2-2),
respectively. The light or dark shaded backgrounds indicate partial or entire conservative residues.
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Figure 3 Subcellular localization of ZmNAS-GFP fusion proteins
in Arabidopsis mesophyll protoplasts. The coding regions of
ZmNAS genes were C-terminal fused with GFP and were transiently
expressed in Arabidopsis mesophyll protoplasts. The GFP signal is
shown in green and chlorophyll autofluorescence (Chl) is indicated
in red. The images were obtained by a confocal microscope, and
the cytoplasm localization of GFP is used as a control. The scale bar
represents 10 um.

Histochemical localization of ZmNAS genes

Histochemical localization of ZmNAS genes may help
explain their expression patterns and putative roles in
regulating NA biosynthesis in maize plants. In order
to distinguish the tissue specific localization of the
two classes of ZmNAS genes, the probes specifically
recognize ZmNASI;1/1;2 or ZmNAS3 were designed and
synthesized. In situ hybridization showed that the signals of
ZmNASI;1/1;2 were specifically detected in the cortex and
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stele of roots under Fe sufficient conditions (Figure 7C),
whereas no signals can be observed in shoots (Figure 7A).
In response to Fe deficiency, strong signals of ZmNAS1;1/
1;2 were also observed in epidermis of roots, and relatively
weak signals were detected in leaf primordia (Figure 7F and
7E). These results suggested that maize roots respond to
iron deficiency by inducing the spatially restricted expres-
sion of class I ZmNAS, which may lead to elevated NA bio-
syntheses and MAs secretion. Since, the expression analysis
demonstrated that ZmNAS3 was predominantly accumu-
lated in leaves, in situ hybridization was performed using
shoot apices and young leaves. The histochemical distribu-
tion of ZmNAS3 was detected mainly in the leaf primordia
and axillary meristems in shoot apices (Figure 8A and 8B)
and mesophyll cells in young leaves (Figure 8D and 8E),
suggesting that ZmNAS3, a member of class II ZmNAS
genes, may participate in the local transportation and
homeostasis of Fe in developing tissues.

Discussion

Identification of ZmNAS family

NAS was firstly identified in barley for catalyzing the
trimerization of SAM into one molecule of NA [6],
which is a key molecular chelating divalent metal ion
and facilitating metal translocation in plants. In addition,
NA is also the precursor for MA biosynthesis in gramin-
aceous plants, suggesting its critical role in regulating
iron uptake and homeostasis. There is a broad consensus
that NAS is ubiquitously present in higher plants,
though the number of encoding genes was limited in
rice and Arabidopsis [31,34]. However, nine NAS genes
were identified in barley by a combined screening strat-
egy, indicating that NAS proteins may be encoded by a
gene family and providing a possible link between the
number of NAS genes and iron uptake strength [30]. In
the previous study, due to unavailability of maize gen-
omic sequence, only three ZmNAS were identified by
screening a genomic library, though five ZmNAS pro-
teins was predicted by western analysis [33]. Recently,
many gene families were identified in maize by gen-
omic mining, and it was also suggested that relatively
more family members existed in maize than in an-
other cereal crop, rice [38-41]. In our study, nine
ZmNAS genes were systematically identified and char-
acterized through genome wide analysis using the
current version of maize inbred line B73 genome
database. It is known that cereal genome undergoes
two rounds of whole genome duplications associated
with genome evolution. The fist occurred in all ce-
reals before the specification of rice, sorghum and
maize, whereas the second take place specifically in
the lineage leading to maize [42]. Therefore, it is not
surprising to identify more genes encoding NAS in
maize than in rice. Besides, the increasing biomass



Zhou et al. BMC Genomics 2013, 14:238
http://www.biomedcentral.com/1471-2164/14/238

Page 7 of 15

p
450 60
—
S 400
S ~ 50 1
< 350 <
X 300 L 40 4
R N
=~ 250
g g %
= 200 <
2 150 E 20
< 100 N
S 10 A
N 50
0 0
CEN-GELDEEEGTEGES LN G5B FEEEEGES
882828283 8823832828
e2ePgRg& 222228 R&
400 100
—
< 350
B 80
< 300 hs
x 3
N 250 < 60
Q200 3
= %)
150 < 40
« =
<Zt 100 g
g N 20
5§ 50
0 . 0
TN SGCLDFFTEGTEGES COSGCLDEETEGTESES
[ e e o R e W) [ e e o R e RPaaa)
PR R A& SRR A
140 160
= 140
S
§ 120 =
< £ 120
N 8 100
=
N 80 N
< 0 80
~ [}
s %0 < 60
< 40 T
E N 40
20
N 20
0 0 —
CEO-GCLDEEEGTESES CN-GCLDEEEGTESES
22020209 22020202
2ew2289 8 2ew2285 8
Figure 4 Relative expression of ZmNAS genes in different mazie organs. Total RNA was extracted from root (R), stem (S), leaf (L), leaf sheath
(Sh), tassel (Ti), immature ear (Ei), silk (Si), as well as seed (se), endosperm (en) and embryo (em) at indicated days after pollination (10D-25D). For
each gene, the relatively expression levels were obtained by normalization with maize Actini. The error bars indicate standard deviations.

and enhanced iron uptake and restoration features
may be another driving force for the evolution and
duplication of NAS in maize and barley. It was also in-
teresting to find that NASs from graminaceous plants
were divided into two classes by phylogenetic analysis, and
relative more members were existed in class I in maize
and barley than in rice. It was suggested that approxi-
mately one fourth of the genes in the maize genome pos-
sess closely related paralogs resulted from the genome
duplication [43]. We found the class I ZmNAS genes du-
plicated as paralogs, and localized at duplicated region of
maize genome, suggesting possible functional redundancy
between them. Unlike class I, ZmNAS3, ZmNAS4 and
ZmNASS5 share relatively lower identity, indicating a pos-
sibility of functional divergence between them. Interest-
ingly, the paralogs, ZmNAS2;1 and ZmNAS2;2, are

consisted of two full length NAS domain in tandem re-
peated. It was previously reported bacterium expressed
ZmNAS2 (ZmNAS2;1) exhibited no NAS activity [33],
though expression analysis revealed that ZmNAS2;1/2;2
accumulated in roots and stems, and responded to fluctu-
ated environmental iron status. Anyway, in vivo evidence
are necessary to exclude (or confirm) the possibility they
are not pseudogenes.

Cytoplasm localization of ZmNAS

It can be assumed that the subcellular localization of
NAS may affect NA compartmentalization in plant cell,
and thus regulate the downstream utilizing of NA as an
iron chelator or a precursor of MAs. It has been
reported “particular vesicles” formed in the Fe-deficient
barley root cells, which was suggested as the sites
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Figure 5 Expression profiles of ZmNAS genes in response to Fe deficiency and Fe excess. The maize seedlings were hydroponically
cultured to three-leaf stage, and then they were transferred to Hoagland solution in the absence of Fe (Fe deficiency) or with 500 uM Fe**-EDTA
(Fe excess). The shoots (S) and roots (R) were harvested after 0, 6, 12, 24, 48 and 96 hours of treatment. Relative gene expressions were
normalized using maize Actinl. The error bars indicate standard deviations.
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secreting MAs [44]. Pervious study showed ZmNAS1
(ZmNASI;1) and ZmNAS2 (ZmNAS2;1) located to spot
organelles in the cytoplasm, while ZmNAS3 distributed
throughout the cytoplasm. The spot organelles were
suggested as vesicles derived from the endoplasmic
reticulum, which was thought to be the place for MAs
synthesis [33]. In our study, the subcellular localization
of each ZmNAS was determined by transient expressing
the GFP fusion proteins in Arabidopsis mesophyll proto-
plasts (Figure 3) and onion epidermal cells (Additional
file 3). Unexpected, all ZmNASs were localized at cyto-
plasm, suggesting that the N-terminal variable domain
has little effect on subcellular localization. Since it is
generally considered that over accumulation of the GFP
fusion protein may lead to spot-like localization, the dis-
tinct results obtained between the present and pervious
study may due to different transcription strength of the
GFP fusion protein. Because the spot-like organelles in
cytoplasm were not characterized in detail, further study

concerning the subcellular localization of NAS family
proteins should be applied by alternative methods, such
as immunofluorescence.

The complementary expression patterns of class | and
class Il ZmNAS genes links to their specific physiological
functions

To date, the underlying mechanisms regulating iron up-
take and translocation in plants are still not well under-
stood, as well as the delicate transcriptional regulatory
network involved in response to fluctuating environmen-
tal iron status. It has been reported the genes in strategy
II Fe uptake system, such as YSI/YSL [21,45], NAS
[6,33,34], NAAT [7], DAMS [8] and TOMI (a MAs
efflux transporter) [46], were strongly induced under Fe
deficiency, while those associated with metal detoxifica-
tion were stimulated in response excessive environ-
mental Fe [47]. Since the NA concentrations in tomato
increase in response to Fe overload [48], arose the
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possibility that NA may play a critical role in regulating
the balance between acquisition of environmental Fe
and detoxification of excessive intracellular Fe. There-
fore, it would be worthy to determine the response of
ZmNAS genes to fluctuated environmental Fe status. It
has been showed that the expression of OsNASI and
OsNAS2 were increased in both roots and leaves under
Fe deficiency, while that of OsNAS3 was decreased in
leaves and induced in roots in response to Fe deficiency
[34]. Similar results were observed for ZmNASI and
ZmNAS2, though ZmNAS3 was the first one reported to
be repressed in roots under Fe deficiency [33].

In our study, a comprehensive expression pattern of
nine maize NAS genes were obtained based on the com-
pilation of real-time RT-PCR and histological data. The
class I ZmNAS genes accumulated significantly in roots
and stems, while class II ZmNAS genes show divergence
expression profiles: ZmNAS3 and ZmNAS4 expressed
predominately in leaves and sheaths, while ZmNASS ac-
cumulated mainly in stems and relatively lower in leaves

and sheaths. Moreover, the class I ZmNAS genes were
dramatically induced in both roots and shoots under Fe
deficiency, but were repressed in response to Fe excess.
In contrast, the expression of class II genes were down
regulated under Fe deficient conditions, while that were
retained during excessive Fe conditions. The comple-
mentary expression patterns of class I and class II
ZmNAS genes suggested that maintaining high levels of
NA in specific organs is essential for overcoming fluctu-
ating iron status, and raises a model concerning their
physiological roles in regulating Fe uptake and homeo-
stasis. We hypothesize that the class I ZmNAS may
mainly responsible for providing the precursor for MAs
synthesis and long distance translocation of Fe in stem,
while the class II ZmNAS produce NA for local distribu-
tion of Fe in leaf and sheath and detoxification of excess
intracellular Fe (Figure 9). To verify this hypothesis, the
histological localization of ZmNASI;1/1;2 and ZmNAS3
were studied using in situ hybridization. The expression
of ZmNASI1;1/1;2, two members in class I, was observed
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Fe-sufficient

Fe-deficient

Wy ey
Figure 7 Histochemical localization of ZmNAS1;1/1;2 in maize seedlings under Fe sufficient and deficient status. /n situ hybridization was
performed on shoot and root sections of maize seedlings under Fe sufficient (upper panel) and deficient (lower panel) conditions with
digoxigenin-labeled antisense or sense probes. Longitudinal sections of shoot apex (A, B, E and G), and transverse sections of root (C, D, F and
H) were hybridized. The expression of ZmNAST;1/1,2 was observed as purple staining in cortex and stele of Fe sufficient roots (C), epidermis,
cortex and stele of Fe deficient roots (F), and leaf primordia of shoot apices (E) detected with antisense probes. No signal was observed in either
control sections with sense probes (B, D, G and H) or shoot apices of Fe sufficient seedlings detected with antisense probes (A). Arrow indicates

leaf primordia (E) and epidermis of roots (C and F). Pi, pith; Mx, Metaxylem; Co, cortex; Ep, epidermis; Lp, leaf primordia. The length of bars
corresponds to 100 pm.

Figure 8 Histochemical localization of ZmNAS3 in maize shoots. /n situ hybridization was performed on longitudinal sections of shoot

(A, B and C) and transverse sections of leaf (E, D and F) using digoxigenin-labeled antisense or sense probes. The hybridization signal was
localized in the leaf primordia (A), axillary meristem (B) and mesophyll cells (D and E), while no signal was detectable in control sections
hybridized with sense probes (C and F). Arrow indicates the hybridization signals represented by purple staining. Lp, leaf primordia; Am, axillary
meristem; Mc, mesophyll cells; Vb, vascular bundles. The length of bars corresponds to 100 pm.
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Figure 9 Scheme showing the complementary expression patterns of class | and class Il maize NAS genes link to their specific
physiological functions. The left panel shows the schematic diagram of putative physiological functions of ZmNASs during iron uptake and
translocation of maize plant. The right panel shows the hypothetical model regulate the equilibrium between iron acquisition and homeostasis
by establishing a complementary expression pattern of class | and class Il maize NAS genes.

in cortex and stele of roots, while no signal was detected
in shoots under Fe sufficient conditions. With Fe defi-
ciency, ZmNASI;1/1;2 accumulation extended to epider-
mis associated with increasing demand for synthesizing
and secreting MAs, indicating the class I ZmNASs are
essential for providing precursor for phytosiderophore
synthesis. ZmNAS3 accumulated in leaf primordia, axil-
lary meristems and mesophyll cells, suggesting a role for
class II genes in local translocation of Fe, especially in
developing organs. Since NA also chelate other metals,
the expression of ZmNASs in response to Zn excess and
Zn/Cu/Mn deficiency were examined. We found that
the class I ZmNAS genes were induced under Zn defi-
ciency, while they were repressed under Zn excess, and
Cu/Mn deficiency. These results suggested that the in-
creasing accumulation of class I ZmNAS genes in roots
under changing environmental metal status may have se-
lectivity for Fe and Zn. In addition, the class II genes
were up-regulated under excess Zn, indicating that they

may be essential for detoxification of excessive metal
ions other than Fe.

Biofortification of maize with high level of bioavailable Fe
and Zn

Micronutrient deficiencies are mainly responsible for
“hidden hunger”. In particular, the anemia caused by
iron-deficiency is a prevalent nutrient problem in devel-
oping countries [49]. Maize is a major cereal crop for
food supply and feed industry worldwide, though the
lack of bioavailable Fe in corn can barely meet the de-
mand. Therefore, addition essential metal elements were
usually added in feeds to fulfil daily needs of animals.
Alternatively, transgenic approaches can be applied to
biofortificate the micronutrient content of crop plants.
In the past, efforts were made in overexpressing ferritin
from soybean and Phaseolus vulgaris in rice, and the Fe
content was increased up to 3 and 2 fold [50,51].
Recently, NAS was chosen as a new candidate for



Zhou et al. BMC Genomics 2013, 14:238
http://www.biomedcentral.com/1471-2164/14/238

improving micronutrient content. It was showed that ac-
tivation of OsNAS3 led to enhanced bioavailable Fe and
Zn [27]. Similar result was obtained for OsNASI and
OsNAS2. Endosperm specific overexpression of OsNASI
enhance the Fe and Zn content up to 1.45 and 1.55 fold
in unpolished grains, respectively [52]. Likewise, the Fe
content in seeds of OsNAS2-activated rice was 3 fold
higher than wild type [53]. Moreover, it was found that
endosperm specific expression of OsNASI could avoid
negative effects on agronomic performance caused by
constitutively overexpression [52], which suggested the
original expression profile of NAS is essential for Fe
homeostasis and thus affects plant growth. Therefore,
the temporal and spatial RNA accumulation patterns of
ZmNAS genes detected in this study may provide a deli-
cate strategy to biofortificate maize with increased bio-
available iron.

Conclusions

In this study, nine NAS genes in maize were identified
by genomic mining. According to the evolutionary
relationship of NAS from maize, barley, rice and
Arabidopsis, ZmNAS and HVNAS can be subgrouped
into two classes. Moreover, the temporal and spatial
RNA accumulation patterns of ZmNAS genes were in-
vestigated in various organs including developing seeds,
which further support the classification of ZmNAS gene
family. Histochemical localizations of the ZmNAS1;1/1;2
and ZmNAS3, which belongs to class I and class II, were
determined by in situ hybridization. The complementary
expression patterns of ZmNAS genes indicate maintai-
ning sufficient NA is essential for overcoming fluctuat-
ing iron status. It was also hypothesized that the class I
ZmNAS may be mainly responsible for supporting the
precursor for MAs synthesis and long distance trans-
location of Fe, while the class II ZmNAS produce NA
for local distribution of Fe and detoxification of excess
intracellular Fe. These results provide significant insights
into the molecular bases of ZmNAS in balancing iron
uptake, translocation and homeostasis.

Methods

Plant materials

Maize inbred line B73 was surface-sterilized and germi-
nated in vermiculite for 12 days in a greenhouse at 28°C.
Then the seedlings were transferred into culture boxes
and hydroponically grown to three-leaf stage in Hoagland
nutrient solution. For metal-deficient treatment, the seed-
lings were transferred to Hoagland solution lacking indi-
cated metals. For Fe and Zn excess treatment, 500 puM
Fe’*-EDTA and 200 pM ZnSO, were used. The shoots
and roots from treated seedlings were sampled at indi-
cated times and immediately frozen in liquid nitrogen and
stored at —80°C until use. To detect the histochemical
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localization of ZmNAS, the samples were collected from
96 h treated seedlings and fixated in FAA.

Identification of maize NAS genes

The sequences encoding putative NAS family members
were identified using the TBLASTN program from the
MaizeSequence database (http://www.maizesequence.org),
using the protein sequence of previously identified
ZmNAS] as a query. The threshold of e-value and score
for TBLASTN was set at 1™ and 600, respectively. In
order to confirm the predicted genes encode ZmNASs,
the protein sequences were searched in the Pfam database
(http://pfam.sanger.ac.uk). In addition, full length coding
c¢DNA sequences of all ZmNAS genes were further con-
firmed by cloning and sequencing. The primers used for
cloning ZmNAS genes were listed in Additional file 4.

Sequence alignment and phylogenetic tree construction
The deduced protein sequences of ZmNAS proteins were
aligned with AtNASI and OsNASI using ClustalX 2.0.5
program. The phylogenetic tree was constructed with
NAS proteins from Maize (Zm), Barley (Hv), Rice (Os),
Arabidopsis thaliana (At) and Solanum lycopersicum
(chIN) using the neighbor-joining method in MEGA 4.0
software. The proteins and their accession numbers used
for alignment and phylogenetic tree construction are as
follows: ZmNAS1;1 [MaizeSequence:GRMZM2G385200],
ZmNAS1;2 [MaizeSequence:GRMZM2G312481], ZmNA
S$2;1  [MaizeSequence:GRMZM2G030036], ZmNAS2;2
[MaizeSequence:GRMZM2G124785], ZmNAS3 [MaizeSe-
quence:GRMZM2G478568], ZmNAS4 [MaizeSequence:
GRMZM2G439195], ZmNAS5 [MaizeSequence:GRM
ZM2G050108], ZmNAS6;1 [MaizeSequence:GRMZM?2
G704488], and ZmNAS6;2 [MaizeSequence:AC23395
5.1_FGTO003] from Maize (Zea mays); NASHOR1 [Gen
Bank:AF136941], NASHOR2 [GenBank:AF136942], Hv
NASI1 [GenBank:AB010086], HYNAS2 [GenBank:AB0112
65], HYNAS3 [GenBank:AB011264], HYNAS4 [GenBank:
AB011266], HVNAS5 [GenBank:AB011268], HvNAS6
[GenBank:AB011269] and HVNAS7 [GenBank:AB019525]
from barley (Hordeum vulgare), OsNAS1 [GenBank:
AB021746], OsNAS2 [GenBank:AB023818] and OsNAS3
[GenBank:AB023819] from rice (Oryza sativa); AtNAS1
[GenBank:NM_120577], AtNAS2 [GenBank:NM_124
990], AtNAS3 [GenBank:NM_100794] and AtNAS4
[GenBank:NM_104521] from Arabidopsis thaliana; chIN
[GenBank:AJ242045] from Lycopersicon esculen-tum.

RNA isolation and real-timeRT-PCR analysis

Total RNA was isolated using TRIzol reagent according
to the manufacturer’s instructions (Invitrogen) Genomic
DNA contaminants were removed from RNA samples
using DNasel (NEB). The amount and quality of the
total RNA was confirmed by electrophoresis in 1%
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formamide agarose gel. Approximately 2 pg of total
RNA was reverse transcribed to cDNA in 20 pL reaction
using oligo-dT and M-MLV reverse transcriptase
(Fermentas). Real-time PCR primers were designed to
amplify a 100-200 bp fragments in untranslated regions.
All primers were designed for 60°C annealing and their
sequences are as follows: ZmNASI;1/1;2, 5-GAGGAGA
TGGCGACCACGACAGAGC-3" and 5-AGAAGTGCA
TGAGAAATTCAGAAGC-3; ZmNAS21/2;2, 5-AGT
GCTGCAAGATGGAGGCGAAC-3' and 5-AGTTA
CACGAGAGATTGAAACAG-3; ZmNAS3, 5-GGCT
CACCAGAAGATGGAGGAG-3' and 5-TCACGCAT
GTGGTGTAGACACG-3; ZmNAS4, 5-CACGGCACA
CACCACAAGCAACAAG-3' and 5-ATCCATGCGGT
GTGGGCACATAGAC-3; ZmNASS, 5-ACCGGCGTC
CTCGCTTTCTTGTC-3' and 5-ACGATATGCGGAT
GCGGTCAGCCAG-3; ZmNAS6;1/6;2 5-CTTGCAG
CACCAAGTTGTCGAAC-3' and 5-CATGGAAGTT
GTGGTTGCTACGG-3; ZmActinl, 5-ATGTTTCCT
GGGATTGCCGAT-3' and 5-CCAGTTTCGTCATAC
TCTCCCTTG-3". Real-time RT-PCR was performed
with an ABI7500 cycler (Applied Biosystems) using the
SYBR Premix Ex-Taq master Mix (TakaRa). Reactions
were performed in a total volume of 20 pL with 2 pL of
20xdiluted cDNA, 0.2 mM gene-specific primers and 10
pL of 2xSYBR premix. The PCR conditions were initial
denaturation at 95°C for 30 s, followed by 40 cycles
composed of 5 s denaturation at 95°C and 34 s of
annealing/extension at 60°C. To verify specific amplifica-
tion, melting-curve analysis was performed and the PCR
products were separated by electrophoresis and se-
quenced. Data were analyzed with the ABI7500 software
(version 2.0.5) via the AACt method, and the expression
levels of ZmActinl were used as an internal control. For
all real-time PCR analysis, two biological replicates were
used and three technical replicates were performed for
each biological replicate.

Subcellular localization of the ZmNAS-GFP fusion protein

The coding region of GFP was amplified with the follow-
ing primers, 5- CTCGAGGGATCCCCGGGAATTCC
ATGGAGCTCGGTACCTCTAGAATGGTGAGCAAG
GGCGAG 3" and 5- TACTAGTTTACTTGTACAGCT
CGTCCATGC -3, and the resulting fragment was
cloned into the Xhol-Xbal sites of plant expression vec-
tor pRTL2 to generate the plasmid pRTL2GFP. To
examine the subcellular localization of ZmNAS proteins,
the entire coding region of each gene were cloned in be-
tween the cauliflower mosaic virus 35S promoter and
GFP of pRTL2GFP vector. The primers used for cloning
coding regions of ZmNAS genes are listed in Additional
file 5. The ZmNAS-GFP fusion constructs were
transformed into Arabidopsis mesophyll protoplasts as
described previously [54]. After incubation in the dark at
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26°C for 14 h, the fluorescence was examined using a
confocal microscope (LSM700; Carl Zeiss).

mRNA in situ hybridization

In situ hybridization was performed as described previ-
ously [55] with slight modifications. The shoots and
roots were collected from Fe-deficient and excessive
treated seedlings and fixed in FAA solution containing
50% ethanol, 5% acetic acid, and 3.7% formaldehyde. To
examine the mRNA localization of ZmNASI;1/1;2 and
ZmNAS3, the specific sequences corresponding to the
3’-region of mRNA were amplified with the following
primers, ZmNASL;1/1;2, 5'- TTCCATGGATCGTCGAT
CCTGAGGACATTCGTC -3’ and 5- TTACTAGTAG
AAGTGCATGAGAAATTCAGAAGC -3'; ZmNAS3, 5'-
TTAAGCTTACTCCGTCATCATCGCCCGCAAGC -3
and 5- TTACTAGTAAATTAGGCCAGCCTGTTCGC
TC -3’5 The PCR products were cloned into the vector
pEasy-T3 to generate pEasy-NAS1ISH and pEasy-
NAS3ISH, then the resulting plasmids were sequenced
and linerized. The Digoxigenin-labeled sense and anti-
sense RNA probes were in vitro transcripted by T7 and
SP6 RNA polymerase (Roche) using Spel and Ncol
digested pEasy-NAS1ISH, and Spel and HindlIl digested
pEasy-NAS3ISH, respectively. The hybridization was
performed with a probe concentration of 0.4 ng uL™ at
55°C in a wet chamber. The enzyme-catalyzed insoluble
purple signal was visualized with a Zeiss Axioscop 4.0
microscope and photographed (Zeiss Mrc5, Germany).

Additional files

Additional file 1: The amino acid sequence alignment of class |
maize NAS. A pdf file shows the amino acid sequence alignment of
maize NAST;1/1;2/6;1/6;2 (A) and NAS2;1/2;2 (B).

Additional file 2: The cDNA sequence alignment of class | maize
NAS. A pdf file shows the cDNA sequence alignment of maize NAST;1/
1,2/6,1/6,2 (A) and NAS2;1/2;2 (B). The blue and red arrow indicates the
translation start site and stop codon, respectively.

Additional file 3: Subcellular localization of ZmNAS-GFP fusion
proteins in onion epidermal cells. A pdf file shows the Subcellular
localization of ZmNAS-GFP fusion proteins in onion epidermal cells. The
coding regions of ZmNAS genes were C-terminal fused with GFP and
were transiently expressed in onion epidermal cells driven by micro-
particle bombardment. The images were obtained by a confocal
microscope, and the cytoplasm localization of GFP is used as a control.
The scale bar represents 50 um.

Additional file 4: Primers used for cloning ZmNAS genes. Excel
document contains primer sequences used for cloning ZmNAS genes.

Additional file 5: Primers used for cloning the coding region of
ZmNAS in subcellular localization assay. Excel document contains
primer sequences used for cloning the coding region of ZmNAS in
subcellular localization assay.
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