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Background: Long noncoding RNAs (lncRNAs) have emerged to have irreplaceable roles
in the epigenetic regulation of cancer progression, but their biological functions in
colorectal cancer (CRC) remain unclear.

Methods: LncRNA expression profiles in CRC tissue and their normal counterpart were
explored. Through gain and loss of function approaches, the role of lncRNA PTTG3P was
validated in relevant CRC cells and subcutaneous tumor model. The correlations of
PTTG3P expression with clinical outcomes were assessed.

Results: PTTG3P was upregulated in CRC tissues and was closely correlated with
unsatisfactory prognosis. PTTG3P facilitated glycolysis and proliferation, and the
transcriptional regulator YAP1 was necessary for PTTG3P-induced proliferation.
Mechanistically, the N6-methyladenosine (m6A) subunit METTL3 increased PTTG3P
expression by influencing its stability, while insulin-like growth factor 2 mRNA binding
protein 2 (IGF2BP2) could identify PTTG3P m6A methylation status and bind to it.
IGF2BP2 knockdown partly recovered PTTG3P expression induced by METTL3,
indicating that METTL3-regulated PTTG3P expression depended on the presence of
IGF2BP2. Finally, rescue assays validated the critical role of the METTL3/PTTG3P/YAP1
axis on CRC proliferation.

Conclusions: PTTG3P is an independent prognostic biomarker for CRC. The METTL3/
PTTG3P/YAP1 axis promotes the progression of CRC and is a promising treatment target.

Keywords: proliferation, CRC, METTL3, IGF2BP2, YAP1
INTRODUCTION

Colorectal cancer (CRC) remains a major cause of death from malignant tumors. As of 2012, CRC
has become the second most common cancer in women (9.2% of cancer diagnoses) and the third
most common cause in men (10.0%9) and is the fourth cause of cancer deaths after lung, stomach,
and liver cancer (1, 2). Metabolic reprogramming in cancer is due to the oncogenic activation of
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signal transduction pathways and associated factors. Epigenetic
mechanisms also contribute to regulating metabolic gene
expression in cancer. Accumulating evidence suggests that
metabolic alterations may affect the epigenome. Understanding
the relationship between metabolism and epigenetics in cancer
may provide new opportunities for anticancer treatment
strategies (3).

Malignant tumor cells perform glycolysis at a rate that is 10
times faster than their noncancerous tissue counterparts (4). N6-
methyladenosine (m6A) is responsible for the methylation of the
nitrogen at position 6 of the adenosine base within mRNA and
was first characterized in the 1970s (5). Currently, associations
between m6A and malignant tumors have been reported in
breast cancer, prostate cancer, pancreatic cancer, kidney
cancer, leukemia, stomach cancer, and sarcoma (6–9). LncRNA
PTTG3P, or pituitary tumor-transforming 3, pseudogene
(PTTG3P) (accession no. NR_002734), is located at
chromosome 8q13.1. It is an intronless gene that is highly
homologous to its family members pituitary tumor-
transforming 1 (PTTG1) and pituitary tumor-transforming 2
(PTTG2) and was first reported in the study of the human
pituitary tumor transforming gene (hPTTG) family in 2000 (10).

Our study determined that METTL3 could increase PTTG3P
expression, and highly expressed PTTG3P was predictive of
unsatisfactory prognosis in patients with CRC. Further study
revealed that PTTG3P facilitated proliferation by regulating the
METTL3/PTTG3P/YAP1 axis. These findings may provide a
rationale for PTTG3P as a potential therapeutic target for
CRC treatment.
MATERIALS AND METHODS

Clinical Samples
One hundred twenty patients with CRC were enrolled from the
Affiliated Hospital of Youjiang Medical University for
Nationalities, the Central Hospital of Shenyang Medical
Hospital and Liaoning Cancer Hospital between March 2010
and November 2015. The including criteria were as follow:
patients have definite pathological diagnosis and did not
receive chemotherapy or radiotherapy before surgery. The
tumor and paired non-tumor tissues were also collected after
lesion excision within 30 min and stored in liquid nitrogen, then
transferred to a −80°C refrigerator. The characteristics of cases
were thoroughly noted. All of the CRC patients have signed
informed consent before utilizing the clinical resources for
investigation aims. The study was approved by the Ethics
Committee of Youjiang Medical University for Nationalities
and Liaoning Cancer Hospital.

Cell Lines Culture
Five human CRC cell lines (HT29, SW620, HCT-8, SW480, and
HCT-116) and normal human intestinal epithelial cell lines
(FHC, NCM460) were obtained from ATCC (Manassas, VA,
USA) and cultured according to their instructions. All cells were
cultured in an incubator according to their instructions at 37°C
and in a humidified atmosphere with 5% CO2.
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Total RNA Isolation, qRT−PCR,
and Transfection
The expression levels of RNA were calculated by the quantitative
real-time PCR (qRT-PCR) system. Total RNA was extracted by
TRIzol Reagent (Invitrogen), and 1 mg of total RNA was reverse
transcribed using the PrimeScript RT Reagent Kit (Perfect Real-
Time; Takara). pcDNA3.1-PTTG3P and PTTG3P-containing
lentiviral sequence vector (sh-PTTG3P) were purchased from
GeneChem Corporation (Shanghai, China). CRC cells were
transfected with plasmids in the presence of Lipofectamine
3000 (Invitrogen). After 48 h of transfection, cells were
gathered for further use in the following experiments. The
gene expression quantity was calculated using the 2−DDCt

method. The detail is in Supplementary Tables S1, S2.

Cell Proliferation Assay
Cell viability assay was carried out to analyze cell proliferation.
Cell viability was estimated using CCK8 (CK04, DOJINDO,
Beijing, China), on the basis of the manufacturer’s instruction.
Cells were seeded in 96-well culture plates. After incubation for
the indicated time, CCK-8 reagent (10 ml) was added to each
well. Cell viability was measured with a microplate reader for
absorbance at a wavelength of 450 nm.

EdU Assay
The cells were incubated with 5-ethynyl-20-deoxyuridine (EdU)
(Ribobio, Guangzhou, China) for 5 h and processed according to
the manufacturer’s instruction. After three washes with
phosphate buffer saline (PBS), the cells were treated with 200
ml of 1× Apollo® reaction cocktail for 30 min. Then, the DNA
contents of the cells in each well were stained with 100 ml of
Hoechst 33342 (5 mg/ml) for 30 min and visualized under a
fluorescence microscope.

Flow Cytometry of Apoptosis
CRC cells in six-well plates were rinsed in PBS and then were
trypsinized and resuspended in 100 ml binding buffer added with
2.5 ml of fluorescein isothiocyanate (FITC) conjugated Annexin
V and 1 ml of PI (Invitrogen). Fifteen minutes later, flow
cytometry (BD Biosciences) was utilized for apoptotic cells.

Glucose, Lactate, Adenosine Triphosphate
Levels, and Extracellular Acidification Rate
The levels of glucose and lactate were calculated with a Glucose
Colorimetric Assay Kit (BioVision, CA) and a Lactate Assay Kit
(BioVision, CA) in line with the instructions of the
manufacturer. Adenosine triphosphate (ATP) level was tested
using Cell Titer-Glo Luminescent Cell Viability Assay (Promega,
Madison, MI). Extracellular acidification rate (ECAR) was
detected using Seahorse XF 96 Extracellular Flux Analyzer
(Agilent Technologies, Santa Clara, CA) according to the
manufacturer’s instructions.

m6A Analysis
The quantification of m6A RNA methylation level in total RNA
was detected using the m6A RNA methylation detection kit
September 2021 | Volume 11 | Article 669731
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(Ep igen t ek , Fa rmingda l e , NY) , a c co rd ing to the
manufacturer’s instructions.

Methylated RNA Immune−
Precipitation Assay
Total RNA was extracted from cells using TRIzol (Invitrogen)
following the manufacturer’s instructions. m6A antibody
(Abcam) and Magna methylated RNA immune-precipitation
(MeRIP) m6AKit (Merck Millipore) were explored to
immunoprecipitate chemically fragmented RNA (~100
nucleotides) according to its instruction. Enrichment of m6A
containing RNA was measured by qRT-PCR.

Animal Study
HCT-116 cells were transfected with sh-PTTG3P. Indicated cells
(1 × 107) were subcutaneously injected into 4-week-old male
nude mice. Tumor volume was measured every 5 days. After 35
days, the mice were sacrificed, and the tumor weight was
measured. The animal study was carried out following the
Guide for the Care and Use of Laboratory Animals of the NIH.
This study had been approved by the Committee on the Ethics
of Animal Experiments of Youjiang Medical University
for nationalities.

Statistical Analysis
All the data were shown as the mean ± standard deviation, in at
least three independent experiments. The difference between the
two independent groups was analyzed by a two-tailed Student’s
t-test, while multigroup comparison was made by ANOVA.
Expression correlation between genes was analyzed by Pearson
correlation analysis. Survival analysis was conducted using the
Kaplan–Meier method and analyzed by the log-rank test. SPSS
22.0 (SPSS Inc., Chicago, IL, USA) was used to conduct statistical
analyses, and differences were ensured when p-value was <0.05.
RESULTS

PTTG3P Was Highly Expressed in CRC
To identify lncRNAs involved in CRC progression, we examined
lncRNAs expression profiles using the GSE 84983 dataset (https://
ftp.ncbi.nlm.nih.gov/geo/series/GSE84nnn/GSE84983/matrix/). We
compared the gene expression between CRC tumor tissues and
adjacent normal tissues; we focused on the upregulated lncRNAs
(fold change >5, p < 0.01) in CRC tumor tissues, as these lncRNAs
might potentially be identified oncogenes and therapeutic targets
(Supplementary Figure S1A). The expression of LncRNA PTTG3P
was significantly enhanced in CRC tumor tissues and thus became
the focus of the present study (Supplementary Figure S1B).
Through the analysis of the open-reading frames (ORFs) Finder
and conserved domain database, we determined that PTTG3P
could not consistently code proteins. Five other different online
metrics confirmed the above conclusion (Supplementary Tables
S3). No valid Kozak consensus sequence was identified in PTTG3P
(11), indicating that PTTG3P is an lncRNA with no protein-coding
potential. To verify the expression of PTTG3P in CRC, we
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investigated the detailed annotative process of preclinical human
cancer models via the Cancer Cell Line Encyclopedia (CCLE)
(www.broadinstitute.org/ccle) and found that PTTG3P was
remarkably overexpressed in CRC cell lines (Supplementary
Figures 1E, F). Next, the HT29, SW620, HCT-8, SW480, HCT-
116, NCM460, and FHC cells were evaluated for PTTG3P
expression. As shown in Figure 1A, PTTG3P expression was
higher in HT29, SW620, HCT-8, SW480, and HCT-116 cells,
compared with NCM460 and FHC cells. Furthermore, we
explored PTTG3P expression in a cohort of 120 paired CRC and
non-tumor tissues; the clinicopathological characteristics are
reported in Table 1. PTTG3P was overexpressed in CRC tissues
(Figures 1B, C), which was in accordance with the results of the
findings using datasets from the Cancer Genome Atlas (TCGA)
database (Figures 1D, E). In addition, high PTTG3P expression was
observed in several types of malignant tumors (Supplementary
Figure S1G). Furthermore, our specimens confirmed that PTTG3P
was overexpressed in stomach adenocarcinoma (STAD) and
esophageal squamous cell carcinoma (ESCA) (Figures 1F, G).
Altogether, these data revealed that PTTG3P was elevated in CRC
and might be an oncogene.

PTTG3P Correlated With Patient Prognosis
To identify the correlation between PTTG3P expression and
clinicopathological features, we divided cases into low and high
expression based on the median expression. Highly expressed
PTTG3P was positively associated with tumor size (p = 0.02) and
differentiation (p = 0.01), but not with age (p = 0.86), sex (p =
0.74), tumor invasion depth (p = 0.28), lymph nodemetastasis (p =
0.09), or vessel invasion (p = 0.06) (Table 2). PTTG3P was more
highly expressed in stage III–IV (advanced stage) tumors than in
stage I–II (early stage) tumors (Figure 2A). Kaplan–Meier survival
curves revealed that patients with higher expression of PTTG3P
had poorer survival (Figure 2B). Furthermore, we determined the
prognostic ability of PTTG3P in CRC. As shown in Table 2,
univariate analyses revealed that high expression of PTTG3P was
associated with a dramatic risk of death (p < 0.01), and
multivariate analysis showed that PTTG3P expression could be
an independent prognostic factor (p < 0.01). Subsequently,
receiver operating characteristic (ROC) curves was constructed
to evaluate the diagnostic value of PTTG3P in CRC; the area under
the ROC curve (AUC) was 0.776 [95% confidence interval (CI)
0.733–0.819] (Figure 2C). Thus, our findings suggested that
higher expression of PTTG3P predicted a worse prognosis and
may serve as an independent prognostic factor of disease outcome.

Overexpression of PTTG3P Promoted CRC
Cell Glycolysis and Proliferation
To explore the function of PTTG3P, we transfected PTTG3P-
encoding plasmids and short hairpin RNA (shRNA)-targeting
PTTG3P into HT29 and HCT-116 cells (Figure 2D). By
determining PTTG3P expression via gene set enrichment
analysis (GSEA) of TCGA profiles, we determined that PTTG3P
expression was positively correlated with glycolysis and affected
genes involved in glycolysis regulation (Figure 2E). Decreased
PTTG3P levels were accompanied by depletion of GLUT-1,
September 2021 | Volume 11 | Article 669731
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ALDOA, PKM2, and LDHA levels, which are regulator genes of
glycolysis. These decreased gene expression could be rescued by
re-expression of PTTG3P (Figure 2F). Next, we determined that
PTTG3P depletion in vitro repressed glucose uptake, lactate
production, ATP levels, and ECAR levels, whereas the opposite
outcomes were observed after enforced expression of PTTG3P
(Figures 3A–D). Furthermore, we carried out rescue experiments
to explore whether GLUT-1, ALDOA, PKM2, and LDHA took
part in PTTG3P regulation of glycolysis genes. We found that
PTTG3P + si-GLUT-1 and PTTG3P + si-LDHA could partly
Frontiers in Oncology | www.frontiersin.org 4
rescue glucose uptake, PTTG3P + si-GLUT-1 could partly rescue
lactate production, and PTTG3P + si-PKM2 could partly rescue
glucose uptake (Supplementary Figure S3). Furthermore, we
found that silenced PTTG3P expression suppressed cell
proliferation and facilitated apoptosis, while PTTG3P
overexpression enhanced these functions (Figures 3E, F). In the
subcutaneous tumor model, PTTG3P overexpression facilitated
tumor growth (Figures 3G, H). We then explored whether
glycolysis played a vital role in proliferation. As expected, the
glycolic inhibitors 2-DG and 3-BP or depletion of LDHA, which
A CB

D E

F G

FIGURE 1 | PTTG3P exhibits high expression in CRC. (A) The expression profiles of PTTG3P in NCM460, FHC, HT29, SW620, HCT-8, SW480 and HCT-116 were
detected with qRT-PCR. (B, C) High PTTG3P expression was observed in 120 paired tumor and paired adjacent non-tumor tissues. (D, E) High PTTG3P
expression was observed in the TCGA database of COAD (n=521). (F, G) High PTTG3P expression was observed in STAD (n=20) and ESCA (n=20) . *p < 0.05,
**p < 0.01, ***p < 0.001.
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could catalyze the last step of glycolysis, partially abrogated cell
proliferation and tumor growth (Figures 3I, K). In addition, EDU
proliferation assays showed that the cell proliferation capacity of
cancer cells with silenced PTTG3P expression was significantly
lower compared to the control group. Furthermore, YAP1 could
rescue the proliferation induced by PTTG3P depletion
(Supplementary Figure S4).

Clinically, oxaliplatin is used for CRC treatment. Glycolysis
suppression is an effective strategy for blocking cell proliferation
and overcoming drug resistance (12). We speculated that
PTTG3P ablation and oxaliplatin might play a synergistic
antitumor effect. As shown in Figures 3L, M, PTTG3P
depletion could be associated with simultaneous oxaliplatin
treatment. Taken together, PTTG3P ablation plus oxaliplatin
therapy was a promising strategy for treating CRC.

YAP1 Depletion Partially Abrogated the
Proliferation Induced by PTTG3P
To explain the pathways involved in PTTG3P-mediated CRC
prol i fe rat ion , GSEA using publ i shed TCGA colon
adenocarcinoma (COAD) datasets were explored. Our
analysis indicated that PTTG3P expression associated with
Yes1-associated transcriptional regulator (YAP1) activated
Frontiers in Oncology | www.frontiersin.org 5
gene signatures, indicating that the Hippo signaling pathway
might take part in PTTG3P function (Figure 4A). As
verification of this speculation, hub genes in the Hippo
pathway, including LATS1/2, MST1/2, and YAP1, and Hippo
pathway target genes, such as CDX2, FOXM1, CTGF, and
CYR61, were tested. We observed diminished PTTG3P
interfered with the expression of YAP1, FOXM1, and CTGF
(Figure 4B). YAP1 is a crucial factor in the Hippo pathway and
is involved in cell proliferation and suppression of apoptotic
genes. In this study, PTTG3P and YAP1 were positively
associated (Figure 4C). Furthermore, YAP1 was highly
expressed in tumor tissues in the TCGA datasets of COAD
(Supplementary Figures S1C, D), and YAP1 was associated
with advanced clinical characteristics of CRC (Supplementary
Table S4). In addition, we designed and carried out a series of
rescue experiments, PTTG3P plus YAP1 knockdown
partly reversed proliferation, apoptosis, and tumor growth
induced by PTTG3P (Figures 4D–G); however, treatment
with the Hippo pathway inhibitor, XMU-MP-1 (an inhibitor
of MST1/2), barely induced any effects on these processes
(Figures 4H–K). This suggests that PTTG3P might bypass
the key factor MST1/2 while modulating YAP1 to display
pivotal functions.
TABLE 1 | Correlation between PTTG3P expression in serum and clinicopathologic characteristics of CRC patients.

Variable PTTG3P expression p-value

Total (n = 120) High expression Low expression

Age (years)
≤60 52 27 26 0.86
>60 68 32 35
Gender
Male 56 30 28 0.74
Female 64 29 33
Tumor size (cm)
≤5 81 47 37 0.02
>5 39 16 24
Tumor invasion depth
T1–2 95 53 43 0.28
T3–4 25 12 20
Lymph node metastasis
N0 40 25 20 0.09
N1–2 80 36 39
Vessel invasion
Yes 65 49 20 0.06
No 55 20 31
Differentiation
Well 38 20 18 0.01
Moderate 62 46 16
Poor 20 13 7
September 2021 | Volume 11 | Article
TABLE 2 | Univariate and multivariate analyses of clinicopathologic characteristics for correlations with overall survival.

Variables Univariate analysis Multivariate analysis

HR (95%CI) p-value HR (95% CI) p-value

PTTG3P expression 1.758 (1.085–2.850) <0.01 1.712 (1.053–2.782) <0.01
Tumor size 1.650 (1.086–2.508) <0.01 1.923 (1.276–2.898) <0.01
Differentiation 1.724 (1.183–2.511) <0.01 1.724 (1.183–2.511) <0.01
669731
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m6A Modification Was Involved in
PTTG3P Expression
To determine specific factors involved in regulating PTTG3P
expression, we applied DNA methyltransferase inhibition in
HT29 and HCT-116 cells, and no influence was found on
PTTG3P expression (Figure 5A). Next, we exposed these cell
lines to SAHA and NaB, broad-spectrum HDAC inhibitors, to
examine whether histone acetylation exerted a role in PTTG3P
Frontiers in Oncology | www.frontiersin.org 6
expression, and discovered that HDAC inhibitors failed to alter
PTTG3P levels (Figure 5B). Neither HDAC6 nor HDAC8
influenced PTTG3P expression (Figure 5C). Subsequently,
MeRIP-qPCR indicated that m6A modification was
dramatically increased in HT29 and HCT-116 cells
(Figure 5D). The methylation of adenosine is directed by a
large m6A methyltransferase complex containing METTL3 as
the SAM-binding subunit. We confirmed that METTL3
A

C

B

D

F

E

FIGURE 2 | PTTG3P correlates with patient prognosis (A) PTTG3P expression was checked in different clinical stages of CRC tissues. (B) PTTG3P expression and
survival predicted poor prognosis of overall survival in a cohort of 120 paired cases. (C) ROC curve analysis of the diagnostic ability of PTTG3P expression. (D) Short
hairpin RNA (shRNA) targeting PTTG3P and PTTG3P overexpressed plasmids were transfected into HCT-116 and HT29 cells. (E) GSEA plot showing that PTTG3P
expression positively correlated with glycolysis-activated gene signatures (REACTOME GLYCOLYSIS). (F) Analysis of glycolytic gene expression with PTTG3P
knockdown or PTTG3P knockdown with PTTG3P re-expression. *p < 0.05, **p < 0.01, ***p < 0.001.
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significantly increased the level of PTTG3P expression
(Figure 5E). Fat mass and obesity-associated protein (FTO)
and demethylase alkB homolog 5 (ALKBH5) have been
described as m6A demethylases (13, 14). Next, we determined
Frontiers in Oncology | www.frontiersin.org 7
that ALKBH5 suppressed PTTG3P expression (Figure 5F). Next,
we conducted RNA stability analyses by treating cells with Act-
D, which binds DNA at the initiation complex and prevents
RNA chain elongation. We found that METTL3 strengthened
A C D

F

B

G I JH

K ML

E

D

FIGURE 3 | Overexpression of PTTG3P promoted CRC cell glycolysis and proliferation (A) Glucose uptake analysis, (B) Lactate production analysis, (C) ATP
analysis explored with PTTG3P knockdown or PTTG3P overexpression in HCT116 or HT-29 cells. (D) Extracellular acidification rate (ECAR) analysis tested the
glycolytic capacity with PTTG3P knockdown or PTTG3P overexpression in HCT116 or HT-29 cells. (E) CCK8 assay detected the proliferation of HCT-116 and HT29
cells transfected with PTTG3P knockdown or PTTG3P overexpression. (F) Flow cytometry assays revealed that PTTG3P affected cell apoptosis. (G) Tumor volume
and (H) weight were measured in vivo when injected with overexpressed PTTG3P transfected HCT-116 cells. (I) CCK8 assay detected the proliferation of HT29 cells
transfected with overexpressed PTTG3P and treated with 2.5mM 2-DG or 100 mM 3-BP. (J) Xenograft tumors volume, (K) Xenograft tumors weight was
established, with injected with PTTG3P or PTTG3P plus sh-LDHA or PTTG3P treated with 2-DG (1000 mg/kg, injected into the abdominal cavity). (L) Tumor volume
and (M) weight were measured in vivo when injected with PTTG3P knockdown (20 nmol twice per week) and oxaliplatin treatment (5 mg/kg twice per week, injected
into the abdominal cavity) transfected HCT-116 cells. *p < 0.05, **p < 0.01, ***p < 0.001.
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A CB

FED

IHG

KJ

FIGURE 4 | YAP1 depletion partially abrogated the proliferation caused by PTTG3P. (A) GSEA plot showing that PTTG3P expression positively correlated with YAP-
activated gene signatures. (B) PTTG3P silencing impaired the mRNA level of YAP1, FOXM1 and CTGF. (C) The relationship between PTTG3P and YAP1 was analyzed
by Spearman’s correlation analysis. (D) CCK8 assay showed that PTTG3P plus YAP1 knockdown partly rescued cell proliferation. (E) Flow cytometry assays revealed
that PTTG3P plus YAP1 knockdown partly rescued cell apoptosis. (F) Xenograft tumors volume, (G) Xenograft tumors weight were established, with injected with
PTTG3P or PTTG3P plus sh-YAP1. Empty vector as indicated. (H) CCK8 assay showed that PTTG3P plus XMU-MP-1barely rescued cell proliferation. (I) Flow cytometry
assays revealed that PTTG3P plus XMU-MP-1barely rescued cell apoptosis. (J) Xenograft tumors volume, (K) Xenograft tumors weight was established, with injected
with PTTG3P or PTTG3P plus XMU-MP-1. Data are presented as the mean ± SD from three independent experiments. *p < 0.05, **p < 0.01. NC, negative control.
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A CB
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FIGURE 5 | m6A modification is involved in the ectopic expression of PTTG3P in CRC (A) qRT-PCR analysis of PTTG3P treated with DMSO or 5-Azacytidine (5 mM
or 10 mM) for 72 hr (n = 3). (B) HT29 cells were treated with SAHA (2 µM), or NaB (2 mM) for 24 h, and PTTG3P expression was measured. (C) After transfection
with vector control, pcDNA/HDAC6, or pcDNA/HDAC8 for 24 h, PTTG3P expression in HT29 cells was measured by qRT-PCR. (D) MeRIP-qPCR showed the m6A
modification expression in FHC cells as compared with the HT29 and HCT-116 cells. (E) The qRT-PCR analysis of PTTG3P levels in control and METTL3
overexpression in HT29 and HCT-116 cells. (F) The qRT-PCR analysis of PTTG3P levels in control and ALKBH5 overexpression in HT29 and HCT-116 cells.
(G) RNA stability analysis showed the stability of PTTG3P in HT29 cells treated with actinomycin D (Act-D, 5 mg/m). (H) After transfection with vector or METTL3 for
24 h, the binding of PTTG3P and IGF2BP2 was analyzed by RIP-PCR in HT29 and HCT-116 cells. (I) After transfection with IGF2BP2 knockdown, the PTTG3P level
increased by METTL3 was partly rescued. (J) METTL3 increased the level of YAP1 analyzed by qRT-PCR in HT-29 and HCT116 cells. (K) METTL3 and YAP1 are
positively correlated from the TCGA database of colon adenocarcinoma (COAD). (L) PTTG3P co-expression heat map, TCGA (https://portal.gdc.cancer.gov/) COAD,
level 3 HTSeq FPKM. Data are presented as the mean ± SD from three independent experiments. *p < 0.05, **p < 0.01, ***p < 0.001.
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the stability of PTTG3P (Figure 5G). The biological functions of
m6A are mediated through a group of RNA binding proteins that
specifically recognize the methylated adenosine on RNA.
Recently, insulin-like growth factor-2 mRNA-binding proteins
1, 2, and 3 (IGF2BP1-3) have been described as m6A readers. We
performed RNA immunoprecipitation PCR (RIP-PCR) to
evaluate the potential binding of IGF2BP1-3 to PTTG3P. The
results indicated that IGF2BP2 could bind to PTTG3P, and
METTL3 strengthened their binding (Figure 5H) .
Interestingly, IGF2BP2 knockdown could partly rescue the
PTTG3P expression increased by METTL3 (Figure 5I).
METTL3 could increase the expression level of YAP1 and was
positively correlated with YAP1 expression (Figures 5J–L).
Finally, the association between METTL3 and IGF2BP2
expression and clinicopathological characteristics from TCGA
are summarized in Supplementary Tables S5, S6.

The METTL3/PTTG3P/YAP1 Axis Was Vital
for CRC Proliferation
To evaluate the involvement of the METTL3/PTTG3P/YAP1
axis in CRC proliferation, we carried out a series of rescue
experiments in HCT-116 and HT29 cells and found that
PTTG3P KD plus METTL3, PTTG3P plus YAP1 KD, and
METTL3 plus YAP1 KD could partly recover the proliferative
phenotype (Figures 6A–C). Hence, the METTL3/PTTG3P/
YAP1 axis played a pivotal role in CRC progression. Clinically,
the METTL3/PTTG3P high and PTTG3P/YAP1 high groups
defined a more unsatisfactory prognosis than low group
(Figures 6D, E). Furthermore, higher levels of METTL3,
ALKBH5, and IGF2BP2 predicted poor prognosis and
diagnost ic value in CRC using the TCGA dataset
(Supplementary Figure S2).
DISCUSSION

Pseudogenes may be transcribed into RNA at low levels due to
promoter elements inherited from the ancestral gene or arising by
new mutations. Although most transcripts have rarely been
reported to have functional significance, other than chance
transcripts from other parts of the genome, some pseudogenes
have given rise to regulatory RNAs and new proteins. For
instance, the lncRNA HK2P1, a pseudogene of HK2, promoted
lactate production and glucose uptake in endometrial stromal
cells (15). Pseudogene PTENP1 repressed the oncogenic PI3K/
AKT pathway and inhibited hepatocellular carcinoma (HCC)
progression (16). Our findings provide evidence that PTTG3P
facilitates CRC progression via theMETTL3/PTTG3P/YAP1 axis,
and PTTG3P has a potential diagnostic value, with an AUC of
0.776 (95% CI, 0.733–0.819). Clinically, high PTTG3P expression
significantly associates with tumor size and TNM stage and
shorter survival time. Furthermore, our data are in line with
other research studies. Liu et al. (17) reported that PTTG3P is
markedly upregulated in CRC tissues. Zhou et al. (18) proposed
that PTTG3P is a valuable marker of HCC progression and is
Frontiers in Oncology | www.frontiersin.org 10
useful for biomarker development. Weng et al. (19) reported that
PTTG3P facilitates cell proliferation, migration, invasion, and
serves as a new promising strategy for interfering with gastric
cancer. In addition, PTTG3P plays an important role in breast
cancer (20) and pancreatic cancer (21). Thus, the oncogenic role
of PTTG3P is strongly supported by findings in the literature.

Malignant tumors undergo glycolysis at a higher speed than
normal tissue (22, 23). This phenomenon is known as the Warburg
effect, which demonstrates that a malignant tumor is caused by
mitochondrial metabolism disorder (24). Doherty et al. (23) found
that tumor lactate levels correlate with increased metastasis, tumor
recurrence, and poor outcomes. Thus, targeting lactate metabolism
is a prospective method for cancer therapeutics. Furthermore,
cancer cells with a high level of glycolysis and acid resistance have
an energetic growth advantage, which facilitates unrestrained
proliferation and invasion. In this study, we proposed that
PTTG3P could increase glycolysis by regulating genes linked with
metabolic pathways. Recently, the ketogenic diet was used to
constrain glycolysis to starve cancer cells, by adjusting
mitochondrial metabolism (25). The Hippo signaling pathway has
become increasingly important in human cancer (26); the key
regulator YAP1 is upregulated in breast cancer, colorectal cancer,
and liver cancer (27); and YAP1 promotes proliferation (28–30) and
inhibits apoptosis (30). Clinically, YAP1 is used as a target for
cancer drug development (31). Yi et al. (32) suggested that
inhibiting TEAD–YAP1 interactions or blocking the binding
function of WW domains is a pharmacologically viable strategy
against the activity of the YAP1 oncoprotein. We discovered that
PTTG3P activates the Hippo signaling pathway by promoting
YAP1, FOXM1, and CTGF, but not MST1/2 expression. The
impact of m6A on cancer cell proliferation might be much more
profound. The depletion of METTL3 is known to cause apoptosis of
cancer cells and may reduce their invasiveness (33, 34), while the
activation of ALKBH5 by hypoxia has been shown to induce cancer
stem cell enrichment (35). Our data demonstrated that METTL3
and ALKBH5 coordinately mediated the m6A modification of
PTTG3P expression, whereas IGF2BP2 mediated m6A-dependent
functions; that is, METTL3-enhanced PTTG3P expression
depended on IGF2BP2 activity.

To investigate whether PTTG3P might regulate the
expression of the genes such as YAP1, GLUT-1, ALDOA,
PKM2, and LDHA via a competing endogenous RNA
(ceRNA) mechanism or directly by binding to a common
motif, we used the database ENCORI to analyze the
relationship between PTTG3P and those genes. However,
neither the ceRNA mechanism nor direct binding showed
regulation of PTTG3P and YAP1, GLUT-1, ALDOA, PKM2,
and LDHA. In the future, we will carry out RNA pulldown and
mass spectrometry to identify proteins directly binding to
PTTG3P or RIP-qPCR to identify YAP1, GLUT-1, ALDOA,
PKM2, and LDHA binding RNA.

Overall, our study revealed the METTL3/PTTG3P/YAP1 axis
in CRC progression, and m6A readers IGF2BP2 takes part in this
progress. Hence, PTTG3P might be a useful target for CRC
prevention and therapy and may shed some light on the role of
the poorly understood m6A and pseudogene in cancer biology.
September 2021 | Volume 11 | Article 669731

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Zheng et al. PTTG3P Contributes to CRC Proliferation
DATA AVAILABILITY STATEMENT

The datasets used and analyzed in the current study are available
from the corresponding author on reasonable request.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by Ethics committee of Liaoning Cancer Hospital and
Affiliated Hospital of Youjiang Medical University for Nationalities.
The patients/participants provided their written informed consent
to participate in this study. The animal study was reviewed and
approved by China medical university. Written informed consent
was obtained from the individual(s) for the publication of any
potentially identifiable images or data included in this article.

AUTHOR CONTRIBUTIONS

The work presented here was carried out in collaboration
between all authors. YW and GZ contributed to the conception
Frontiers in Oncology | www.frontiersin.org 11
of the study. YZ and YL contributed significantly to analysis and
manuscript preparation. GY and JG performed the data analyses
and wrote the manuscript. LX helped perform the analysis with
constructive discussions. All authors contributed to the article
and approved the submitted version.
FUNDING

This work was supported by the Natural Science Foundation of
Liaoning Province of China (grant numbers 20180550778 and
20180551043) and National Natural Science Cultivation
Foundation of China of Liaoning Cancer Hospital (grant
numbers 2021-ZLLH-18 and 2020-ZLLH-48).
ACKNOWLEDGMENTS

We thank our colleagues for their suggestions and criticisms on
the manuscript.
A CB

D E

FIGURE 6 | The METTL3/PTTG3P/YAP1 axis is vital for CRC progression (A) CCK8 assay detected the proliferation of HCT-116 cells transfected with sh-PTTG3P
or sh-PTTG3P+METTL3. (B) CCK8 assay detected the proliferation of HT29 cells transfected with PTTG3P or PTTG3P+sh-YAP1. (C) CCK8 assay detected the
proliferation of HCT-116 cells transfected with METTL3 or METTL3sh-YAP1. (D) Kaplan-Meier analysis of the OS curves for patients with METTL3/PTTG3P-high
(both levels of METTL3/PTTG3P were high), METTL3/PTTG3P-low (both levels of METTL3/PTTG3P were low) expression. (E) Kaplan-Meier analysis of the OS
curves for patients with PTTG3P/YAP1-high (both levels of PTTG3P/YAP1 were high), PTTG3P/YAP1-low (both levels of PTTG3P/YAP1 were low) expression. Data
are presented as the mean ± SD from three independent experiments. *p < 0.05, **p < 0.01.
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Supplementary Figure S1 | (A) According to an online database (GSE84983),
the volcano graph showed differential gene. (B) qRT-PCR of the expressions of the
top 5 up-regulated lncRNAs in CRC. (C, D) High YAP1 expression was observed in
CRC (TCGA-COAD, n = 521). (E, F) Exploring PTTG3P expression in CRC cell lines
by assembling the Cancer Cell Line Encyclopedia (CCLE) (www.broadinstitute.
org/ccle). (G) High PTTG3P expression was observed in many kinds of tumors.
***P < 0.001.
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Supplementary Figure S2 | (A) ROC curve of PTTG3P, METTL3, YAP1 and
IGF2BP2. (B) Survival curve of METTL3 in progress free interval. (C) Survival curve
of ALKBH5 in overall survival, disease specific survival and progress free interval.
(D) Survival curve of IGF2BP2 in overall survival, disease specific survival and
progress free interval.

Supplementary Figure S3 | (A) Rescue assay was performed, PTTG3P+si-GLUT1
and PTTG3P+si-LDHA could abrogate the PTTG3P induced glucose uptake.
(B) Rescue assay was performed, PTTG3P+si-GLUT1 could abrogate the PTTG3P
induced lactate production. (C) Rescue assay was performed, PTTG3P+si-PKM2 could
abrogate the PTTG3P induced ATP accumulation. *P < 0.05, **P < 0.01.

Supplementary Figure S4 | The cancer cells proliferation capacity was detected
by EdU assays in HCT-116 cell lines transfected with the sh-NC, sh-PTTG3P and
sh-PTTG3P+YAP1 plasmid (Scale bar, 20mm).
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