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Introduction
Multiple endocrine neoplasia (MEN) disorders are infrequent 
and hereditary diseases that can be developed into the number 
of endocrine glands and result in tumor formation or grow 
exceptionally no tumor creation.1–4 The MENs are run in fam-
ilies because they are the exact consequence of genetic muta-
tions and their symptoms are completely dissimilar dependent 
on the involving glands.5–7 The profiling and screening of can-
didate genes can be informative to detect disease people who 
have or are susceptible to MEN syndromes.8–12 The MEN syn-
dromes occur in 3 forms which are types 1, 2A, and 2B and 
through specific novel variants such as MEN 4.13 These main 
types have some similarity and are atypically outsized glands 
with additional hormone production.14 The genetic alterations 
(mutation) are mainly responsible for MEN syndrome forma-
tion and the main candidate gene accountable for type 1 dis-
ease is well known, whereas in people with types 2A and 2B, 
defects in some genes can be responsible for these 2 types of 
disease formation. People with MEN type 1 usually develop 
tumors of 2 or more often in the parathyroid gland, pancreas, 
pituitary gland, and less often in thyroid gland and adrenal 
glands.15–18 More often than not, people with MEN type 1 will 
develop the parathyroid-related benign tumors with excessive 
parathyroid hormone production.19 This extra parathyroid 
hormone generally increases the calcium levels in the blood or 
even occasionally triggering formation of kidney stones. In 
30% to 80% of people with MEN 1 hormone-producing cells 
(islet cells) of the pancreas, tumors can be seen (Table 1).

MEN Type 1
Multiple endocrine neoplasia 1 (MEN 1, OMIM no. 131100), 
famous as Wermer disease, is a familial disease and autosomal 
dominant cancer connected with the endocrine (hormone-
producing) glands neoplasia.20–22 The maximum joint tumors 
with MEN1 are the parathyroid glands, islet cells of the pan-
creas, and pituitary glands.13,23 Additional rare endocrine 
tumors realized in MEN1 contain adrenal cortical tumors, car-
cinoid tumors and infrequent pheochromocytomas, and some 
parts of the digestive tract. Moreover, there are some nonendo-
crine tumors in MEN1 such as facial angiofibromas, collageno-
mas (flesh-colored tumors on the skin), lipomas, leiomyomas, 
meningiomas, and ependymomas.13

Men1 is the most often happening form of MENs and it is 
more often than not associated with primary hyperparathy-
roidism (distinguished by the presence of parathyroid adeno-
mas or hyperplasia), which happens in about 90% of patients.24 
The treatment strategy typically can be surgery and drug that 
increases dopamine activity prescription, an effective prolactin-
inhibiting factor in patients with prolactin-secreting pituitary 
tumors.25 Moreover, surgery or a proton pump inhibitor (a 
drug that blocks gastric acid secretion) could be used for 
patients with gastrinomas to reduce levels of gastric acid and 
peptic ulcers. There are some suggestions over the comparison 
of the conservational management and surgery. For example, 
MEN1 patient’s nonfunctioning pancreatic neuroendocrine 
tumors with size more than 2 cm would be preferred to manage 
through observant waiting, while the surgery in nonfunctioning 
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pancreatic neuroendocrine tumors with size more than 3 cm 
should be taken into consideration.26,27

MEN1 disease is a consequence of the MEN1 gene mutation 
whose genetic locus is chromosome 11q13 (Figure 1).28,29 The 
role of MEN1 gene is a tumor suppressor confirmed by micros-
atellite analysis in cancerous tissues of MEN1 patients.30–33

Germ line mutation in the MEN1 gene resulting in loss of 
heterozygosity (LOH) at both alleles of MEN1 in the endo-
crine tumor and can be extent throughout the coding region of 
the gene.34,35 The protein product of MEN1 comprises 610 
residues and is completely consensus from Drosophila mela-
nogaster to humans,36 contrary to yeast or Caenorhabditis ele-
gans, signifying its new evolutionarily origin.36 Despite the fact 
that during mouse embryogenesis, MEN1 gene is ubiquitously 
expressed in countless tissues and organs during mouse embry-
onic development,37–39 its role is completely restricted and tis-
sue specific in the way that even exhibiting contrasting function 
between different organs.38 In endocrine organs, MEN1 sup-
presses tumorigenesis in some organs, such as lung, prostate, 
and breast, and it makes worse diabetes in mouse models.40–46 
Interestingly, there are some reports over the role of MEN1 
function of further organs such as liver and bone.47–50 In mouse 
mesenchymal and osteoblastic cells, it is related to β-catenin, 
cell-cell adhesion, and gene transcription factor, which is essen-
tial for osteoblast differentiation.49 Also, MEN1 protein 
(menin) is considered to maintain bone morphogenetic protein 
2 (BMP-2), TGF-β super family of proteins, and Runt-related 
transcription factor 2 (Runx2), resulting in mesenchymal cells 
to osteoblasts differentiation.51 Overexpression of MEN1 
repressed the ALP activity induced by JunD. Actually, it has 
been recommended that menin destroys the maturation of 
osteoblast, through stopping the differentiation of JunD.52,53 

Menin can be activated in fibrinogenes via TGF-beta.54 It has 
been shown that menin inhibits gene transcription through 
different chromatin-modifying enzymes or posttranscription-
ally acting. What is more is G2-M phase transition stopping 
through cyclin B2 expression.55,56 It also plays its role through 
JunD-mediated gene transcription and other mecha-
nisms.55,57-60 More than that menin in a straight line interacts 
with the p65 subunit of NF-κB to repress NF-κB–dependent 
transcription.61,62 There are some suggesting interactions with 
the PTN gene as a pro-proliferative receptor in lung cancer 
cells for the inhibition of complex 2 (PRC2) attachment to the 
PTN gene promoter in addition to enhancing the suppressive 
chromatin spot H3K27me3.41

Menin is able to induce posttranscriptional modification 
through increasing the microRNA expression like microRNA-
26a (miR-26a) which is crucial for osteoblastic differentia-
tion.63 More than nuclear localization of menin, it is present in 
cytoplasm or even extracellular spaces suggesting that it has 
additional role in control of multiple signaling pathways, rang-
ing from Ras to Akt to Hedgehog signaling (Figure 2). It was 
shown that with supporting of the transforming growth  
factor type β signaling pathway, cell proliferation inhibition 
removed.65 For Wnt signaling and glyco-kipoprotein emission 
the trascriptional co-activator btea-caten controls homeostasis 
in embryonic and adult development.66 Menin holds back 
extracellular regulated protein kinase-1/2 (ERK-1/2) mitogen-
activated protein kinase pathway which is a downstream target in 
Ras pathway.67–69 The correlation of menin with reduced activity 
of protein kinase Akt1 in cultured cells and mouse pancreatic 
denoted that translocation of Akt1 to the cell membrane is 
inhibited by menin.70 Further studies had shown that the tran-
scription factor FOXO1 in the cytoplasm of hepatocytes 

Table 1. The major conditions and features of MEN (multiple endocrine neoplasia).

MEN TyPE GENE CoNDITIoNS (FEATURES)

MEN 1 (Wermer) MEN 1 (menin) Hyperparathyroidism (95%)
Pancreas tumors (30%-80%)
Pituitary gland tumors (30%-42%)
Rarely (facial angiofibromas, collagenomas, lipomas, meningiomas, ependymomas)

MEN2A (Sipple) RET (specially codon 634) Thyroid gland tumors (specifically medullary carcinoma) (95%)
Pheochromocytoma (tumor of the adrenal glands) (40%-50%)
Hyperparathyroidism (10%-20%)

MEN2b (multiple mucosal 
neuroma syndrome)

RET (specially codon 918) Neuromas (99%)
Physical characteristics similar to those in people with Marfan syndrome (99%)
Thyroid gland tumors (specifically medullary carcinoma) (95%)

MEN4 CDNK1B Parathyroid and anterior pituitary tumors (possibly associated with adrenal, renal, 
and reproductive organ tumors)

Figure 1. MEN1 gene in genomic location: bands according to ensemble (http://www.genecards.org/cgi-bin/carddisp.pl?gene=MEN1).

http://www.genecards.org/cgi-bin/carddisp.pl?gene=MEN1
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correlated with menin; however, it is uncertain how menin 
cooperates with FOXO1 and what are its biological outcomes.71 
There are some indicators of menin role in taking on PRMT5 
to the promoter of the Gas1 gene, a fundamental part for bind-
ing of Sonic hedgehog (Shh) ligand, to activate the Hedgehog 
signaling pathway.62

It can be said that menin mediated inhibition of cell prolif-
eration inhibition through interaction with (a) histone-modi-
fying enzymes (MLL, EZH2, and HDACs); (b) the relations 
with several transcription factors, such as JunD, nuclear factor 
κB (NF-κB), peroxisome proliferator-activated receptors 
(PPARγ), and vitamin D receptor (VDR), to stimulate or 
repress gene transcription; (c) cell proliferation arresting by 
means of transforming growth factor β1 (TGF-β) signaling 
and Wnt/β-catenin pathways; (d) the destruction of pro- 
proliferative factors such as insulinlike growth factors I and II 
(Igf-I and Igf-II) and parathyroid hormone-related protein 
(PTHrP) involved in endocrine tumors; and (e) the direct 
effect on cell cycle progression.13,57,72

More often than not, in 5% to 10% of MEN1 patients, no 
mutations of the MEN1 gene can be detected that could har-
bor mutations involving other genes34,73 such as the CDNK1B 
gene (12p13.1-p12) responsible for coding 196 amino acid 
cyclin-dependent kinase inhibitor (CK1) p27kip1 mutation, 
highlighting as a responsible gene of recessive MEN-like 
syndrome referred to as MEN4.74 The exact MEN4 tumori-
genesis molecular mechanisms are not clear yet, although it is 
supposed that the mutated allele possibly will be responsible 

for the reduction of p27 protein localized in the nucleus and, 
thus, competent to exert its role of negative regulator of cell 
cycle progression and cell growth. Now, 9 dissimilar CDKN1B 
pathogenic modifications have been recognized but no pre-
cise medical features is available to discriminate MEN4 from 
MEN1.

In addition to genetic alterations, there are some epigenetic 
mechanisms that act as a regulatory element through changing 
the gene expression patterns without altering the sequence of 
the genome.75 Between epigenetic mechanisms and DNA 
methylation, the important ones that happen in around 3% of 
cytosines of cytosine-guanine dinucleotide (CpG) islands are 
present in the genome.76 Menin can interact with lysine meth-
yltransferase 2D (MLL2) and regulate its histone methyl 
transferase activity.77 It was shown that insulinlike growth fac-
tor 2 (Igf2) was overexpressed in Men1 mutant mice as a result 
of hypermethylation of the intragenic differentially methylated 
regulatory regions (DMR2) of the Igf2 gene.78 Promoter 
hypermethylation was shown in one of the cell cycle regulator 
genes (RB1, P14ARF, P15 (INK4b) (CDKN2B), P16 
(CDKN2A), P21 (CDKN1A), P27, and P73(TP73)) in pitui-
tary tumors, that is, one of the MEN1-associated tumors.79 
Moreover, there are some evidence of promoter hypermethyla-
tion in the retinoblastoma 1, P14 (ARF), P16, P73, metallopro-
teinase inhibitor 3 (TIMP3), O-6-methylguanine DNA 
methyltransferase (MGMT), DAPK (DAPK1), THBS1, and 
CASP8 genes.80–83 Also, the fibroblast growth factor receptor 
(FGFR2), a member of the FGF family with a critical role in 

Figure 2. Menin in numerous cell signaling pathways.64
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pituitary development, decreased in human pituitary tumors as 
a result of gene promoter methylation. The genotype/pheno-
type association in Korean MEN1 patients suggested some 
altered DNA methylations to track the main reason of 
tumorigenesis.84

MEN Type 2
Multiple endocrine neoplasia type 2 (MEN2) is a hereditary 
disease resulting in additional abnormal activation of one or 
more of the endocrine glands which could be resulting in a 
wide range of tumor formations, including adrenal (about half 
the time), parathyroid (20% of the time), and thyroid (almost 
all of the time).85 MEN2 is triggered by malfunction of the 
RET (REarranged during Transfection) gene.86,87 MEN 2 is 
classified to 3 different subtypes: MEN 2A, MEN 2B, and 
FMTC (familial medullary thyroid carcinoma) with the pos-
sibility of medullary carcinoma of the thyroid (MTC) develop-
ment. In fact, both MEN 2A and MEN 2B have a bigger 
hazard for pheochromocytoma, whereas MEN 2A has a higher 
possibility for parathyroid adenoma or hyperplasia.88 MTC 
classically happens in early childhood in MEN 2B, first years of 
adulthood in MEN 2A, and middle age in FMTC.89,90 
Although MEN 2 was detected the first time at the University 
Hospital of Freiburg, Germany, in the 19th century, the con-
nection of an MTC and a pheochromocytoma was initially 
explained in 1961.91–93 Between different MEN 2 subtypes, 
MEN 2A is the mainly frequent form which develops MTC in 
the form of multifocal, bilateral, and nearly linked to the C-cell 
hyperplasia.13,94,95 Half of MEN 2A patients are at the risk of 
pheochromocytoma involving both adrenal glands96–98 and 
one-fourth of MEN 2A patients are able to grow multiple 
adenomatous parathyroid glands with hyperparathyroidism.99 
Moreover, co-occurrence of Hirschsprung’s disease (HSCR) 
and coetaneous lichen amyloidosis was shown.100–102 MEN 2 is 
the source of numerous tumors in one patient, although not 
essentially at the equal time.87

Indicators of MEN2 can be a lump in the front of the neck 
and sweating, irregular heartbeat, and headaches.103 MEN2 
can be identified with several blood and urine tests, a biopsy or 
computed tomographic scan, magnetic resonance imaging, or 
ultrasound scans. The adrenal tumors are identified pheochro-
mocytoma, and the thyroid tumors are described as medullary 
thyroid carcinoma (MTC) which inherited in dominant auto-
somal pattern.22,104-108 In fact, parafollicular C cells of the thy-
roid gland and calcitonin-secreting cells can give rise to MTC 
which is approximately the first appearance of MEN2 all times 
in very young children.109 It can be led to hyperplasia of the C 
cells and make the patients candidate for total thyroidectomy 
(TT), whereas patients with hyperplasia progressed to carci-
noma are not treatable through this operation.110 In addition, 
genetic testing is another accessible tool, so checking the muta-
tion of some candidate genes involving RET exons 10, 11, 13, 
14, 15, and 16 can be informative to determine that many 

MEN2 carriers undergo TT ahead of showing MTC symp-
toms.22 The MTCs are likely to metastasize to central and lat-
eral, cervical, and adjacent lymph nodes or farther in lung, liver, 
or bone.22 The aggressiveness of MTC linked to the MEN2 is 
dependent to the exact mutated RET codon (Table 2),112,113 so 
finding the genotype-phenotype correlation has been specified 
recently.114,115

RET proto-oncogene chromosomal locus is 10q11.21 and 
encodes a transmembrane receptor and member of the tyrosine 
protein kinase family protein with 1114 amino acids and 
124 319 Da weight (Figures 3 and 4).

The Ret gene established is expressed in definite line of cells 
which are originated from neural crest-like C cells of thyroid 
glands, migratory neural crest cells, the cells of dorsal-ventral 
axis of the neural tube, autonomic ganglion cells, and cells of 
enteric nervous system.119–121

The expression of RET gene stays controlled through 
DNA-binding factors to adjust transcription-like growth 
response protein-1 (EGR-1), transcription factor Spi-1/PU, 
and Sp3 transcription factor more than enhancer ele-
ments.122–125 The alternative splicing of 3' exonic regions of 
RET transcript is leading to 3 protein isoforms: RET9, RET43, 
and RET51 with different carboxyl terminus.126–128 RET 
includes a big extracellular domain, same as other receptor 
tyrosine kinases that are another cell surface receptors and 
reveals multiple cadherin-like domains more than calcium-
binding site.129 This extracellular region is made of 4 cadherin-
like repeats, important for stabilizing RET dimers, plus a 
membrane-proximal cysteine-rich module, in support of pro-
tein conformation and ligand binding.129–132 After translation 
of RET transcripts, protein undergoes glycosylation as a post-
translational modification and an immature 155 KDa is pro-
duced which is additional processed and a mature plasma 
membrane is formed.133,134 RET is involving in different cell 
signaling pathways and its role is completed through attach-
ment of proteins of the glial cell line–derived neurotrophic fac-
tor (GDNF) family ligands (GFLs).135 However, this attachment 
is mediated through an additional coreceptor: which is one of 
the 4 GDNF family receptor-α (GFRα) family members.136 
An additional new cell surface protein called Ret ligand 2 
(RETL2) acts as a go-between GDNF-dependent ret signal-
ing.136 The extracellular domain of the RET has a kind of 
mutation which results in nonsynonymous substitution of 
amino acids (missense mutation), and this mutation frequently 
occurred in exons 10 and 11 and very uncommon mutations in 
exons 13, 14, and 15 which change cysteine codons.136,137 The 
RET dimerization to form the active protein is influenced by 
replacing cysteine amino acids by other amino acid residues 
resulting in oncogenic potency of these RET mutations.138 In 
MEN 2A, mainly RET mutations of codon 634 resulting to 
replace Cys634 by arginine (RET Cys634Arg) leads to para-
thyroid disease.139 It has been shown that this RET mutation 
also could be presented in Hirschsprung’s disease connected to 
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the MEN 2A,140 and renal malformations in RETMEN2b trans-
genic mice linked to MEN 2A activating mutations.141 The 
behavior of RET Cys634Arg mutation presents an extra aggres-
sive MEN2A phenotype than Cys634Tyr mutation.142 
Opposite to some mutations of FMTC and MEN 2A, MEN 
2B patients have mutation of codon 918 in exon 16 during 
which threonine (ACG) amino acid takes the place of methio-
nine (ATG).90,143 Despite the fact that RET hotspots are 
known, some recent studies have suggested that the whole cod-
ing region of the RET gene is supposed to be sequenced because 
a comprehensive analysis of the RET gene can reveal multiple 
germ line mutations in MEN 2.144,145 The individualized pro-
phylactic TT for MEN 2–related MTC was suggested accord-
ing to prognostic incorporated testing of RET mutations and 
pre-serum calcitonin (Ct) levels in a group of Chinese.146

In addition to genetic mutations related to RET, there are 
some epigenetic profiles such as hypermethylation of CpG 
island promoters which is associated with transcriptional 
inactivation of tumor suppressor genes in different tumor 

formations.147 For example, combined methylation of 
RASSF1A and p16 was established in MEN2-related  
pheochromocytomas.148 In fact, inactivation of RASSF1A 
(RASSF1) through promoter hypermethylation can happen 
in thyroid cancer development and RASSF1 is tumor sup-
pressor that is critical for phosphatidylinositol 3-kinase 
(PI3K)/Akt88 pathway.149–151

Conclusions
MEN syndromes are a collection of autosomal dominant dis-
ease including MEN 1 (Wermer syndrome), MEN 2 (multi-
ple endocrine adenomatosis), MEN 2A (Sipple syndrome), 
MEN 2B (mucosal neuroma syndrome), and MEN4. The 
information of MEN’s genetic alterations and the connection 
among genotype and phenotype could be beneficial for MEN 
disease management. The most important responsible genetic 
mutations are MEN1 gene in MEN1 (menin), RET gene 
mutation codon 634 in MEN2A, and RET gene mutation 
codon 918 in MEN2B, and CDNK1B in MEN4.

Table 2. Risk for aggressive MTC based on genotype and recommended interventions.

ATAA RISK lEvEl lEvEl D (HIGHEST RISK) lEvEl C lEvEl B lEvEl A

Pathogenic variantsb,c p.Ala883Phe
p.Met918Thr
p.val804Met+p.Glu805lysd

p.val804Met+p.Tyr806Cysd

p.val804Met+p.Ser904Cysd

p.Cys634Arg/Gly/
Phe/Ser/Trp/Tyr

p.Cys609Phe/Arg/Gly/Ser/Tyr
p.Cys611Arg/Gly/Phe/Ser/Trp/Tyr
p.Cys618Arg/Gly/Phe/Ser/Tyr
p.Cys620Arg/Gly/Phe/Ser/Trp/Tyr
p.Cys630Arg/Phe/Ser/Tyr
p.Asp631Tyr
p.633/9 bp dup
p.634/12 bp dup
p.val804Met+p.val778Iled

p.Arg321Gly
p.531/9 bp dup
p.532 dup
p.Cys515Ser
p.Gly533Cys
p.Arg600Gln
p.lys603Glu
p.Tyr606Cys
p.635/insert ElCR; 
p.Thr636Pro
p.lys666Glu
p.Glu768Asp
p.Asn777Ser
p.leu790Phe
p.val804leu/Met
p.Gly819lys
p.Arg833Cys
p.Arg844Gln
p.Arg866Trp
p.Ser891Ala
p.Arg912Pro

Age of prophylactic 
surgery

As soon as possible in first 
year of life

<5 y Consider <5 y; may delay if 
criteria mete

May delay beyond 
age 5 y if criteria mete

Adapted from American Thyroid Association Guidelines Task Force (2009).111

aATA, American Thyroid Association.
bp.Ser649leu and p.Tyr791Phe have been removed from this list as they were reclassified as benign variants.116

cPathogenic variant designations have not been edited by Gene Reviews staff and may not be standard nomenclature.
dPathogenic variants in cis configuration on one allele.
eCriteria: typical annual basal and or stimulated serum calcitonin; normal yearly neck ultrasound examination; family history of fewer aggressive MTC.

Figure 3. RET gene in genomic location: bands according to Ensembl, locations according to Geneloc (and/or Entrez Gene and/or Ensembl if different) 

taken from http://www.genecards.org/cgi-bin/carddisp.pl?gene=RET.

http://www.genecards.org/cgi-bin/carddisp.pl?gene=RET
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