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Highlights 
·        Genetic risk for elevated CRP is associated with weight, eating, and screen time during childhood 
·        Associations were largely independent of measured BMI and were not moderated by sex 
·        Removing shared genetic variance between CRP and BMI attenuated all associations 
·        Modifiable childhood behaviors may mediate genetic liability to elevated inflammation  
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Abstract 

 
BACKGROUND: C-reactive protein (CRP) is a moderately heritable marker of systemic inflammation that is 
associated with adverse physical and mental health outcomes. Identifying factors associated with genetic liability 
to elevated CRP in childhood may inform our understanding of variability in CRP that could be targeted to prevent 
and/or delay the onset of related health outcomes.  
 
METHODS: We conducted a phenome-wide association study (PheWAS) of genetic risk for elevated CRP (i.e. 
CRP polygenic risk score [PRS]) among children genetically similar to European ancestry reference populations 
(median analytic n = 5,509) from the Adolescent Brain and Cognitive DevelopmentSM (ABCD) Study. 
Associations between CRP PRS and 2,377 psychosocial and neuroimaging phenotypes were estimated using 
independent mixed effects models. Post hoc analyses examined whether: (1) covarying for measured body mass 
index (BMI) or removing the shared genetic architecture between CRP and BMI altered phenotypic associations, 
(2) sex moderated CRP PRS associations, and (3) associations are unconfounded by assortative mating or passive 
gene-environment correlations (using a within-family analyses). Multiple testing was adjusted for using 
Bonferroni and false discovery rate (FDR) correction. 
 
RESULTS: Nine phenotypes were positively associated with CRP PRS after multiple testing correction: five 
weight- and eating-related phenotypes (e.g. BMI, overeating), three phenotypes related to caregiver somatic 
problems (e.g. caregiver somatic complaints), as well as weekday video watching (all ps = 1.2 x 10-7 - 2.5 x 10-4, 
all pFDRs = 0.0002 - 0.05). No neuroimaging phenotypes were associated with CRP PRS (all ps = 0.0003 - 0.998; 
all pFDRs = 0.08 - 0.998) after correction for multiple testing. Eating and weight-related phenotypes remained 
associated with CRP PRS in within-family analyses. Covarying for BMI resulted in largely consistent results, and 
sex did not moderate any CRP PRS associations. Removing the shared genetic variance between CRP and BMI 
attenuated all relationships; associations with weekday video watching, caregiver somatic problems and caregiver 
report that the child is overweight remained significant while associations with waist circumference, weight, and 
caregiver report that child overeats did not.  
 
DISCUSSION: Genetic liability to elevated CRP is associated with higher weight, eating, and weekday video 
watching during childhood as well as caregiver somatic problems. These associations were consistent with direct 
genetic effects (i.e., not solely due to confounding factors like passive gene-environment correlations) and were 
independent of measured BMI. The majority of associations with weight and eating phenotypes were attributable 
to shared genetic architecture between BMI and inflammation. The relationship between genetics and heightened 
inflammation in later life may be partially attributable to modifiable behaviors (e.g. weight and activity levels) 
that are expressed as early as childhood.  
 
Keywords: C-reactive protein, CRP, inflammation, PheWAS, BMI, weight, eating, sedentary, ABCD,  polygenic 
risk score 
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1. Introduction  

As medical problems characterized by chronic systemic inflammation are the leading causes of global 
mortality, there have been extensive efforts to identify how individual differences in inflammation emerge 
(Furman et al., 2019). To date, the majority of this work has focused on C-reactive protein (CRP), an acute phase 
protein produced in the liver, which plays a crucial role in the nonspecific immune response by activating the 
complement system (Sproston & Ashworth, 2018). Following infection or injury, CRP levels elevate rapidly and 
typically decline upon resolution. However, sustained elevation of CRP may indicate chronic inflammation, 
which has been associated with a variety of adverse health outcomes. Indeed, meta-analyses, including of 
longitudinal data, have linked elevated CRP to a wide variety of physical and mental health outcomes (e.g., 
cardiovascular disease, obesity, cancer, type 2 diabetes, depression, schizophrenia, all-cause mortality; Ellulu et 
al., 2017; Emerging Risk Factors Collaboration, 2010; Ridker et al, 2003; Trichopoulos et al., 2006; Orsolini et 
al., 2022; Fond et al., 2018; Bernabe-Ortiz et al., 2022) and their respective risk factors (e.g., stress exposure, low 
socioeconomic status, low nutritional diets, physical inactivity; Johnson et al., 2013; Muscatell et al., 2020; Neale 
et al., 2016; Edwards & Loprinzi, 2018; Fedewa et al., 2017). Theories have speculated that individual differences 
in inflammation may initially emerge during early life as a result of genetic influences and early experiences that 
induce proinflammatory tendencies within cells, as well as behavioral proclivities (e.g., vigilance, impaired self-
regulation, lifestyle choices associated with elevated BMI) that may directly and indirectly amplify inflammatory 
signaling throughout life (Miller et al., 2011, Nusslock et al., 2024). Understanding the phenotypic correlates of 
genetic liability to CRP during childhood may help identify biologic, behavioral, and environmental mechanisms 
that may contribute to heightened inflammation in later life and could be targeted through preventative efforts.  

Building upon well-powered (e.g., n > 1,000) twin studies showing that CRP is moderately heritable (i.e., 
0.43-0.53; Neijts et al., 2013; Rahman et al., 2009; Sas et al., 2017), a recent genome-wide association study 
(GWAS) of over 575,000 adults whose genetic ancestry resembles that of European reference populations 
identified 266 independent loci associated with CRP (Said et al., 2022). This GWAS characterized the genetic 
architecture of CRP and revealed evidence of genetic overlap with multiple inflammation-related health problems 
(e.g., depression, type 2 diabetes, ischemic heart disease, coronary artery disease, atherosclerosis, macular 
degeneration, and cancer), highlighting the role of genetically-associated differences in CRP to disease risk. The 
results generated from this GWAS provide a novel resource to investigate how genetic liability to elevated CRP 
in adulthood is correlated with other phenotypes across the lifespan, including during early life prior to the typical 
onset of associated health conditions. More specifically, the individual effect estimates of each variant from this 
study can be additively combined in the form of a polygenic risk score (PRS) to estimate an individual’s polygenic 
liability to CRP levels in an independent sample (Sugrue & Desikan, 2019).    

Phenome-wide association studies (PheWAS) explore associations between a variable of interest (such as 
genetic risk, quantified via PRS) and hundreds or thousands of phenotypes spanning multiple domains. Effects 
that survive correction for multiple testing may replicate previously discovered genotype-phenotype associations 
or identify novel associations that may further drive the development of new hypotheses and theory (Bastarache 
et al., 2022; Bush et al., 2016; Wang et al., 2021). Here, we conducted a psychosocial and neuroimaging PheWAS 
of genetic risk for elevated CRP (i.e., CRP PRS) among children genetically similar to European reference 
populations (median analytic n = 5,509) who completed the baseline session of the Adolescent Brain and 
Cognitive DevelopmentSM (ABCD) Study (Volkow et al., 2018). Three additional sets of analyses were conducted 
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to examine the influence of body mass index (BMI), sex, and potential genetic confounds. First, given CRPs 
moderate-high phenotypic and genetic correlations with BMI (Choi et al., 2013; Ligthart et al., 2018) and the lack 
of inclusion of BMI in the discovery GWAS used to generate our CRP PRS, additional analyses examined whether 
covarying for measured BMI or removing shared genetic variance between CRP and BMI (i.e., generating CRP-
minus-BMI PRS) altered phenotypic associations. Second, given sex-specific differences in circulating CRP 
(Cartier et al., 2009; Khera et al., 2005), we tested whether sex moderated CRP PRS phenotypic associations. 
Third, and finally, as genetic confounds (e.g., assortative mating, wherein individuals are more likely to select a 
partner who is genetically or phenotypically similar to themselves; Horwitz et al., 2023) can inflate GWAS test 
statistics and polygenic score associations (Okbay et al., 2022), we conducted a within-family analysis to assess 
whether any of the significant associations arising from either the CRP PRS or CRP-BMI PRS analyses are 
consistent with direct genetic effects. Ultimately, understanding how phenotypes in childhood are associated with 
genetic risk for CRP in later life may help elucidate the dynamic nature of health and disease across the lifespan. 
In particular, this approach may highlight potential modifiable mechanisms that could be leveraged during early 
life to prevent and/or delay the development of inflammation-related health conditions (Sas et al., 2017).   
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2. Materials and Methods 

2.1. Participants 
The ongoing longitudinal Adolescent Brain and Cognitive DevelopmentSM (ABCD) Study recruited 11,879 
children ages 9-11 (born 2005 - 2009) at baseline from 21 research sites across the United States to study health 
and development from middle childhood to early adulthood (Saragosa-Harris et al., 2022; Volkow et al., 2018). 
It includes a family-based component in which twin (n=2108), triplet (n=30), non-twin siblings (n=1,589), and 
singletons (n=8,148) were recruited. Baseline session data (collected 2016 – 2018) were drawn from data releases 
3.0 (genetic), 4.0 (psychosocial), and 5.0 (neuroimaging) hosted at the National Institute of Mental Health Data 
Archive (NDA; https://nda.nih.gov/). 
 Participants who were not genetically similar to reference populations of European genomic ancestry (see 
Genetic Data section below) were excluded from our analyses due to the lack of well powered (1,000 participants 
or more in a community sample) ancestry-specific discovery GWAS of CRP in non-European ancestries and the 
relatively uninformative and low predictive utility of PRS when applied across ancestries (Martin et al., 2019). 
After further excluding individuals with missing covariate data, our final analytic sample consisted of n = 5,556 
children of predominantly European genomic ancestry (assessed via principal components analysis) with baseline 
study data. Due to missing phenotypic data, the average analytic n per phenotype was 5,012 (median n = 5,509, 
range = 120 – 5,556, see Supplemental Tables 1-9 for the n of each phenotype). 
 
2.2. Phenotypes 
Consistent with our prior PheWAS (Gorelik et al., 2023; Paul et al., in press), all released ABCD phenotypes 
were reviewed for inclusion according to: 1) relevance (e.g., we removed administrative items [e.g., measurement 
device], redundancy [e.g., excluding t-scored data and using raw data]), and 2) missingness and frequency 
variability (i.e., continuous phenotypes were required to have ≥ 100 participants with non-missing values; 
categorical variables required ≥ 100 endorsements/category). When applicable, missing data were re-coded to 0 
(e.g., substance use questions that were not asked following a response that the child had not heard of the 
substance). Otherwise, all missing values were coded as missing (e.g., distress related to the presence of 
psychotic-like experiences was coded as missing in participants who reported no psychotic-like experiences). 
Data were also evaluated for skew, and variables with skew ≥ |1.96| had data points winsorized to +/- 3 SDs. 
Variables that still contained high skew after winsorization were subjected to a rank-based inverse normal 
transformation. All data were triple checked by multiple investigators for relevance, variability, and accurate re-
coding. 
 Data were separated into psychosocial (n = 1,273 variables; Supplemental Table 1) and neural 
phenotypes (n = 1,104; Supplemental Table 2). Psychosocial data were grouped into the following 8 broad 
categories: 1) cognition (n = 14), 2) screen time (n = 18), 3) demographics (n = 27), 4) substance (n = 48), 5) 
culture/environment (n = 113), 6) physical health (n = 174), 7) family mental health (n = 239), and 8) child mental 
health (n = 640; Supplemental Table 1). Neural phenotypes included the following domains; further details can 
be found in (Casey et al., 2018; Hagler et al., 2019): 1) structural (n = 244), 2) resting state functional connectivity 
(RSFC; n = 339), 3) (diffusion tensor imaging (DTI): (white matter tract: fractional anisotropy [FA] and mean 
diffusivity [MD] n = 74), 4) restriction spectrum imaging (RSI): (restricted normalized isotropic diffusion [RNI] 
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and restricted normalized directional anisotropic diffusion [RND]; n = 422), and global variables (e.g. whole brain 
characteristics such as total volume, surface area, etc.; n = 25). Neural phenotypes were derived using FreeSurfer 
segmentation (subcortical volumes; Dale et al., 1999), the Desikan-Killianry atlas (cortical thickness and surface 
area; Desikan et al., 2006), white matter AtlasTrack (FA, MD; Basser et al., 1994; Hagler et al., 2009), and Gordon 
networks (RSFC; Gordon et al., 2016). No task-related functional magnetic resonance imaging (fMRI) data were 
examined due to low test-retest reliability that precludes individual differences research (Elliott et al., 2020). 
 
2.3. Genetic Data and CRP Genetic Risk Indices  
Saliva samples were genotyped on the Smokescreen array (Baurley et al., 2016) by the Rutgers University Cell 
and DNA Repository (now SAMPLED; https://sampled.com/). Genotyped calls were aligned to GRC37 (hg19). 
The Rapid Imputation and COmputational PIpeLIne for Genome-Wide Association Studies (RICOPILI; Lam et 
al., 2020) was used to perform quality control (QC) on the 11,099 individuals with available ABCD Study phase 
3.0 genotypic data, using RICOPILI’s default parameters. The 10,585 individuals who passed QC checks were 
subjected to principal component analysis (PCA) in RICOPILI to map the genomic ancestry of these individuals 
to the 1000 Genomes reference panel, resulting in a PCA-selected European-ancestry subset of 5,556 individuals. 
Only individuals of European ancestry were analyzed (due to the absence of available large-scale GWAS of CRP 
in non-European ancestry samples) as there is poor predictive utility across ancestries which may lead to 
erroneous conclusions (e.g., false negatives; Martin et al., 2019). The TOPMed imputation reference panel was 
used for imputation (Taliun et al., 2021). Imputation dosages were converted to best-guess hard-called genotypes, 
and only SNPs with Rsq > 0.8 and MAF > 0.01 were kept for PRS analyses.  

Polygenic risk scores for CRP (CRP PRS) were generated for ABCD participants using PRS-CS (Ge et 
al., 2019), a Bayesian method that uses continuous shrinkage (CS) priors to weight SNP effect sizes. We used 
effect sizes from the largest (n = 575,531 European descent) currently available GWAS of CRP (Said et al., 2022). 
We used the ‘auto’ function of PRS-CS, allowing the software to learn the global shrinkage parameter from the 
data, and the number of MCMC (Markov chain Monte Carlo) iterations was set at 10,000 and the number of burn-
ins was set at 5,000. After deriving SNP weights using PRS-CS, we used PLINK 1.9’s (Chang et al., 2015) --
score command to produce PRS in the ABCD sample.  
 
2.4. Statistical Analysis 
Primary Analysis. Numeric data (including the PRS) were z-scored prior to analysis. Associations between CRP 
PRS and phenotypes were estimated using independent linear mixed effects models in the lme4 R software 
package (Bates et al., 2015); the lmer() function was used for continuous outcomes, and the generalized glmer() 
function was used for dichotomous outcomes. All non-imaging models were nested by site and family ID while 
imaging models were nested by scanner and family ID to account for the non-independence of these data.  

Covariates. Fixed effect covariates for all analyses included: the first 10 ancestral principle components, 
age, and sex. Sex was removed for models where the outcome was a sex-specific phenotype (e.g., “Have you 
noticed a deepening of your voice?” was only asked of boys). Imaging models also included MRI manufacturer 
and global brain metrics (for region-specific analyses) as fixed effect covariates; for DTI, RSI, and RSFC models, 
mean head motion was also included. 
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Multiple Testing Correction. Bonferroni and False Discovery Rate (FDR) corrections were applied across 
all psychosocial phenotypes, as well as neuroimaging phenotypes by domain, consistent with our prior work 
(Baranger et al., 2024). Bonferroni correction was used to minimize false positives and identify the most robust 
associations that are most likely to replicate and generalize across samples, while FDR correction was used to 
minimize false negatives that may be meaningful but undetected with the more stringent Bonferroni correction. 
Bonferroni alpha levels for each domain were: (0.05/1,273) = 3.928 × 10-5 for psychosocial phenotypes; 
(0.05/244) = 2.049 × 10-4 for neural structural phenotypes; (0.05/339) = 1.433 × 10-4 for RSFC phenotypes; 
(0.05/74) = 6.757 × 10-4 for DTI phenotypes; (0.05/211) = 2.370× 10-4 for both RNI and RND phenotypes; and 
(0.05/25) = 2.000 x 10-3 for global brain phenotypes. 
 
Post-hoc Analyses.  

1) BMI. First, given phenotypic and genetic correlations between CRP and BMI (Ligthart et al., 2018), 
the CRP PRS PheWAS was repeated covarying additionally for BMI. We examined whether significant 
associations (other than BMI) seen in the primary analyses remained associated with CRP PRS; we then also 
conducted a full PheWAS of all other phenotypes to assess whether the BMI-adjusted models revealed any new 
associations. Second, we removed genetic variance that is shared between CRP and BMI. To this end, we applied 
multi-trait conditional and joint analysis (mtCOJO; Zhu et al., 2018) to condition the CRP GWAS summary 
statistics (Said et al., 2022) on the summary statistics of the largest BMI GWAS (Yengo et al., 2018). This 
approach generated GWAS-based summary statistics for CRP that are unique from BMI, from which we 
generated a CRP-BMI PRS where the genetic variance shared with BMI was removed. Significant CRP PRS 
phenotypic associations from primary analyses were re-tested with CRP-BMI PRS; we also re-ran full PheWAS 
across all variables to test whether any novel associations emerged (and corrected for multiple testing as above).  

2) Sex. Given sex differences in CRP and related health outcomes (Khera et al., 2009; Nari et al., 2020), 
we tested whether the associations between CRP PRS and phenotypes were moderated by sex. To this end, we 
regressed each phenotype on the interaction between CRP PRS and sex while accounting for main effects of sex 
and CRP PRS. We also included interactions between covariates and sex (e.g., ancestry PC1 x sex) and covariates 
and PRS, consistent with recommendations to adequately account for potential confounds in interaction analyses 
(Keller, 2014).  

3) Within-Family Analysis. For any significant CRP PRS associations with phenotypes that may have 
within-family variability (e.g., BMI, but not caregiver self-reports, which would not vary across siblings), we 
conducted follow-up within-family analyses to assess whether our identified associations may plausibly represent 
direct genetic effects (Selzam et al., 2019). If effects remain significant within-family (as opposed to just between-
family), this would suggest that these associations are not confounded by population stratification, assortative 
mating, passive gene-environment correlations, or other potential population-level confounds (though it should 
be noted that active and evocative genetic effects could still influence within-family variation in PRS effects; 
(Brumpton et al., 2020; Howe et al., 2022). For these analyses, we included both the family mean PRS and each 
sibling’s deviation from their family mean PRS as predictors in a mixed-effect model, as done previously (Gorelik 
et al., 2023; Selzam et al., 2019).  
 
3. Results 
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3.1. Primary Analyses 
 
3.1.1 Psychosocial Phenotypes. Three weight-related phenotypes (measured BMI, caregiver report that child is 
overweight, and measured waist circumference) were significantly positively associated with CRP PRS after 
Bonferonni correction (all |β|s 0.0629 – 0.0707; all ps = 1.2 x 10-7 – 1.9 x 10-6; Figure 1; Supplemental Table 
3). An additional three child phenotypes (measured weight, caregiver report that child overeats, weekday video 
watching) and three caregiver phenotypes (eye-problems not corrected by glasses, caregiver self-report of somatic 
problems on the ASR-scale and DSM-5 scales) were positively associated with CRP PRS following FDR 
correction (all |β|s = 0.045 – 0.050 ; all ps = 8.6 x 10-5 - 2.5 x 10-4 , pFDRs = 0.01 - 0.05). One phenotype, caregiver 
report of drug use (excluding alcohol or nicotine; ASR question 6), showed a trending association after FDR 
adjustment (β = 0.036; p = 5.9 x 10-4,  pFDR = 0.07;).  
 
3.1.2. Neural Phenotypes. No neural phenotypes were associated with CRP PRS after Bonferroni or FDR 
adjustment within modalities (all |β|s = 7.77 x 10-5 – 0.047; all ps = 3.9 x 10-4 – 0.998 pFDR = 0.08 – 0.998; ; 
Supplemental Tables 4-9). 

 
 
3.2. Post-hoc Testing 
 
3.2.1. Covarying for Measured BMI. Covarying for measured BMI resulted in largely consistent results. CRP 
PRS remained significantly associated with all 8 psychosocial phenotypes (excluding BMI) identified in primary 
analyses (all |β|s = 0.040 – 0.067; all ps = 9.1 x 10-7 – 3.5 x 10-4, pFDRs  = 7.28 x 10-6 – 0.0004 ; Supplemental 
Table 10). No other phenotypes became significantly associated with CRP PRS after multiple testing correction. 
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3.2.2. mtCOJO CRP-BMI PRS. The three caregiver somatic complaints (i.e., caregiver self-report of eye 
problems not corrected by glasses and the two caregiver self-reports of somatic problems) identified in primary 
analyses were also significantly associated with CRP-BMI PRS (all |β|s = 0.03 – 0.04; all ps= 0.0008 – 0.003, 
pFDRs = 0.005 – 0.006; Supplemental Table 11). Caregiver report that the child is overweight and weekday video 
watching were significant after FDR correction, but not Bonferroni correction (|β|s = 0.03; p =  0.01, pFDR = 0.02). 
Three phenotypes related to anthropometrics and eating (i,e., waist circumference, weight, and parent report that 
the child overeats) that were significant in the main analysis were not significantly associated with the conditioned 
CRP-BMI PRS (all ps > 0.2). Associations with CRP-BMI PRS were attenuated for all psychosocial phenotypes 
(e.g., caregiver eye problems for CRP PRS was β = 0.047, SE = 0.012; for CRP-BMI  β = 0.038, SE = 0.011). 
One neural phenotype, fiber segmentation of the right parahippocampal cingulum, was significant after FDR 
correction (β = -0.035, p = 5.18 x 10-5, pFDR = 0.011; Supplemental Table 12); in our primary CRP PRS analyses, 
this association was trending after multiple testing correction (pFDR = 0.09; Supplemental Table 7). No other 
neural phenotypes became significantly associated with CRP-BMI PRS after multiple testing corrections 
(Supplemental Tables 13-17). 
 
3.2.22. CRP PRS x Sex Interaction. Sex did not significantly moderate any CRP PRS-phenotype association 
(all |β|s = 3.15 x 10-16 – 3.05; all ps = 0.0007 – 0.999, pFDR = 0.05 – 0.999; Supplemental Tables 18-24) 
 
3.2.3. Within-family Analysis. Post-hoc within-family analyses were conducted for all Bonferroni or FDR-
corrected significant associations but excluding variables that would have the same value for all children in a 
family (e.g., caregiver self-reports). All of the psychosocial phenotypes, with the exception of the screentime 
phenotype (β = 0.02, p = 0.30), remained significant (all |β| = 0.035 – 0.042, all ps = 0.01 – 0.02 ; Figure 2; 
Supplemental Table 25).  
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4. Discussion 

Our PheWAS of CRP PRS in middle/late childhood revealed that genetic liability to elevated CRP in adulthood 
is associated with child weight and eating-related phenotypes (BMI, waist circumference, weight, and caregiver 
report that the child is overweight and overeats), screen time (child weekday video watching), and caregiver 
somatic complaints (somatic problems, eye problems not corrected by glasses). That most of these associations 
remained significant in our post hoc within-family analyses suggests these may arise from direct genetic effects 
or evocative gene-environment correlations (e.g., children’s genetically influenced behavior evokes a parental 
response to encourage their children to eat more) as opposed to assortative mating, ancestral stratification, or 
passive gene-environment correlations (Figure 2). Associations were independent of measured BMI, but the 
majority of associations with weight and eating phenotypes were attributable to the shared genetic associations 
between CRP and BMI. Taken together, these data suggest that genetic liability to elevated inflammation in 
adulthood manifests as heavier weight, overeating, and weekday video watching during middle/late childhood. 
Indeed, it may be that preventative and policy efforts aimed at weight management and activity during childhood 
may potentially reduce inflammation-related health problems in later life, particularly in those with heightened 
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genetic liability to inflammation. As the participants of the ABCD Study continue to age, this will continue to be 
an invaluable sample in which to characterize protective factors against inflammation-related health outcomes. 
 
Weight and Eating 
CRP PRS was most strongly associated with higher child weight- and eating-related phenotypes (Figure 1). 
Circulating CRP has been unequivocally linked to heightened BMI (e.g., being overweight or obese) through 
meta-analyses, and elevated CRP is observed in both overweight and obese adults (Visser et al., 1999) and 
adolescents (Konstantinos et al., 2013). Consistent with evidence that adipose tissue overexpresses pro-
inflammatory cytokines in overweight and obese individuals (Ellulu et al, 2017), heightened weight and adiposity 
are hypothesized to be causal factors contributing to chronic elevations in systemic inflammation. Supportive of 
this causal interpretation, weight loss following lifestyle or surgical intervention is associated with a dose-
dependent decrease in CRP (Selvin et al., 2007). 

Our study raises the possibility that higher weight and related behaviors (i.e., overeating and sedentary 
behavior) during childhood are potential mechanisms through which genetic liability to heightened inflammation 
in adulthood emerges. These findings hint at potential gene-behavior correlations undergirding inflammation in 
childhood wherein genetic liability to inflammation in later life influences weight-related phenotypes that are 
expressed during middle childhood that could be directly tested with longitudinal data across the lifespan and 
non-human animal experiments. Consistent with this interpretation, when partialling out the shared genetic 
associations of CRP and BMI (via mtCOJO analyses), the unique polygenic risk for CRP was no longer associated 
with the majority of weight-related phenotypes.1 However, the caregiver report of child overeating remained 
associated with CRP PRS, even after partialling out the genetic associations shared with BMI. Interestingly, unlike 
the appetite-suppressing effects of acute infection, elevated basal levels of inflammation have been observed in 
adolescents who experience loss of control (LOC) eating (i.e., eating where there are feelings of being unable to 
stop eating), even when accounting for adiposity (Shank et al., 2017). While some evidence suggests that 
inflammation may induce broad elevations in impulsivity (Gassen et al., 2019), we found no evidence that 
polygenic liability to CRP was associated with broader impulsivity-related phenotypes (e.g. none of the UPPS-P 
impulsive behavior scale items included in the psychosocial analysis were significant). Collectively, our data 
suggest that genetic propensity to heightened CRP in adulthood may act through weight-related phenotypes in 
childhood. 

 
Screen Time 
Genetic liability to elevated CRP was associated with greater time spent watching videos on weekdays. Notably, 
this association was robust to the inclusion of BMI as a covariate, and independent of genetic liability to BMI. 
Although not significant after multiple testing correction, there were nominal associations (uncorrected p < .05) 
between CRP PRS and other screen time measures (n = 5 out of 18). These screen time measures may reflect 
increased sedentary behavior. It is well known that in adults regular physical activity has anti-inflammatory 

 
1The discovery GWAS of CRP that was used to generate CRP PRS did not account for BMI due to concerns 
about inducing collider bias as well as prior evidence that the heritability of CRP is not modified when accounting 
for measured BMI and that prior genome-wide significant loci associated with CRP are not genome-wide 
significant in BMI GWAS (Said et al., 2022; Sas et al., 2017).  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 31, 2024. ; https://doi.org/10.1101/2024.08.30.24312857doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.30.24312857
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

properties and physical activity and cardiorespiratory fitness are inversely associated with CRP levels (Albert et 
al., 2004; Church et al., 2002; Geffken et al., 2001; LaMonte et al., 2002; Pitsavos et al., 2003). Indeed, adults 
with higher activity levels have lower CRP than less active individuals (Plaisance & Grandjean, 2006), and 
randomly controlled trials of exercise suggest that adherence to an exercise program reduces CRP, with reductions 
in BMI accounting for only a small portion of this exercise-induced change in CRP (Fedewa et al., 2017). 
However, the relationship between exercise and CRP is less clear in children. As none of our 3 phenotypes related 
to physical activity were even nominally significant (Supplemental Table 3), the association between sedentary 
behavior, physical activity, and genetic liability to CRP in children warrants further investigation. If genetic 
liability to elevated CRP in adulthood is associated with child sedentary behavior, this could represent a 
mechanism with high preventative impact for reducing inflammation-related disease later in life. 
 
Caregiver Somatic Complaints 
Three phenotypes describing caregiver self-reported somatic complaints (eye-problems not corrected by glasses, 
caregiver self-report of somatic problems on the ASR-scale and DSM-5 scales) were significantly associated with 
CRP PRS across primary and post-hoc analyses. As caregivers in the ABCD study are likely to be biological 
parents of the participants (4,792 of 5,556 [86%] caregivers in this sample identified as the child’s mother) and 
therefore genetically related to the child, children and caregivers are very likely to have similar CRP PRS (i.e., 
children with high CRP PRS are more likely to have a caregiver with a high CRP PRS), these somatic complaints 
may reflect lifetime effects of high, genetically-driven levels of CRP. As the ABCD cohort continues to age, it 
will be of interest to see how these somatic complaints may emerge and manifest in individuals with high CRP 
PRS through late childhood and adolescence.  
 
Neuroimaging 
No neuroimaging phenotypes were associated with polygenic liability to inflammation in our primary analyses. 
However, one restricted spectrum imaging phenotype, restricted normalized isotropic diffusion (RNI) in the right 
parahippocampal cingulum fiber tract, was negatively associated with CRP-BMI PRS. RNI has been theorized to 
track neuroinflammation, reflected by increased isotropic intracellular water presence in proliferating glial cells 
(White et al., 2013). Based on this, the direction of effect we observed suggests that elevated polygenic liability 
to CRP that is independent of BMI (CRP-BMI PRS) is associated with less putative neuroinflammation in the 
parahippocampal cingulum tract. As central and peripheral levels of inflammation are presumed to be correlated 
(Felger et al., 2020), and CRP-BMI PRS estimates genetic liability to elevated peripheral inflammation (i.e. CRP), 
this direction of effect is opposite of what would be expected. Another possible interpretation of RNI data is that 
it, at least partially, tracks normal neurodevelopment: higher RNI has been associated with greater age in the 
ABCD Study (Palmer et al., 2022), which might reflect increased dendritic sprouting and/or neuronal density. 
Therefore, our findings, which controlled for age, might reflect delayed white matter maturation associated with 
a BMI-independent CRP PRS. In support of this idea is the observation that children with chronic inflammatory 
conditions, such as inflammatory bowel disease, often have delayed pubertal onset (Amaro & Chiarelli, 2020; 
Ballinger et al., 2003; Grob & Zacharin, 2020), although none of the assessed genetic risk indices of  CRP were 
associated with phenotypes assessing pubertal development (e.g., pubertal developmental scale) in our analyses. 
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Limitations 
The results of this study should be interpreted in the context of its limitations. First, this study was limited to 
children whose genetic ancestry resembles that of European reference populations due to the lack of CRP GWASs 
in other ancestries and evidence that applying GWAS results to other ancestries can result in erroneous 
associations that may further drive ancestral health disparities (Martin et al., 2019). As such, it is unknown 
whether these results may generalize to other ancestries. Given extensive efforts to broaden the ancestral diversity 
of genetic association research (Fatumo et al., 2022), we are hopeful that this question can be addressed in the 
future as adequately powered GWAS in other ancestral populations emerge. Second, while the large sample size 
and breadth of phenotypic assessment in the ABCD Study permitted a PheWAS approach, this approach also 
induces a significant multiple testing burden that may have resulted in false negative associations. We attempted 
to address this by including FDR multiple testing correction, which provides a more lenient threshold than 
Bonferroni multiple testing correction, as well as reporting all associations in Supplemental Tables. However, 
it remains possible that non-significant results may reflect false negatives. Third, CRP PRS were based on a  
GWAS of circulating CRP levels in adults (Said et al., 2022). It is possible that the genetic architecture of CRP 
varies across development, which may attenuate associations during childhood  (Ferrucci & Fabbri, 2018; Li et 
al., 2023; Stumper et al., 2020). Fourth, we found no evidence that sex moderates associations between polygenic 
liability to CRP and our examined phenotypes; as sex differences in CRP between men and women do not emerge 
until after puberty (Shanahan et al., 2013), it is possible that our lack of CRP PRS x sex interactions is attributable 
to the young age of our sample and that such associations may be revealed as children progress into adolescence, 
as reproductive hormones are known to impact immune functioning (Shanahan et al., 2013; Stumper et al., 2020). 
Finally, our PheWAS was constrained by phenotypes measured in the ABCD study, which unfortunately does 
not include any measure of circulating inflammation levels (e.g. serum CRP or IL-6, WBC).  
 
Conclusion 
Polygenic liability for elevated CRP in later life is associated with higher weight-related and screentime 
phenotypes among children as well as increased somatic complaints among their caregivers. These findings 
highlight potentially modifiable factors, such as weight and activity-related behaviors, through which genetic 
liability to elevated CRP may manifest. Preventative efforts and policies encouraging healthy eating and activity 
(e.g. providing healthy food and time for physical activity) among children may help attenuate susceptibility to 
inflammation and age-related disease conferred by genetic liability to CRP.  
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