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Abstract: A normally functioning nervous system requires normal extracellular potassium ion
concentration ([K]o). Throughout the nervous system, several processes, including those of an
astrocytic nature, are involved in [K]o regulation. In this study we investigated the effect of astrocytic
photostimulation on [K]o. We hypothesized that in vivo photostimulation of eNpHR-expressing
astrocytes leads to a decreased [K]o. Using optogenetic and electrophysiological techniques we
showed that stimulation of eNpHR-expressing astrocytes resulted in a significantly decreased resting
[K]o and evoked K responses. The amplitude of the concomitant spreading depolarization-like
events also decreased. Our results imply that astrocytic membrane potential modification could be a
potential tool for adjusting the [K]o.

Keywords: astrocyte; extracellular potassium concentration; astrocyte membrane potential;
halorhodopsin; hyperpolarization

1. Introduction

Neuronal activity leads to an elevation of extracellular potassium ion concentrations
([K]o). This must be regulated in order to prevent the adverse effects of abnormally high
levels of [K]o, which include a wide range of neurological disorders [1]. Astrocytes play
a critical role in [K]o regulation via several mechanisms such as astrocyte-mediated K
buffering through astrocytic gap junctions and membrane proteins [2]. Among the mem-
brane proteins involved in ionic regulation, the Kir4.1 channel is crucial for K buffering
and for maintaining astrocytic membrane hyperpolarization [3]. Astrocytes also contribute
to synaptic information processing through the release of gliotransmitters such as ATP
and glutamate [1]. Glutamate as the main excitatory neurotransmitter, is required to be
removed quickly from the extracellular space to prevent abnormal neuronal excitability.
Glutamate transporters on astrocyte membranes are responsible for glutamate uptake
from the extracellular environment, which is dependent on the hyperpolarization of astro-
cytic membrane potential [1]. Hyperpolarizing actuators such as archaerhodopsin-TP009
(ArchT) and halorhodopsin (NpHR) offer the possibility of studying the impact of astro-
cytic membrane hyperpolarization on enhancing the uptake of K and glutamate from
the extracellular space. ArchT, which is a proton pump, allows for proton efflux upon
photoactivation, leading to increased pH, alkalization, and astrocytic hyperpolarization.
NpHR is a light-activated CI~ pump allowing for C1~ influx upon light illumination lead-
ing to membrane hyperpolarization [1]. Beppu et al. (2014) and Letellier et al. (2016)
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used ArchT to hyperpolarize astrocyte membranes in vitro with a focus on glutamate and
gliotransmitters [4,5].

Beppu et al. (2014) recorded the astrocytic outward current and hyperpolarization
from ArchT transgenic mice following glial ArchT photoactivation which led to a reduction
in glutamate release, suppressing the hyperexcitation of nearby neurons and relieving
ischemic brain damage. They suggested that the astrocytic alkalization and hyperpolar-
ization resulting from ArchT photoactivation could be the cause of glutamate reduction.
This phenomenon could also lead to K uptake from the extracellular space through Kir 4.1
or Kir 5.1 channels located on astrocyte membrane, therefore decreasing neuronal hyper-
excitation [1]. Letellier et al. (2016) speculated that ArchT photoactivation alters synaptic
transmission of presynaptic terminals via altered gliotransmission. They hyperpolarized
the astrocytic membrane potential by photoactivation of ArchT-expressing hippocampal
astrocytes in vitro. This resulted in astrocytic membrane hyperpolarization from about
—78 to =102 mV [5].

In a study done by Tannesen et al. (2009), it was shown that NpHR photoactivation,
hyperpolarized the transfected hippocampal principal neurons and suppressed in vitro
epileptiform activity [6]. An in vivo optical-stimulation of neuronal and astrocytic chan-
nelrhodopsin (ChR)-expressing cells, which causes depolarization, resulted in transient
elevation of [K]o by about 5 mM [7]. Significant increases in [K]o were maintained for the
duration of the stimulation [7]. The authors suggested that astrocytic optical timulation
increased neuronal excitability via [K]o elevation. Photostimulation of ChR-expressing cere-
bellar astrocytes triggered inward currents (depolarization) and the release of glutamate
from the influx of protons in the ChR-expressing astrocytes [4,8].

Bentley et al. (2013) suggested that in theory it would be possible to control K uptake
using hyperpolarizing rhodopsins [9]. In this study, we studied for the first time the effect
of optical stimulation of eNpHR-expressing astrocytes on the in vivo resting [K]o and
evoked K responses along with their concomitant local field potential (LFP) alterations. We
show that the photostimulation of eNpHR expressing astrocytes under a short version of
glial fibrillary acidic protein leads to decreased [K]o in vivo.

2. Results

The PAAV-gfaABC1D-eNpHR3.1-eYFP genome was sequenced to confirm the exis-
tence of all segments; 156 to 836 label = gfaABC1D, 851 to 1681 label eNpHR3.1, 1682
to 2395 label eYFP. The full document is attached in the Supplementary Material. The
Western blot gel showing the successful insertion of the plasmid is also attached in the
Supplementary Material.

Specific expression of eNpHR in the astrocytes was first tested in mouse cell culture.
One week after viral transfection eNpHR-eYFP was reliably expressed in GFAP-positive
cells, eNpHR was expressed in the astrocytes and cell nuclei stained positive for DAPI
(Figure 1A). After cell culture, the expression of eNpHR-eYFP was studied in brain slice
and in vivo. In this line, AAV carrying eNpHR-eYFP under the gfaABC promotor was
microinjected into somatosensory cortex of 2 month-old CD-1 mice (Figure 1B). Two
weeks later, eNpHR-eYFP was reliably expressed in the astrocytes of the transfected area
(Figure 1C-E). After brain sectioning, eYFP was visualized in the injection site (Figure 1C),
located in the area of astrocytic-like processes (Figure 1C above). For further confirmation
using IHC, colocalization of GFAP and eYFP in brain slices was validated (Figure 1D). This
observation confirmed that eNpHR was successfully expressed in the astrocytes, as eYFP
was conjugated with eNpHR and astrocytes were GFAP-positive cells. EYFP expression
allowed for distinguishing the virally transfected site in vivo (Figure 1E).
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Figure 1. eYFP (conjugated with eNpHR) was confirmed to be expressed in mouse astrocytes.
(A) Astrocyte-specific expression of eNpHR-eYFP (green) throughout the GFAP-positive astrocytes
(red); they are shown as merged (yellow) to illustrate eNpHR and astrocyte colocalization in mouse
cell culture. (B) CD-1 mouse viral transfection; 2 weeks after transfection. (C) Injection site expressing
eYFP in a mouse brain slice; in the image above (C) it is magnified to show astrocytic-like processes.
(D) Astrocytes (GFAP-positive (red)) expressing eNpHR (eYFP-conjugated (green)) shown in yellow
to illustrate co-expression (yellow) in a mouse brain slice. (E) The injection site was distinguishable
in vivo because of eYFP expression 2 weeks following mouse transfection.

To investigate the role of astrocytes on extracellular K redistribution, we measured
the effect of the photostimulation of transfected astrocytes on the resting [K]o using a
K-sensitive recording electrode (KE) in vivo within the transfected area (Figure 2A). To
first establish the optimal eNpHR stimulation parameters we compared the effects of
stimulation with two different wavelengths (green: 560 nm and blue: 460 nm), evidencing
that resting [K]o decreased by 1.59 & 0.09 mM and 0.71 & 0.09 mM following green and
blue light application, respectively (Figure 2B, n = 6), in the transfected animal. This
confirmed that green light was the most effective for photostimulation of the transfected
astrocytes; therefore, it was used for all further experiments. Next, we studied the impact of
the light illumination duration on the previously observed [K]o decrease. For this purpose,
green light illumination duration was categorized into five different groups—10, 20, 30, 40,
and 50 s—resulting in a 0.79 & 0.04, 0.95 £ 0.03, 1.61 £ 0.09, 1.60 & 0.08, and 1.61 + 0.06
mM decrease in the resting [K]o of the transfected animals (Figure 2C, n = 7), respectively.
As shown, there was a gradual reduction in [K]o correlated with a light exposure duration
up to 30 s, after which, the decrease in the [K]o reached a plateau and did not decrease
further. Upon light illumination on the transfected area, the resting [K]o started falling with
a decay time constant (DTC) of 7.4 & 0.8, and started rising again with a rise time constant
(RTC) of 6.5 £ 0.7 s (Figure 2D, left and middle, n = 7). The onset of the [K]o decrease (delay
to fall) occurred 1.07 £ 0.09 s after light illumination, and started increasing (delay to rise)
0.53 & 0.06 s after turning off the light source (Figure 2D, left & right, n = 7). To address
the concern of heating damage and thermal effect on tissues exposed to light illumination,
we illuminated green light on wildtype non-transfected CD-1 mice; consequently, [K]o
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decreased only by 0.19 £ 0.04 mM (Figure 2E, n = 4). Thus, the observed reduction in the
resting [K]o is in fact due to eNpHR expression in the astrocytes.
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Figure 2. Green light application significantly decreased the resting [K]o in the transfected area. (A) An experimental
configuration: 1 K-sensitive electrode (KE) was implanted in the transfected area to study the effect of green light application
on [KJo. (B) Blue and green light with the same duration were tested on the transfected animal. Left: usage of blue light was
not as effective as green light. Right: changes in the baseline [K]o amplitude following green and blue light application are
summarized (1 = 6). (C) Effect of green light application on [K]o with 5 different exposure times. Left: A gradual decrease in
the resting [K]o; a minimum 30 s exposure time was required to see the [K]o decay reaching a plateau. Right: the reductions
in the baseline [K]o exposed to different light durations are summarized (1 = 7). (D) Middle: Decay time constant (DTC)
and rise time constant (RTC) of the resting [K]o upon light application right: resting [K]o started falling/raising with a
small delay (~1 s) after turning the light on/off (n = 7). (E) Control group: usage of green light on wildtype untransfected
mice had a negligible effect on the baseline [K]o (1 = 4). The green bar represents green light application.

In the next step we studied the effect of light application on evoked K responses resem-
bling pathological levels of [K]o. In these sets of experiments, the evoked K responses were
generated by focal injection of 50 mM KCl solution and recorded by a single K-sensitive
recording electrode (Figure 3, top right). The [K]o responses significantly decreased fol-
lowing light application by 2.5 & 0.5 mM (from 12.6 £ 0.3 to 10.1 &= 0.5 mM, 20%, p = 0.01)
if KCl was injected before light onset and by 2.6 4= 0.4 mM (from 12.6 & 0.3 to 10.0 & 0.5,
20.4% mM, p = 0.008) if KCl was injected after light onset (Figure 3, n = 6). This implies that
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the decreased amplitude of the evoked K response due to light application was indepen-
dent of the start time of the light illumination, as the outcomes of the two scenarios were
not significantly different from one another (p = 0.79).
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Figure 3. Effect of light application on focally evoked K responses (using KCl injection). KCI was
focally applied either without any light, before light onset or after light onset. Top left: a K-sensitive
recording electrode (KE) and a KCl injection micropipette (KCl) were implanted in the transfected
area. Top right: changes in the amplitude of the evoked K response are summarized, black: in the
absence of light. Green middle column: KCI was applied before light onset. Green right column: KCI
was applied after light onset. * Represents significance (p < 0.05). Bottom: evoked K responses. Left:
in the absence of light. Middle: KCl was applied before light onset. Right: KCl was applied after light
onset. The green bar represents green light application, navy arrows represent time of KCl injection.

Next, we studied the effect of astrocytic photo-stimulation on [K]o redistribution and
the concomitant local field potential (LFP) responses (1 = 5). For this purpose, K-sensitive
recording electrodes (KE) were coupled with LFP recording electrodes along with local
references for K electrodes. Two sets of these coupled electrodes were placed approximately
2 mm apart from each other and a KCI microinjection pipette was placed in the vicinity of
one of the two. The recording site closer to the KCI microinjection pipette was considered
as the local site and the one 2 mm apart from it was considered as the distal site (Figure 4F).
We measured the amplitude, decay time constant (DTC) and lag time (the time that it
takes the evoked response to travel from the local to distal site) of the spreading evoked K
responses coupled with their concomitant LFP responses. Following optical stimulation of
transfected astrocytes, the amplitude of the K response decreased significantly locally by
2.6 £ 0.4 mM (from 12.5 £ 0.3 t0 9.8 & 0.6 mM, 21%, p = 0.021) and distally by 3.0 &= 0.2 mM
(from 12.1 £ 0.2 t0 9.1 & 0.3 mM, 25%, p = 0.012) following light application (Figure 4A top
and B). Concurrently, the amplitude of the LFP response also decreased significantly by
24+ 03mV (from 11.2 £ 0.2 t0 8.9 £ 0.3 mV, 21%, p = 0.012) locally and by 2.2 & 0.3 mV
(from 10.2 £ 0.1 to 8 £ 0.3 mV, 22%, p = 0.012) distally (Figure 4A bottom, C). However,
the lag time of the spreading KE-LFP response did not significantly increase after light
application (by 2.4 + 0.8 s, from 6.8 + 1.3 to 9.2 + 1.9, 26%; p = 0.4) (Figure 4A: blue
rectangles and D). The DTC of the K response significantly decreased by 7.7 &= 2.3 s (from
63.5 £ 1.8 to 55.8 £ 1.7 s, 12%, p = 0.028) locally and by 10.0 & 2.4 s (from 62.5 + 2 to
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52.6 2.3 s, 16%, p = 0.021) distally (Figure 4A,E). DTC changes of the concomitant LFP
responses were not significant.
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Figure 4. KCl-evoked K responses decreased in amplitude and DTC locally and distally. (A) Local
and distal coupled K-LFP evoked responses: thick lines represent local responses (in the vicinity
of the KCl injection site), thin lines represent distal response (~2 mm away from the injection site).
Left: responses in the absence of light. Right: response in the presence of light. Top: [K]o responses.
Bottom: LFP responses following KCl injection. (B) Summary of local and distal changes in the
[K]o amplitude. (C) Summary of changes in the LFP amplitude locally and distally. (D) summary
of changes in the lag time of the K-LFP spreading response traveling from the local to distal site
indicated in dotted blue rectangles. (E) Summary of changes in the local and distal DTC. Black is in
the absence of light and green is when the transfected tissue is exposed to green light illumination.
“*” represents significance (p < 0.05). (F) Right: experimental configuration: 2 sets of coupled KE-LFP
recording electrodes were placed about 2 mm apart from one another, and a KCl injection electrode
(KC1) was implanted in the vicinity of one of the KE-LFP electrodes (local site). K-sensitive recording
electrode (KE). Local field potential recording electrode along with a local reference electrode for KE
(LEP + Ref). Left: in vivo electrodes setting implanted in the transfected area expressing eYFP (1 = 5).
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We further investigated the impact of astrocytic optical stimulation on 4AP-evoked K
responses as an example of a pathophysiological elevation of [K]o. A K-sensitive recording
electrode (KE) possessing a local reference and coupled with a LFP electrode allowed for
simultaneous recording of [K]o and seizure activity (Figure 5A). In line with previous
findings, light application led to a significant reduction in the amplitude of evoked K
responses (by 2.2 + 0.1 mM, from 9.9 £ 0.4 to 7.8 & 0.5 mM, n = 3) as compared to the
no-light scenario (Figure 5B). The effect of light on 4AP-evoked seizure activity was not
significant (amplitude from 1.8 £ 0.1 to 1.7 £ 0.15 mV; duration from 56 + 6 to 58 £ 4 s).
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Figure 5. Evoked K responses triggered by 4AP reduced in amplitude following green light application. (A) Experimental
configuration: topical 4AP application, K recording electrode (KE), local field potential recording electrode along with a

local reference electrode for KE (LFP + Ref). (B) Top: [K]o during seizure activity in the presence and absence of light.

Bottom: seizures induced by topical 4AP application recorded by LFP.

3. Discussion

Abnormally high levels of [K]o are associated with neurological conditions such as
neurotrauma, migraine, stroke, and epilepsy [10,11]. Astrocytes are known to be one of
the major factors in regulating [K]o. Astrocytes have a hyperpolarized resting membrane
potential and a high permeability to K [12]. In this study, we investigated the impact of
optical activation of eNpHR expressing astrocytic on [K]o. The results of this study imply
that the astrocytic membrane potential has a significant role in [K]o dynamics.

We showed that optical stimulation of eNpHR-expressing astrocytes resulted in a
significant decrease in the amplitude of the resting and evoked K responses triggered
by KCl focal injection or 4AP topical application. The DTC of the evoked K responses
also decreased significantly following light application. The lag time increase was not
significant. The evoked K responses were partially suppressed after light application
by a few mM (~2.5 mM), somewhat more than the light-evoked decrease from resting
[K]o (~1.6 mM). This observation probably indicates the existence of auxiliary mechanisms
which were activated only by abnormally high levels of [K]o. The decrease in the amplitude
of the distal evoked K responses (~3 mM and 10 s) was more prominent than the decreases
in the local responses (2.6 mM and 7.7 s), likely because the already-suppressed response
was reaching the distal site. Application of light on the non-transfected astrocytes in
control conditions did not have a significant effect on the [K]o; the effect was only evident
when astrocytes were expressing eNpHR. Thus, the decrease in [K]o was due to optical
stimulation of transfected astrocytes.

In the presence of light, resting [K]o with a DTC of 7.4 + 0.8 s and RTC of 6.6 0.7 s
decreased gradually up until about 30 s of light exposure, after which, the decrease in
the [K]o reached a plateau and did not decrease further. This implies that: (1) astrocytes
have a limited capacity for re-uptake of K from the extracellular space, so further photo-
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stimulation would be ineffective and/or the process activated by the photostimulation is
quite slow; (2) the existing K in the extracellular space is only partially regulated /taken up
by astrocyte membrane potential, and therefore other regulatory mechanism are involved;
and/or (3) longer photo-stimulation does not translate to more hyperpolarization as cells
cannot be hyperpolarized beyond a certain voltage.

The concomitant LFP responses coupled with the evoked K responses were negative
DC shifts representing spreading depolarizations (SDs) (Figure 4). These SD-like events
decreased in amplitude following optical stimulation. Failing to observe a total suppression
of SD-like events could be explained by the partial and incomplete decrease in the [K]o
and emphasizes the involvement of other processes in shaping SDs.

Despite the significant decrease in the 4AP-induced K responses caused by light
application, concomitant seizures were not significantly affected (Figure 5). Not seeing
a significant change in the seizure activity following light application could be due to
multiple factors; first and foremost probably the small local decrease (~2 mM) of the
already raised [K]o was not influential enough to modify the robust seizure activities being
generated from a much larger area of topically-applied 4AP, i.e., seizures were almost
certainly triggered from multiple surrounding sites, and therefore illuminating light on a
small area would not be able to modify the activity.

The decay time and amplitude of the K response were affected more than the lag
time of the spreading responses following optical stimulation. This observation could
imply that the astrocytic membrane potential presumably plays a more significant role in
regulating the resident/local [K]o and adjusting the concentration of the existing K in the
local extracellular space rather than the global distribution of K, whereas astrocytic gap
junctional coupling has a more prominent role in speeding up the spread of the spreading
K response [11].

As studied by Djukic et al. (2007) Ba*-mediated blockade and conditional RNAi-
mediated knockdown of Kir4.1 hinder K uptake from the extracellular space, depolarize
the astrocytic membrane, and lead to seizures [13]. In Kir4.1 knockout mice the astrocyte
membrane potential is severely affected, being reduced from 85 to 13 mV [14]. Tong et al.
(2014) showed that Kir4.1 restoration rescues channel conductance and membrane potential
in a Huntington’s disease mice model which exhibited depolarized membrane potential
and reduced K buffering caused by decreased Kir4.1 functional expression [15].

Therefore, according to our study and the reviewed literature, we propose that our
observation of decreased [K]o is due to Kir4.1 activation following astrocytic membrane
hyperpolarization caused by photostimulation [12,16-21]. Following illumination with
green light, eNpHR as a chloride pump causes chloride ions to enter the cell, leading to
cell membrane hyperpolarization [1,22]. This change in the astrocyte’s membrane potential
activates astrocytic membrane proteins such as K inwardly rectifying (Kir) channels [16-18],
and leads to K reuptake from the extracellular space. Although we did show that eNpHR
was expressed in the astrocytes and we already know that eNpHR causes membrane
hyperpolarization [23], measuring astrocytic hyperpolarization in the in vivo experiments
was not feasible in this study.

One could also argue that green light illumination on eNpHR-expressing astrocytes,
which leads to increased intracellular chloride concentrations, is a driving force for the
influx of positive current (i.e., K), therefore decreasing [K]o. This implies the possibil-
ity that hyperpolarization itself caused by eNpHR photoactivation (chloride influx) or
the very small amount of K influx via eNpHR openings could be the actual trigger for
decreasing [K]o.

Extracellular K and glutamate concentration are related to one another, as transporting
glutamate into the cell is accompanied by the extrusion of K [24]. K release is known to be
compulsory for starting a new glutamate transport cycle and abnormally high levels of [K]o
have an immediate inhibitory effect on glutamate transporters [24]. Meeks and Mennerick
(2004) suggested that glutamatergic transmission in the CA1 was significantly depressed
by 8-10 mM of [K]o but GABAergic transmission remained unchanged [25]. Glutamate
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transporters on the astrocyte membrane are responsible for glutamate uptake from the
extracellular environment which is dependent on the hyperpolarization of the astrocytic
membrane potential [1]. Thus, astrocytic hyperpolarization resulting from eNpHR photoac-
tivation could also lead to extracellular glutamate reduction in addition to K uptake from
the extracellular space through Kir channels thereby decreasing neuronal hyperexcitation.

4. Methods
4.1. Viral Construct

An adeno-associated virus (AAV) vector carrying an enhanced Halorhodopsin 3.1
(eNpHR) gene was tagged with enhanced yellow fluorescent protein (eYFP) as a gene
reporter and was conjugated with an astrocytic specific gene promoter known as gfaABC1D
which is a short version of glial fibrillary acidic protein (GFAP or GFAP104), at the the
Goshen laboratory. The plasmids were amplified and purified in the Carlen laboratory at
the Krembil Research Institute. Plasmids were then sent to the University of Pennsylvania
for insertion into the viral construct.

4.2. Plasmid Amplification

The One Shot™ StbI3™ Chemically Competent E. coli (Catalog Number C7373-03)
kit was used to transform the plasmid. Most of the steps were followed according to the
company manual but the antibiotic and the incubation temperatures were modified. LB
medium and LB agar plates were developed with 100 ng/mL carbenicillin. Plasmid DNA,
(approximatly 1-50 ng) was used for each transformation and PUC19 (provided in the
kit) was used as a control. After the DNA was transformed it was plated on an LB agar +
carbenicillin plate and incubated at 30 °C overnight. Single colonies were picked from the
plates and grew in several 500 mL LB + carbenicillin media plates overnight. The cells were
spun down and large-scale plasmid preps created using the QIAGEN plasmid Maxi Kit
(cat. no. 12162). The protocol was followed according to the manual. Then each prep was
quantified and the presence of the inserts was confirmed by digesting them with restriction
enzymes Notl and Sma. The sizes from the restriction—NotI: 2887, 1902, and 1531 bp,
Smal: 2937, 2681, 680, 11bp—were matched with the expected sizes. Finally, all the plasmid
DNAs were pooled and sent to Penn State for production of the adenovirus.

4.3. Animals

Experiments were conducted on 1-2 month-old, 18-30 g CD-1 mice. Animals were
housed in a 12/12 h light cycle with ad libitum access to water and food. All experimental
procedures performed in vivo were approved by the Krembil Research Institute.

4.4. Viral Transfection

Two weeks prior to the experiments, the pAAV-gfaABC1D-eNpHR3.1-EYFP construct
was stereotactically injected into the mouse cortex. The genome titer of the concentrated
virus for in vivo injection was 3.072 x 1013 GC/m with a 2.55 x 10! GC yield. Aseptic
procedures were followed throughout the surgery. CD-1 mice were anesthetized with
isoflurane. Once induced, they were placed into a stereotactic frame and an ophthalmic
ointment applied to the eyes. The mouse’s skull was shaved, wiped with betadine, and
rinsed with 70% alcohol. Subcutaneous baytril (10 mg/kg) was given subcutaneously. An
incision was made in the scalp, and the underlying fascia retracted. Using a micro-drill, a
burr hole was drilled in the skull over the hind limb somatosensory cortex (intracerebroven-
tricular coordination: anterior-posterior: —0.5 mm, medial-lateral: 1.5 mm, dorsal-ventral:
2.2 mm). Then, 1.5 puL of virus was injected at 0.15 pL./min into the cortex using a Hamilton
syringe and a stereotaxic syringe holder. After the injection was completed, there was a
waiting period of 3 min while the syringe was inside the brain to avoid any backsplash and
ensure complete absorption. Upon completion of surgery, sterile bone wax was applied to
the skull, the scalp was sutured, intraperitoneal dexamethasone (1 mg/kg) was adminis-
tered, and isoflurane discontinued. Mice recovered under a warming lamp and were given
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saline every 4 h as needed. They were checked for bleeding, abnormal behavior, or signs of
infection/inflammation during this period.

4.5. Craniotomy

Two weeks after cortical viral transfection, a craniotomy was performed with a preci-
sion drill, removing a circular region of the skull measuring 5 mm in diameter over the
right somatosensory cortex (transfection site).Mice were anesthetized with 5% inhaled
isoflurane with oxygen flowing at 1 mL/min to induce anesthesia. During the surgery
inhaled isoflurane was reduced to 1.5-2% and oxygen to 0.5 mL/min. Phosphate buffered
saline (PBS) was applied over the exposed cortex, filling the cavity of the skull, to prevent
tissue damage and dehydration. The animal body temperature was maintained at 37.5 °C
using a heating pad Hind limb withdrawal reflexes and breathing rate were observed
at regular intervals throughout the experiment to ensure that the animal remained at a
surgical plane of anesthesia. After craniotomy, the mice were transferred to the recording
chamber, which was a darkened enclosure.

4.6. Electrophysiology: K-Sensitive Recording Electrode

In order to maintain accurate measurements of K by the K-sensitive electrodes (KE), it
is necessary to account for the component arising from an electrical field. To this end, a
local reference electrode was used to mitigate distortion of K-sensitive electrode readings.
The electrodes were pulled borosilicate capillaries (tip diameter ~1 pm, World Precision
Instruments, Sarasota, FL, USA). In the case of the K-sensitive electrode, the interior wall
of the capillary was silanized with dimethyldichlorosilane vapor and dried at 120 °C for
2 h [11]. K-sensitive electrodes were filled with K* ionophore I-cocktail B (Sigma-Aldrich,
Oakville, ON, Canada) at the tip and back-filled with 0.2 M KClI solution [11]. The K-
sensitive recording electrodes were then calibrated using different concentrations (0, 2.5,
4.5, 6.5 and 22.5 mM) of KCl solutions. The relationship between the measured voltage and
the K concentration of the respective solution was derived using the Nicolsky—Eisenmann
equation [26] which is a commonly used method. The latter calibration lines which were
semi-logarithmic and close to linear, were used to determine [K]o in the brain [27].

4.7. Electrophysiology: 2(KE-LFP) Electrode and KCI

A K-sensitive electrode (KE) was coupled with a double-barreled LFP recording
electrode, creating a KE-LFP recording electrode. The double-barreled electrode was filled
with saline and cemented to the K-sensitive electrode such that the distance between the
tips of the electrodes was approximately 50 um apart [11]. First, the K-sensitive electrode
was mounted to a head stage of an Axopatch 200B amplifier. A differential reference
electrode for the head stage was inserted into a chamber of the double-barreled LFP
electrode; the other chamber was used to record the extracellular LFP connected to a
head-stage of an Axopatch 200B amplifier. This latter signal was differentially recorded
from a common ground wire, attached to the scalp. This arrangement was duplicated to
have a KE-LFP recording available at each recording site. All amplifiers were then digitized
(Digidata 1440, Molecular Devices). LFP and extracellular K signals were low-pass filtered
at 5 kHz. This arrangement allowed for simultaneous and effective recordings of LFP and
evoked [K]o responses (KE-LFP response) from the same location in the cortex caused
by KCl injections. Electrodes were lowered into the cortex in steps of 0.1 mm. Under an
Olympus BX-61W1 microscope with 4X PlanN objectives, 2 sets of KE-LFP electrodes, were
inserted into the right somatosensory cortex (site of viral transfection- where eYFP was
expressed), such that their tips were approximately 2 mm apart in a horizontal plane. An
injection micropipette filled with 50 mM KCl, was placed near one of the KE-LFP recording
electrodes. After 10 min of recording at baseline, the focal application of the KCl was
performed by 3 repetitions (every 0.3 s) of 5-7 ms microinjections (PicoSpritzer III, Parker),
resulting in a total injection volume of about 1 pL. The recording site immediately adjacent



Int. J. Mol. Sci. 2021, 22, 8658

11 0of 13

to the KCl injection site is referred to as the local site, whereas the other recording site is
referred to as the distal site.

4.8. KE-LFP Electrode and 4AP

This time only one of the coupled KE-LFP was used to record the evoked K responses
and the seizure activity, which was caused by topical application of 200 uL of 5 mM
4-aminopyridine (4AP) solution [28].

4.9. Optogenetics (eNpHR3.1 Activation)

Enhanced Halorhodopsin 3.1 (eNpHR) is a light-activated chloride ion pump [6] with
peak absorption at 570 nm (wavelength between 560 and 650 nm) [29]. Light with a 570 nm
wavelength was illuminated on the transfected area by passing from a 200 W mercury
fluorescent lamp via standard microscope objectives. Light application was controlled via
an electrical shutter.

4.10. Mouse Astrocyte Culture

Newborn (P5) mice were decapitated. The cortex hemispheres were isolated in ice-
cold PBS and the meninges were removed. The tissues were incubated with TrypLE
Express enzyme for 10 min at 37 °C. The cortices were then triturated by pipetting up
and down using fire-polished Pasteur pipettes. The cell suspension was filtered through a
40 pm cell strainer. Cells were re-suspended in astrocyte culture medium (DMEM, high
glucose + 10% heat-inactivated fetal bovine serum + 1% penicillin/streptomycin), plated
in T75 flask pre-coated poly-D-lysine (PDL) (20 mL at a concentration of 50 ug/mL) and
cultured at 37 °C and 5% CO,. The culture media was changed every 3 days for 9 days. In
the next step, overlaying microglia that were on top of the astrocyte layer were detached
by shaking the T75 flask at 180 rpm for 30 min on an orbital shaker. The media was
changed to 20 mL fresh astrocyte culture medium and flasks were shaken at 240 rpm for
6 h to remove oligodendrocyte precursor cells (OPC). Next step, the media was changed to
fresh media and flasks were shaken vigorously by hand for 1 min in order to remove any
potential OPC contamination. The remaining confluent astrocyte layer were rinsed twice
with PBS, and then dissociated with TrypLE Express enzyme for 5 min at 37 °C. TrypLE
was neutralized with astrocyte culture medium and then the cells were plated at a density
of 4 x 10* cells/mL on PDL-coated plates.

4.11. Immunohistochemistry

Two weeks after viral transfection, animals were anesthetized using a 100 uL mixture
of avertin and ketamine. Then mice were transcardially perfused with PBS followed by 4%
paraformaldehyde (PFA). Mouse brains were collected and stored in 4% PFA overnight
at 4 °C on a shaker. The next day brains were placed in PBS 3 times each for 30 min then
transferred in 30% sucrose overnight. Brains were cut to 20 pum sections using a cryostat.
Then, 300-500 pL of 0.1% Triton was applied on the slides twice. Subsequently 500 pL of
Triton and 5% bovine serum albumin (BSA) were added to the slides. Primary antibody
(mice anti-GFAP, 1:500) in Triton and 1% BSA was applied to the slides and kept overnight
at 4 °C. It was then washed twice with PBS. Secondary antibody (anti-mice Alexa flour488,
1:200) diluted in Triton and 1% BSA was applied and kept for 2 h. This was washed 3 times
with PBS. DAPI was added to the slides and left for 10 min, and rinsed once with PBS.
Then, images were captured on a confocal microscope (BX61W1, Olympus).

4.12. Statistical Analysis

Data analysis was performed using MATLAB 2016. Considering the low number of
data samples, non-parametric statistical analysis was performed. A two-tailed hypoth-
esis was tested, and the p-value was calculated using the Wilcoxon-Mann-Whitney test.
A p-value below 0.05 was considered significant. Statistical analysis was performed to
evaluate changes in amplitude, decay time constant (DTC) and lag time (time difference
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between the onset of the local and distal responses) for each animal. Results were reported
as group average = SEM; percent changes was also reported.

5. Conclusions

In conclusion, according to our observations and the reviewed literature, we propose
that our observations of decreased resting and evoked [K]o were almost certainly due to
influx of K into astrocytes caused by photo-stimulation of eNpHR-expressing astrocytes.
The presumed mechanism is that astrocytic membrane hyperpolarization increases the
driving force for intake of K from the extracellular space. Yet, the exact role of astrocytic
membrane potential in [K]o regulation needs further investigation. This study highlights
the role of the astrocytic membrane potential in K regulation. This study suggests optoge-
netic astrocytic modulation as a tool for controlling [K]o and for developing strategies to
understand and treat K-related neurological disorders.
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