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Abstract

Objectives. Although the genomic landscape of small-cell carcinoma
of the oesophagus (SCCE) has been dissected, its transcriptome-level
aberration and immune microenvironment status are unknown.
Methods. Using ultra-deep whole transcriptome sequencing, we
analysed the expression profile of nine paired SCCE samples and
compared the transcriptome with public transcriptomic data set of
normal oesophageal mucosa and other cancer types. Based on the
transcriptome data, the immune signatures were investigated. The
genomic data of 55 SCCE samples were also applied for immune
checkpoint blockade therapy (ICBT) biomarker evaluation including
microsatellite instability (MSI) status, tumor mutation burden (TMB)
and neoantigen burden (TNB). Also, we evaluated the CD8, CD68 and
programmed death-ligand 1 (PD-L1) in 62 retrospective SCCE samples
with IHC assay. Results. Differential expression analysis revealed that
the cell cycle, p53, andWnt pathways are significantly deregulated in
SCCE. Immune microenvironment analysis showed that high
leucocyte infiltration and adaptive immune resistance did occur in
certain individuals, while the majority showed a relatively
suppressive immune status. Immune checkpoints such as CD276 and
LAG-3 were upregulated, and higher M2 macrophage infiltration in
tumor tissues. Furthermore, normal tissues adjacent to the tumors of
SCCE presented a more activated inflammatory status than tumor-
free healthy controls. These observations showed that ICBT might
benefit SCCE patients. As the critical biomarker of ICBT, TMB of SCCE
was 3.64 with the predictive objective response rate 13.2%, while the
PD-L1-positive rate was 43%. Conclusions. Our study systematically
characterized the immune microenvironment in small-cell carcinoma
of the esophagus and provided evidence that several patients with
SCCEmay benefit from immune checkpoint blockade therapy.
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INTRODUCTION

Small-cell carcinoma can occur in virtually every
organ, with the lung being the most common
followed by the oesophagus.1-3 Small-cell
carcinoma of the oesophagus (SCCE) accounts for
approximately 1–2.8% of all oesophageal
carcinomas and is frequently diagnosed at late
stages with positive neuroendocrine markers.1,3

More than half of all SCCE patients present with
distant metastases, leading to a median survival of
only 8 to 13 months.1 There are no standard
treatments for SCCE. The histopathology of SCCE
is similar to those of small-cell lung cancer (SCLC).4

Therapeutic strategies targeting SCLC have been
widely employed for SCCE. Whether surgery could
confine SCCE is still controversial, and most
patients in the United States are not treated with
surgery. Chemotherapy instead is effective in the
initial treatment of SCCE and may improve disease
outcomes.4 However, recurrence arises rapidly in
the majority of patients, usually killing the
individuals within a few months.4 Therefore, SCLC
treatments are not optimal for patients with
SCCE. In addition, recent evidence suggests that
small-cell carcinoma originating from different
sites may be wildly distinct.4

Immune therapies, especially immune
checkpoint blockade and chimeric antigen-
receptor (CAR) T-cell therapies, have shown
exciting long-term efficacy in several cancers.5,6

Immune checkpoint inhibitors targeting PD-1 or
PD-L1 have taken over conventional treatments as
the first-line therapy for advanced several cancer
types.7,8 However, the response rates of patients
are limited due to several factors influencing the
efficacy of immunotherapy, such as activation of
the immune system, the expansion of effector
cells, the infiltration of activated effector cells to
the tumor tissue, and the destruction of tumor
cells.9 Together with the positive expression of
PD-L1 in the tumor tissue, tumor-infiltrating
effector cells or leucocytes indicate an adaptive
immune resistance microenvironment of the
tumor, which indicates a potential positive
response to immune checkpoint inhibitors.10

The solid tumor microenvironment includes
stroma cells, inflammatory cells, vasculature,
extracellular matrices and tumor cells themselves.

The tumor microenvironment usually suppresses
the infiltration of lymphocytes and other effector
cells, resulting in a mitigated antitumor response
of the host. An accurate evaluation of the tumor
microenvironment is an effective way to predict
the response of immunotherapy and to avoid
unnecessary treatments or possible side effects.
Several biomarkers, such as tumor mutation
burden (TMB), PD-L1 expression, microsatellite
instability and tumor neoantigen-related
mutation burden (TNB), can be used to screen for
patients who can benefit the most from
immunotherapy.

Thus far, immunotherapy has given hope to
patients with advanced cancers without standard
treatments. Unfortunately, there is no evidence
to support testing immune treatments for SCCE.
To explore the potential of immune checkpoint
inhibitors on SCCE, we systematically investigated
the transcriptomes and microenvironment of
SCCE by using RNA sequencing data from nine
pairs of frozen samples. With genomic aberrance
we reported previously, transcriptomic profiling
revealed several significant molecular events that
might contribute to the tumorigenesis and
development of SCCE. The individual examination
of the immune microenvironment showed that
adaptive immune resistance does occur in some
cases in the tumor tissue of SCCE, while most
present a relatively suppressive immune
microenvironment in tumor tissues versus NATs,
with the upregulation of several immune
inhibitory factors. Moreover, by examining the
transcriptome data of healthy oesophageal
mucosa from the GTEx database, we found that
the NATs of SCCE presented an abnormal state,
showing an activating immune phenotype
against healthy tissues, which indicated that
targeting the upregulated immune inhibitory
factors in tumor tissues might help reverse the
suppressive immune microenvironment. Finally,
we systematically assessed several therapeutic
efficacy biomarkers of ICB, including
microsatellite instability (MSI) status, TMB,
neoantigen burden and PD-L1-positive rate, in
SCCE with available whole-exome sequencing
data and pathologic analyses and revealed the
possibility of effective immunotherapy in some
SCCE patients.
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RESULTS

Samples and clinical data

Permission for the study was obtained from the
Ethics Committee of Sun Yat-Sen University Cancer
Center. With written informed consent, fresh
tumors and matched normal tissues adjacent to
tumors (NATs) were collected from nine SCCE
patients before any treatment. Detailed
characteristics of the patients are summarised in
Table 1.

Transcriptomic profiling of SCCE

To avoid the underestimation of genes with low
abundance because of an inadequate sequencing
depth,11 we performed ultra-high-depth RNA
sequencing on all available specimens, with a
mean reads count of 49.99 Mb for tumor samples
and 50.70 Mb for normal controls adjacent tissue
(hereafter referred to as NATs). A series of quality
evaluation steps ensured satisfactory sequencing
libraries. Correlation analysis of tumor samples
and corresponding NATs indicated that the NAT
from patient 6 was aberrant and was therefore
removed from the following analyses
(Supplementary figure 1a). Principal component
analysis of the transcriptomic profiles
distinguished between tumor samples and NATs

(Figure 1a). Unpaired differential expression
analysis identified 2,091 upregulated and 1598
downregulated genes, with criteria of an adjusted
P-value < 0.05 and a fold change >2 (Figure 1b, c,
Supplementary table 1). Gene set enrichment
analysis (GSEA) (Supplementary table 2) showed
that E2F targets, pancreatic beta cells, G2/M
checkpoint and spermatogenesis were the most
enriched gene clusters in SCCE tumors compared
to NATs (Figure 1d, e). In contrast, the P53
pathway, adipogenesis apical surface and fatty
acid metabolism were the most suppressed
pathways in the tumor samples (Figure 1d, e).
Given that NATs usually contain higher fraction of
stromal content (such as adipose tissue),
deregulation of the normal metabolic pathways
(e.g. adipogenesis apical surface, fatty acid
metabolism) might also be attributed to the
different composition of normal cells. GO analysis
based on the differentially expressed genes also
revealed the deregulation of cell cycle signals
(Supplementary figure 1b, Supplementary table 3).

Because of the similarity with SCCE in pathology
or genomic mutational spectrum,12 we also
performed GSEA on SCLC and ESCC with published
data on GEO database13 to further examine their
difference on expressive level (Figure 1f,
Supplementary table 4). Interestingly, immune-
associated pathways are all downregulated in SCLC
while virtually upregulated in ESCC. Despite no

Table 1. Clinical characteristic of patients with SCCE sequenced in this study

Patient ID Patient 1 Patient 2 Patient 3 Patient 4 Patient 5 Patient 6 Patient 7 Patient 8 Patient 9

Gender Male Male Male Male Female Male Male Male Male

Age at diagnosis 55–60 60–65 55–60 60–65 70–75 45–50 50–55 55–60 65–70

Smoking status Y N Y Y N Y Y Y Y

Drinking status Never Never Regular Never Never Regular Never Never Never

Family history N N N N N Y N N N

TNM status pT3N3M0 pT2N0M0 pT2N0M0 pT1N1M0 pT2N0M0 pT4N1M0 pT3N3M0 pT4N1M0 pT3N0M0

Tumor stage Ⅲ Ⅱ Ⅱ Ⅱ Ⅱ Ⅲ Ⅲ Ⅲ Ⅱ
Tumor location Midthoracic Midthoracic Lower-thorax Midthoracic Midthoracic Mid-lower-thorax Mid-lower-thorax Lower-thorax Midthoracic

Primary Tumor/

Metastasis

Primary

tumor

Primary

tumor

Primary

tumor

Primary

tumor

Primary

tumor

Primary

tumor

Primary

tumor

Primary

tumor

Primary

tumor

Tissue source Surgical

resection

Surgical

resection

Surgical

resection

Surgical

resection

Surgical

resection

Surgical

resection

Surgical

resection

Biopsy Surgical

resection

NEO-ADJUVANT

chemotherapy

(Yes/No)

No No No No No No No No No

Chemotherapy

(Yes/No)

No No Yes Yes NA Yes Yes No No

Radiation (Yes/No) No No No No NA No No No No

Survival status at

last follow-up

Dead Dead Dead Dead NA Dead Dead Dead Dead

Survival time

(month)

5 7 18 3 NA 56 43 12 21
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significant enrichment, enrichment scores of
immune-associated pathways in SCCE were
between those in ESCC and SCLC and closer to
SCLC, which posed a requirement for further
examination of immune microenvironment of
SCCE. Moreover, an extended PPI network was
constructed with the differentially expressed genes
in SCCE (Supplementary figure 2a), suggesting a
strong correlation between the deregulated genes.
KEGG enrichment analysis based on the network
indicated that pathways such as pathways in
cancer, HTLV-1 infection, the cell cycle, oocyte
meiosis and the Wnt signalling pathway were
profoundly deregulated at the transcriptome level
in SCCE (Figure 1g, Supplementary table 5).
Selected PPI network concerning Wnt signal also
revealed the deregulating cluster of Wnt signal-
associated genes (Figure 1h, Supplementary figure
2b), in which WNT5B, WNT2B and SFRP5 were the
hubs.

Immune microenvironment analysis of SCCE

GSEA and KEGG analysis showed no enrichment
of the immune pathways in SCCE, which might be
due to the heterogeneity of tumors and the
relatively low abundance of infiltrated immune
cells. We employed the MCP-counter method14 to
obtain the absolute quantity of each type of
immune cell and calculated the fold changes in
immune cells from each tumor sample compared
to the corresponding NAT (Figure 2a,
Supplementary table 6). Most patients (6/8)
showed modest infiltration of virtually all types of
leucocytes in the tumor. However, two patients
(patient 3 and patient 9, 2/8) had a higher
leucocyte infiltration in tumor tissues than that in
NATs, including CD8+ T cells, cytotoxic
lymphocytes and B-lineage cells (Supplementary
figure 3). To further assess the infiltration of T

and B cells, we examined T-cell receptor/B-cell
receptor (TCR/BCR) diversity and clonality, which
are denoted by entropy and evenness, for each
case with MiXCR.15,16 Remarkably, TCR/BCR
entropy, indicating the abundance and diversity
of T/B cells, was higher in NATs than in
corresponding tumors (Figure 2b). Four tumor
samples (patients 3, 5, 6 (without matching NAT)
and 9) exhibited higher diversity and clonality of
BCR, along with higher maximum counts of their
BCR clone types (Supplementary table 7).
Interestingly, three tumor samples (patients 3 and
6 (without matching NAT) and 9) showed
relatively higher TCR entropy and TCR evenness,
suggesting the higher diversity and clonality of
TCR, suggesting an adaptive cell-mediated
immune microenvironment (Figure 2b,
Supplementary table 8).

To further understand the immune
microenvironment in individual cases, we examined
the expression of all known immunomodulators.17

Certain well-known inhibitors, such as B7-H3 (cluster
of different, CD276), lymphocyte-activated gene 3
(LAG3), and vascular endothelial growth factor
(VEGFB), and a novel immune suppressor, sialic acid-
binding Ig-like lectin (Siglec-15),18 were significantly
upregulated in tumor tissues compared to
corresponding NATs, which might suggest an
immune evasion of SCCE (Figure 2a, Supplementary
figure 4). Notably, fibrinogen-like protein 1 (FGL1), a
ligand of LAG3,19 was significantly upregulated in
the tumor tissues of some patients showing modest
infiltration of leucocytes (patients 4, 5, and 7),
indicating that FGL1-LAG3 signalling might be an
inherent mechanism of the immune inhibition of
SCCE. Moreover, in patients with higher leucocyte
infiltration (patients 3 and 9), some immune
inhibitory receptors, including PD-1, T-cell
immunoglobulin and mucin domain-containing
protein 3 (TIM-3) and T-cell immunoreceptor with Ig

Figure 1. Transcriptomic profiling of SCCE. (a) Principal component analysis (PCA) plot for transcriptome data of 9 tumor tissues and 8 normal

tissues adjacent to the tumor (NATs). (b) Volcano plot for differentially expressed genes (DEGs) in SCCE versus NAT. 2091 genes were

upregulated while 1598 genes were downregulated in tumor against NAT. (c) Hierarchical clustering of the samples with expression level of

DEGs. (d) Wordcloud plot for enriched Cancer Hallmark pathways (FDR < 0.05) in transcriptomic comparison between tumor tissues and NAT

(red means activated while blue means suppressed in SCCE tissues against NATs). (e) GSEA plot for top 6 deregulated pathways in SCCE tissues

versus NATs. (f) Hierarchical clustering of SCCE, small-cell lung cancer (SCLC) and oesophageal squamous cell carcinoma (ESCC) based on

deregulated pathways (a solid circle means FDR less than 0.05 while hollow circle means FDR larger than 0.05; circle size was in direct

proportional to absolute value of normalised enrichment score (NES)). (g) Extended network constructed by NetworkAnalyst with top 1000 DEGs

(500 upregulated and 500 downregulated genes ranked by fold change). Genes in the Wnt pathway are labelled. (h) Top 8 enriched pathways

(ranked by FDR) in KEGG pathway enrichment analysis of genes in the extended network.
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and ITIM domains (TIGIT), and their well-known
ligands, PD-L1, galectin 9 (Gal-9), and PVR cell
adhesion molecule (PVR), were also specifically
upregulated in tumor tissues compared with NATs to
varying degrees (Figure 2a, Supplementary figure 5).

To elucidate the composite features of infiltrated
leucocytes in SCCE, we also used CIBERSORT to
compare SCCE with cancers that exhibit similar
genomic mutation profiles, including ESCC, small-cell
lung cancer (SCLC), oesophageal adenocarcinoma
(EAC), chromosomal instability subtype of gastric
cancer (STAD-CIN), and head and neck squamous
carcinoma (HNSCC), with RNA-seq data from the
TCGA and GEO databases (Supplementary table 9).
SCCE-infiltrated leucocytes contained more M2
macrophages and activated NK cells than other
cancers except for SCLC. The fraction of plasma cells
in SCCE was significantly higher than that in ESCC,
STAD-CIN and HNSCC. In contrast, fewer regulatory T
cells infiltrated into SCCE than into EAC or STAD-CIN
(Figure 2c, Supplementary figure 6a). Furthermore,
general infiltration into the tumors was examined by
determining the median fraction of all types of
leucocytes (Figure 2d). Clustering on the general
infiltration spectrum suggested that the immune
microenvironment of SCCE is more closely related to
that of SCLC. Additionally, immunohistochemistry
(IHC) assays of CD8 confirmed that 97% (29/30) of
patients with SCCE had high infiltration levels of
CD8+ T cells (Figure 2e-g). Likewise, macrophages
assayed by CD68 staining also displayed relatively
high infiltration in SCCE tumor tissue compared with
SCCENATs (Figure 2e-g, Supplementary figure 7a, b).

Activated inflammation in the NAT of SCCE

A previous study showed that NATs differed from
healthy normal tissues, with elicited
inflammation.20 In SCCE, NATs contained more B
and T cells than corresponding tumors

(Figure 2b). We speculated that the NATs of SCCE
have already obtained an abnormal state when
comparing to the healthy oesophageal mucosa.
Therefore, we took advantage of the RNA-seq
data of 183 healthy oesophageal mucosa samples
from the GTEx21 database and unpublished RNA-
seq data of 20 paired samples of ESCC. First, all
the data were preprocessed with a pipeline
reported previously20 to remove the batch
effects, allowing rigorous comparison (Figure 3a),
which was shown by the expression correlation
of housekeeping genes, RLE plots and PCA
diagrams (Figure 3b, Supplementary figure 8a–e).
Dimensionality reduction clustering of healthy
tissues, NATs and tumor tissues indicated that the
NATs of SCCE differed from either healthy tissues
or tumor tissues at the transcriptome level
(Figure 3c, Supplementary figure 10). Notably, by
including ESCC data into the clustering analysis,
we found that the NATs of ESCC were also
different from those of healthy tissues. Moreover,
SCCE, ESCC, the NATs of SCCE, the NATs of ESCC,
and healthy tissues were distinct from each other
at the transcriptome level (Supplementary figure
9a–c). Next, we performed differential expression
analysis and GSEA to compare healthy tissues and
NATs. We found that immune-associated
pathways, such as signalling by ILs, TCR signalling
and downstream TCR signalling, were
significantly upregulated in NATs compared with
healthy tissues (Figure 3d, Supplementary table
11). Furthermore, immunomodulators, infiltrated
leucocytes and immune pathways were also
examined to understand the immune
microenvironment of NAT in SCCE. Remarkably,
all immune pathways were significantly more
activated in the NATs of SCCE than in healthy
oesophageal mucosa (Figure 3e). Moreover, the
compositions of infiltrated leucocytes were
different between healthy tissues, NATs and

Figure 2. Immune microenvironment analysis of SCCE. (a) Hierarchical clustering and heatmap of the patients according to changes (dividing

tumors by NATs) in leucocyte infiltration (left) and expression of immunomodulators (right) (red means upregulated while blue means

downregulated in SCCE tissues against NATs); genes significantly upregulated in SCCE tissues against NATs are labelled with *. (b) Entropy and

evenness of TCR (left) and BCR (right) in each sample (red, tumor tissues; blue, NATs) (NAT of patient 6 had been removed from the analysis). (c)

Relative fraction of different types of tumor-infiltrated leucocytes (the types of leucocytes were chosen according to their function and varying

degree in different types of cancer, and the remained were shown in Supplementary figure 2d) in ESCC, EAC, STAD-CIN, SCLC and HNSCC and

their comparison with those in SCCE (Wilcoxon rank sum test with Bonferroni correction. *P-value < 0.05; **P-value < 0.01; ***P-value < 0.001).

(d) Hierarchical clustering of SCCE (n = 9), ESCC (n = 82), EAC (n = 80), STAD-CIN (n = 207), SCLC (n = 81) and HNSCC (n = 491) by global

infiltration profile with median relative fraction of 22 leucocyte types. (e) CD8 and CD68 IHC of SCCE tumor tissues in 2 patients. (f) Density

distribution curve for infiltration percentage of CD8+ T cell (n = 32) and macrophage (n = 28). (g) Comparison for infiltration percentage of

macrophage between SCCE tumor tissues (n = 7) and NATs (n = 7).
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tumor tissues (Figure 3e, Supplementary table
12). Notably, both M1 and M2 macrophages
showed higher abundance in the tumor tissues of
SCCE, further suggesting a crucial role of
macrophages in the tumor microenvironment of
SCCE. We also found that CTLA4 and IDO1, two
well-known immune checkpoints, were
significantly higher in both tumor tissues and
NATs than in healthy tissues, while the expression
levels of VEGFB and LAG3 increased progressively
in healthy tissues, NATs and tumor tissues. It is
noteworthy that CD276 (B7-H3) was the most
abundant in tumors but the least abundant in
NATs, which further supports its function in
immune evasion in SCCE.

Prediction of immune therapy responses
based on SCCE biomarkers

Several biomarkers, including tumor mutation
burden (TMB), PD-L1 expression, microsatellite
instability and tumor neoantigen-related
mutation burden (TNB), could effectively predict
the overall response of treatments with anti-PD-1
antibodies in certain cancers.22 We sought to
examine whether such biomarkers exhibit the
predictive value of treatments with immune
checkpoint inhibitors for SCCE. We took
advantage of 55 paired whole-exome sequencing
data previously published by our group12 and 62
SCCE samples with IHC staining retrospectively
collected from 5 cancer centres. We used the
MANTIS pipeline23 to analyse microsatellite
instability and showed that all patients with SCCE
(55/55) exhibited MSS (microsatellite stability). We
also analysed TMB by including the synonymous
mutations, and the TMB of SCCE was 3.64
[median, 95% CI, 3.18-4.55], showing a relatively
low TMB across all other tested cancer types. We
then employed a TMB-ORR linear formula24 to

predict the response rate of SCCE for anti-PD-1
treatments. The predicted ORR of SCCE was 13.2%
(95% CI, 11.8 - 15.7, Figure 4a), with the input of
the median TMB = 3.64 (95% CI, 3.18–4.55)
adjusted by panel genes from Foundation One25

(Figure 4a). To strengthen the prediction, we also
analysed neoantigen loads based on the exome
data and explored their correlation with TMB in
SCCE (Supplementary table 13). As expected, a
strong correlation was observed between
neoantigen loads and mutation loads (Figure 4b).
Moreover, the analysis of previously published
survival data12 revealed that SCCE patients with a
higher mutation burden (P-value = 0.009,
HR = 0.295) or neoantigen burden (P-value = 0.04,
HR = 0.195) have a better long-term prognosis
(Figure 4c, d, Supplementary figure 11a, b).

To evaluate PD-L1 expression in SCCE, we
performed IHC staining on 62 SCCE samples
retrospectively collected. Except for three
specimens without tumor cell, tumor positive
score (TPS) no less than 1% was detected in 44.1%
of SCCE patients and TPS no less than 5% was
detected in 13.6%. With the cut-off of 1% in
several clinical trials using DAKO method,26 44.1%
(26/59) of SCCE patients had positive PD-L1
expression according to the cut-off (Figure 4e;
Supplementary table 14). Like most cancer types,
no significant correlation was detected between
TMB and PD-L1 expression (Supplementary figure
11d–f). In addition, no significant correlation was
found between CD8 T-cell infiltration and the
TMB or PD-L1 expression, which might be
due to the limited sample size (Supplementary
figure 12).

DISCUSSION

To develop effective treatments for SCCE, a
comprehensive understanding of its molecular

Figure 3. Activated inflammation in NAT of SCCE. (a) Process design for NAT analysis. From GTEx, we collected 183 RNA-seq raw samples of

healthy oesophageal mucosa. We performed identical processing of all samples using hg38 as reference genome and validated the data are

coherent. Then, we utilised several techniques to characterise differences between healthy tissue, NAT and tumor tissue, especially in immune

phenotypes. (b) Log2 expression levels of 405 housekeeping genes in healthy oesophageal mucosa tissues and NATs of SCCE (the size of the

point represents the standard deviation (SD) in NAT, and the colour represents SD in healthy). (c) t-SNE plots for healthy oesophageal mucosa

tissues, NATs and SCCE tissues with top1000 genes ranked by median absolute deviation (MAD) of expression level across the three tissue types.

(d) Gene set enrichment analysis of transcriptome for NATs of SCCE versus healthy oesophageal mucosa tissues (green, activating in NAT against

healthy tissue; blue, suppressive in NAT against healthy tissue). (e) Comparison of immune phenotype including immune-associated pathways,

several suppressive immunomodulators and infiltrating leucocytes across healthy oesophageal mucosa tissues (n = 183), NATs (n = 8) and SCCE

tissues (n = 9) (Wilcoxon rank sum test with Bonferroni correction. *P-value < 0.05; **P-value < 0.01; ***P-value < 0.001).
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features and immune microenvironment is
urgently required. To our knowledge, this is the
first study to systematically examine SCCE at the
transcriptome level. Combined with our previously
studied genomic profiles of SCCE, we found that
genes such as CCNE1, PTEN and PIK3R1 and
pathways such as the cell cycle pathway, the P53
pathway and the Wnt signalling pathway are

deregulated at both the genome and
transcriptome levels, suggesting their crucial roles
in the initiation and progression of SCCE. All
these molecular portraits of SCCE have great
potential as therapeutic targets. Besides, like
SCLC, SCCE presented a trend of downregulation
of immune-associated pathways, which might be
one of the factors concerning the poor prognosis
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Figure 4. Prediction of immune therapy responses based on SCCE biomarkers. (a) By using linear regression model (ORR = 10.8 * log (TMB)-0.7)

published in Yarchoan et al.,24 predicted objective response rate of ICB monotherapy (anti-PD-1, or anti-PD-L1) is 13%. (b) Spearman correlation

between mutation load and neoantigen load in 55 SCCE samples with WES. (c) Kaplan–Meier curves of overall survival in patients with high

mutation burden (n = 23, more than median) and low mutation burden (n = 22, less than median) (log-rank test and Cox proportional hazards

model). (d) Kaplan–Meier curves of overall survival in patients with high neoantigen burden (n = 23, more than median) and low neoantigen
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of small-cell cancers. Determining the underlying
mechanism of the suppressive antitumor immunity
might help to develop precise immunotherapy
strategies for this deadly cancer.

Immunotherapy, especially immune checkpoint
inhibitors, has achieved great success in many
solid tumors, including SCLC27 and ESCC,28 both of
which share similarities to SCCE.12 Thus, we
explored the potential efficacy of immunotherapy
on SCCE. We first examined the immune
microenvironment of SCCE to identify suitable
targets and to predict the response of
immunotherapy. Previous studies10 have
established the ‘TIME’ classification method to
select patients who are more likely to respond to
immunotherapy. These patients should exhibit
high T-cell infiltration and PD-L1 expression in the
tumor microenvironment. Here, we extended the
definition by including B cells and immune-
stimulatory factors to reflect the immune
activation state and several immune suppressive
signals to explain the immune evasion of SCCE.
Accordingly, with the abundant infiltration of
leucocytes, T-/B-cell diversity, and the expression
of immune-stimulatory factors, patient 3 and
patient 9 presented adaptive immune reaction.
Additionally, several immune checkpoint signals,
including PD-1/PD-L1, TIM3/Gal9 and TIGIT/PVR,
were upregulated in these two patients,
indicating adaptive immune resistance occurred in
these two patients, which suggested that immune
checkpoint inhibitors might be an effective
therapeutic strategy for certain SCCE individuals.
Our results also indicate that because of the
complicated immune microenvironment and the
expression of multiple checkpoints, pretreatment
assessments and combination therapy are critical
strategies to apply immunotherapy to SCCE.

However, except for patients 3 and 9, other
SCCE samples showed less leucocyte infiltration,
BCR/TCR diversity and lower expression of
immune-stimulatory factors in tumor tissues,
presenting immunological ignorance. By profiling
the immune modulators, we found that some
suppressors, including B7-H3, LAG3, VEGFB and
Siglec-15, are significantly upregulated in tumor
tissues, which may contribute to the relatively
suppressive immune microenvironment in SCCE.
B7-H3, encoded by CD276 gene, is a limited
expressive protein in normal tissue, but aberrantly
expressed in a high proportion of human
malignancies.13 With antitumor activity against
solid tumor shown by B7-H3-specific monoclonal

antibodies (mAbs),29 antibody-drug conjugates30

and B7-H3-targeting CAR-T cells,31 B7-H3 becomes
a promising target for cancer immunotherapy and
serves as a potential immunotherapy target for
SCCE. LAG-3 is mainly expressed on activated T
and NK cells and acts as an inhibitory receptor
similar to PD-1 and CTLA-4,32 which were the
third inhibitory receptors to be targeted in the
clinic. It is noteworthy that FGL1,19 a novel ligand
of LAG-3, is upregulated in patients with less
leucocyte infiltration and lower PD-1 signals,
indicating that FGL1-LAG3 might be another
significant immunotherapy target for SCCE
irresponsive to PD-1/PD-L1 blockade.

To further compare the composition of the
infiltrating leucocytes of SCCE and other tumors,
we integrated the transcriptomic data of ESCC,
EAC, the CIN type of STAD, HNSCC, and SCLC from
the TCGA and GEO databases into the analysis.
M2 macrophages, the most common tumor-
associated macrophages,33 are the major
immunoregulatory leucocytes in tumors, and they
not only inhibit cytotoxic T-cell responses in the
tumor microenvironment34 but also propel T cells
from the tumor microenvironment.35 Thus, the
high abundance of M2 macrophages in SCCE may
be one of the main reasons for the relatively low
infiltration of leucocytes. Another inhibitory
leucocyte is the regulatory T cell, which
demonstrates low infiltration in both SCCE and
SCLC, suggesting that M2 macrophages may serve
as the main immune suppressive cells in SCCE and
that targeting M2 macrophage36 may be an
effective way to reverse the relatively low
infiltration of leucocytes in tumor tissues.

We found that the NATs of both SCCE and ESCC
are different from cancer-free oesophageal
mucosa at the transcriptome level. The NATs of
several cancer types are ‘abnormal’ compared to
normal tissue from healthy controls,20 but little is
known about NATs in oesophageal cancer.
Compared with healthy tissues, immune-
associated pathways are upregulated in the NATs
of SCCE, implying a relatively activated immune
microenvironment. Interestingly, the activation
status of immune-associated pathways in tumor
tissues exhibits very large diversity, but virtually all
of the pathways are relatively downregulated
compared to that in corresponding NATs. Notably,
the relative abundance of M2 macrophages was
the lowest in NATs but the highest in tumor
tissues, further indicating their suppressive roles in
antitumor immunity. Instead of focusing on the
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immune status of tumors themselves, targeting
the immune suppression of NATs might be more
promising to reverse the ‘cold’ tumors.

Molecular biomarkers, such as microsatellite
status, tumor mutation burden (TMB) and tumor
neoantigen, have proven to have predictive value
for the efficacy of immune checkpoint blockade.
For instance, TMB has already been proven to be
associated with efficacy of immunotherapy in
melanoma, NSCLC, urinary cancer and SCLC.37 A
previous study24 also revealed the positive relation
between overall response rate (ORR) of ICI
treatment and median TMB of a specific cancer
type, and further formed a linear model. Based on
55 paired whole-exome sequencing data, SCCE
seems to have relatively stable microsatellites and
a low tumor mutation burden. Despite this, after
adjusting panel genes from Foundation One, the
predicted ORR generated by the reported linear
model still reached 13.3%. A strong correlation
between somatic mutation burden and
neoantigen burden also supports the prediction.
Besides, both TMB and TNB were positively
associated with prognosis of SCCE patients not
receiving immunotherapy, suggesting that higher
immunogenicity was related to better prognosis,
which were probably driven by antitumor
immunity. A similar phenomenon also occurs in
some immunotherapy-sensitive cancer types, such
as melanoma38 and NSCLC.39,40 PD-L1 expression
evaluated by IHC is another dependable
biomarker in immunotherapy across several types
including cancer, such as melanoma, NSCLC and
HNSCC.26 Given that in immune microenvironment
examination, high expression of PD-1/PD-L1 seems
to be associated with adaptive immune resistance
to a large extent in SCCE, we assumed that PD-L1
expression evaluated by IHC might also serve as a
potential biomarker for immunotherapy in SCCE.
With the DAKO method and suggested cut-off,
our investigation revealed that considerable SCCEs
were detected as having PD-L1-positive status.
Therefore, we speculated that probably some of
SCCE patients would gain benefit from
immunotherapy.

However, our findings on the immune
microenvironment of SCCE still remain to be
validated with a larger sample size. Besides, the
correlation between the deregulated immune
microenvironment and intrinsic features of SCCE,
such as TMB and the deregulated tumor-
associated pathways, also needs to be explored in
future research, which will be helpful for

elucidating the underlying mechanism and
developing optimal immunotherapeutic strategies
for the deadly cancer.

CONCLUSIONS

As the first study for reporting the transcriptomic
alteration of small-cell carcinoma of the
oesophagus, our results suggest that the tumor
tissue of SCCE is in a macrophage-induced
suppressive immune environment and the normal
adjacent tumor presented an activating immune
phenotype. The examination of several ICI
predictors provides a rationale for use of ICB
treatment in patients with SCCE. Therefore,
findings from this study provide evidence for the
upcoming clinical trial design or development of
immune therapy on this deadly disease.

METHODS

RNA isolation and sequencing

Tumor purity was assessed before RNA sequencing, and
only tumor samples with no less than 70% tumor tissue and
normal samples without tumor cell were qualified for the
sequencing. Total RNA was isolated from tissues and cells
using TRIzol reagent (Life Technology, Carlsbad, USA). The
isolated RNA was analysed for appropriate quantity and
quality by determining the RNA integrity number (RIN) with
an Agilent 2100 Bioanalyzer (Agilent Technologies, CA USA)
for analysis and estimated at A260/280 nm (SmartSpec; Bio-
Rad, CA, USA) for verification. Briefly, RNA was fragmented,
first- and second-strand cDNA were synthesised, the double
cDNA strand underwent end pair, 3’ end adenylation and
adapter ligation, the second cDNA strand was digested, and
libraries were amplified and purified. Lastly, the library was
loaded into one lane of the Illumina HiSeq 4000 platform
for sequencing.

Transcriptome profile

The raw reads were aligned to the UCSC hg38 reference
gene using STAR41 and assigned to genes by RSEM.42 Gene
expression is represented by transcripts per million (TPM).
Differentially expressed genes were called by the DESeq2
package. Only genes with at least 1 read in half of the
samples were included for the analysis. A gene was
considered differentially expressed if (i) the adjusted P-
value was < 0.05 and (ii) there was a >2-fold expression
change. Principal component analysis (PCA) was performed
with plotPCA function from the DESeq243 package. GSEA
within the Kyoto Encyclopedia of Genes and Genomes
(KEGG) database, Gene Ontology (GO) and hallmark gene
sets were conducted by employing WebGestalt (http://www.
webgestalt.org/) with ranked gene lists (by fold change).
Enrichment score was considered as informative only if the
adjusted P value (also marked as FDR, False Discovery Rate)
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< 0.05. An expanded PPI network was created with the top
500 upregulated genes and the top 500 downregulated
genes by using NetworkAnalyst,44 and KEGG enrichment on
the network was also performed on the website.

Immune microenvironment examination

The absolute infiltrating abundance of leucocytes was
calculated by the MCP-counter method (version 1.1).14 The
expression levels of immunomodulators are denoted in
TPM. The identification of TCR CDR3 sequences from T cells
present in the sequenced tumor sections was examined by
MiXCR from RNA-seq data.16 The entropy of the receptor
repertoire was calculated by the tcR package,45 while the
evenness of the receptor repertoire was denoted by the
Gini coefficient calculated with the ineq package in R. The
relative fractions of 22 types of tumor-infiltrating leucocytes
in the multi-cancer comparison were calculated by
CIBERSORT.46,47

Exploration of the nature of NAT

Raw data collection and processing

We obtained raw read files of healthy oesophagus mucosa
tissue from the GTEx database (GTEx dbGaP accession
phs000424.v7. p2.c1, 18 September, 2018). Raw read files of
SCLC were obtained from GEO database (GSE60052). The
raw reads were analysed by using the identical pipeline to
SCCE data set.

Batch effects removal

In the comparison of RNA-seq data from healthy
oesophagus mucosa, normal tissue adjacent to the tumor
(NAT) and SCCE tissue, batch effects and differences in
sample preparation can have a substantial influence on
outcomes. Thus, we applied raw data from the GTEx
database and preprocessed the data in the identical
workflow that was used to preprocess the SCCE and normal
tissue data. In addition, we employed the RUVg method in
the RUVseq package, which can remove noisy expression
from RNA-seq data using a negative gene set that has
constant covariates.48 The negative gene set we used in the
article was a list of housekeeping genes49 that were
recommend by the developer of the method. As observed
in the relative log expression (RLE) and PCA cluster with
housekeeping genes, this procedure can diminish unwanted
variation between data.

Bioinformatics analysis

Dimensionality reduction clustering by the t-SNE
algorithm50 when clarifying the relationship in the
expression profiles between SCCE, normal tissue adjacent to
SCCE and healthy oesophagus mucosa was performed using
the Rtsne (version 0.15) package with the top 1000 genes
ranked by median absolute deviation. GSEA within
Reactome was performed with the identical GSEA method

mentioned in the transcriptome profile to compare NAT
and healthy tissue. The ssGSEA scores of hallmark immune
pathways were calculated by the GSVA package in R.51 The
fraction of tissue-infiltrating leucocytes was also determined
with CIBERSORT.

Tumor foreignness assessment

MSI was evaluated using MANTIS (version 1.0.4)52 on
whole-exon sequencing data of 55 paired SCCE samples.
The TMB of all protein-coding genes and the selected panel
from Foundation One were calculated separately. HLA class
I typing of samples was performed using the OptiType tool
(version 1.3).53 Potential neoantigenic peptides were
identified using NeoPredPipe based on netMHCpan (version
4.0).54

Statistical analysis

The Spearman rank correlation coefficient was used to
measure the relationship between two variables. The
Wilcoxon rank sum test and the Wilcoxon matched-pairs
signed rank sum test with Bonferroni correction were used
to compare the difference of two or more sets of
quantitative data. Distributions of overall survival (OS) were
described by Kaplan–Meier methods, and P values were
calculated using a two-sided log-rank test. Univariate and
multivariable Cox proportional hazards models were used
to predict factors that influence the outcome. All P-values
were two-sided, and P-values less than 0.05 were
considered statistically significant.

Immunohistochemical assay

Tumor samples were evaluated for CD8 (Beijing Zhongshan
Jinqiao Biotechnology [ZSJQB], Co., Ltd., Beijing, ZA-0508-
6.0), CD68 (ZSJQB, Co., Ltd., Beijing, ZM-0060-6.0) and PD-L1
(Dako, M365329) expression through immunohistochemistry
(IHC) staining by certified pathologists. The numbers of
CD8+ lymphocytes and CD68+ macrophages were manually
counted under a high-power field (4009). PD-L1-positive
status was defined as the presence of membrane staining of
any intensity in ≥1% of tumor cells or the presence of PD-L1
staining of any intensity in tumor-infiltrating immune cells
covering ≥1% of the tumor area occupied by tumor cells
associated with the intratumoral and contiguous
peritumoral stromal.
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