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Abstract

Background: The global spread of the COVID-19 pandemic has become the most fundamental threat to human
health. In the absence of vaccines and effective therapeutical solutions, non-pharmaceutic intervention has become a
major way for controlling the epidemic. Gentle mitigation interventions are able to slow down the epidemic but not
to halt it well. While strict suppression interventions are efficient for controlling the epidemic, long-term measures are
likely to have negative impacts on economics and people’s daily live. Hence, dynamically balancing suppression and
mitigation interventions plays a fundamental role in manipulating the epidemic curve.

Methods: We collected data of the number of infections for several countries during the COVID-19 pandemics and
found a clear phenomenon of periodic waves of infection. Based on the observation, by connecting the infection level
with the medical resources and a tolerance parameter, we propose a mathematical model to understand impacts of
combining intervention measures on the epidemic dynamics.

Results: Depending on the parameters of the medical resources, tolerance level, and the starting time of
interventions, the combined intervention measure dynamically changes with the infection level, resulting in a
periodic wave of infections controlled below an accepted level. The study reveals that, (a) with an immediate, strict
suppression, the numbers of infections and deaths are well controlled with a significant reduction in a very short time
period; (b) an appropriate, dynamical combination of suppression and mitigation may find a feasible way in reducing
the impacts of epidemic on people’s live and economics.

Conclusions: While the assumption of interventions deployed with a cycle of period in the model is limited and
unrealistic, the phenomenon of periodic waves of infections in reality is captured by our model. These results provide
helpful insights for policy-makers to dynamically deploy an appropriate intervention strategy to effectively battle
against the COVID-19.
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Background
The COVID-19 pandemic has become a major global
threat for human lives. In the absence of vaccines, effective
treatment, and with limited knowledge of the virus [1–
4], non-pharmaceutic interventions have been adopted
to slow down the disease propagation. Nations around
the world implemented a number of containment policies
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aimed at mitigating the epidemic. With the progression of
the epidemic, individuals have improved their awareness
of infection and changed their behavior to reduce their
risk of infection by wearing face-masks andwashing hands
frequently [5]. Policies such as lockdown of the city [6,
7], travel restrictions [8–10], school closure [11], quaran-
tine [12, 13] or stay-at-home [14], social distancing [15–
19], bans on gatherings of more than a number of people,
tracking individuals who are potentially infected [20, 21]
have been implemented to reduce the contact rate and halt
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the epidemic. Some countries like Singapore used contact
tracing to efficiently slow down the epidemic, while other
countries such as the UK, opted to herd immunity and
then changed to a strict lockdown.
Policy-makers are confronted with difficult choices for

controlling the epidemic. On one hand, strict measures
on suppressing the epidemic can save people’s lives from
deaths, while likely increasing the risk of economical
losses; on the other hand, gentle mitigation interven-
tions can reduce negative economical impacts but risk
people’s life. Hence, it is necessary to estimate the epi-
demic dynamics in order to implement efficient, econom-
ical interventions accordingly [22, 23]. Many studies have
developed mathematical models to evaluate the role of
restriction measures on the dynamics of the COVID-19
pandemic [13, 23–28]. Most of previous studies focused
on modeling and estimating the transmission rate β to
reflect the impact of interventions [20, 29]. For instance,
a two-step control strategy relating suppression and miti-
gation was proposed [13, 23] based on modeling. Optimal
control of the COVID-19 from the point view of eco-
nomics was also studied in [25]. The impacts of several
interventions including case isolation, voluntary home
quarantine, social distancing, and closure of schools have
been explored in Ref. [26]. It shows that the most effec-
tive combination of interventions in reducing deaths and
intensive care unit (ICU) capacity is a combination of
case isolation, home quarantine, and social distancing.
In a recent study [30], an adaptive intervention strat-
egy was proposed for the control of the COVID-19 epi-
demic by considering individuals’ mobility between cities.
The authors assumed that intervention measures change
the transmission rate with a controlled parameter and
the floating population. In [24], strategies of interven-
tion combination of suppression and mitigation were
compared among 16 countries, while the cycle of the

intervention is set at a fixed period. Although intensive
interventions can effectively reduce the transmission rate,
the epidemic may rebound if interventions are relaxed
[26].
Since the epidemic is highly dynamic, rapidly changing

with the increase of infection cases, appropriate interven-
tions should be responsive to the outbreak and change
with the epidemic dynamics accordingly. To capture this
aspect, in this work, we explore a standard epidemiologi-
cal model modified by considering two types of interven-
tions, i.e., suppression and mitigation, which are dynam-
ically implemented by considering factors, such as the
city’s medical resources and its tolerance for infection.
We consider that mitigation interventions are a com-
bination of measures, such as general social distancing
measures, hygiene rules, case isolation, shielding of vul-
nerable groups, school closures, etc, targeting the basic
reproduction number approaching but larger than 1, while
suppression interventions are taken as additional mea-
sures of strict physical distancing, including lockdowns,
targeting the basic reproduction number less than 1. We
propose a combined strategy of suppression and mitiga-
tion to control the disease propagation. Instead of setting
the cycle of the strategies as a fixed period, the sys-
tem is allowed to dynamically adjust the control strategy
depending on the infection level. By doing so, the epi-
demic is under control below an acceptable level and a
strict suppression intervention is not necessarily deployed
during the period.

Methods
In order to understand the impact of different interven-
tions on controlling the epidemic, we firstly collect the
data from data source DXY [31] and observe the curves
of existing infections in different countries, as shown in
Fig. 1. We clearly see that in some countries, the number

Fig. 1 The number of existing confirmed cases in some typical countries. a Thailand; b Qatar; c Tajkstan; d Vietnam. The arrow in each panel
indicates the plateau period due to the interventions being introduced
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of existing infections shows a typical, nonuniform peri-
odic wave with different peaks and periods. For instance,
in Thailand (Fig. 1a), the number of existing infections
reaches the peak around 1500 cases on April, 1st, 2020,
and decreases to 100 cases soon before May, 25th, 2020.
Then, it follows a period wave of infections less than 200
cases. Recently, it increases to 500 cases again. Also in
Qatar (Fig. 1b), during the period from July 12th, 2020 to
Sep. 11th, 2020, the number of infections was controlled
less than 4000 cases and then it decreases again from Nov.
1st, 2020. Similar phenomena can also be found in Tajik-
stan and Vietnam (Fig. 1c and d). Although the periods of
the waves and the peak values of infections may be differ-
ent, such a phenomenon of period waves indeed reflects
various interventions deployed by nations to battle against
the COVID-19 pandemic.
In the following, we perform a modeling study to

understand interventions for the appearance of peri-
odic waves of infections. Since the COVID-19 can
cause infections with no symptoms [32] and severely
infected individuals have to be hospitalized for treat-
ment, we model them in a population based on the clas-
sical susceptible-exposed-infected-recovered (SEIR) epi-
demiological model, where individuals belong to eight
states: susceptible (S), exposed (E), asymptomatic (A),
symptomatic (I), severe infection (P), hospitalized (H),
dead (D), and recovered (R). See Fig. 2. The total popula-
tion size is denoted asN = S+E+A+I+P+H+D+R. At
time t, susceptible individuals get infected by having con-
tacts (asymptomatic, symptomatic or severe) infectious
individuals and move to exposed state (E) at a rate β(t),
where β(t) varies with time due to the involvment of inter-
ventions. The infectiousness of asymptomatic and severe
infected individuals compared with symptomatic infected
individuals are adjusted by factors θa and θp, respectively.
A fraction of exposed individuals (fI) moves to symp-
tomatic infectious state (I) at rate δ, while the remainder of
them (1−fI) moves to asymptomatic infectious class (A) at
the same rate δ. Thus, the 1

δ
refers to as incubation period.

The infectious periods of symptomatic and asymptomatic
infections are denoted as 1

γI
and 1

γA
, respectively. A frac-

tion of symptomatic infections (fP) develops to be severely
infected by moving to severe infection (P) at rate γI , while
the remainder of symptomatic infections (1 − fP) move
to recovered state (R) at rate γI . Severe infections will be

hospitalized for treatment at rate ω. Thus, ω can be taken
as detection rate for infections. A fraction of patients (fD)
die at rate μ and the remainder of them recover. The
dynamics of the model is given by,

dS
dt

= −β(t)S
θaA + I + θpP

N
,

dE
dt

= β(t)S
θaA + I + θpP

N
− δE,

dA
dt

= δ(1 − fI)E − γAA,

dI
dt

= δfIE − γI I,

dP
dt

= fPγI I − ωP,

dH
dt

= ωP − μH ,

dD
dt

= fDμH ,

dR
dt

= γAA + (1 − fP)γI I + (1 − fD)μH , (1)

where N is the total population size.
The basic reproduction number R0 is usually esti-

mated in the early stage of the outbreak as a constant
value. With the introduction of interventions, the trans-
mission rate β is time-varying. Consequently, the repro-
duction number changes with time, often named as
effective reproduciton number and expressed as Rt . By
linearing the system (Eq. (1)) at the disease free state
(S,E,A, I,P,H ,D,R) = (S0, 0, 0, 0, 0, 0, 0, 0) and setting the
vector v = (E,A, I,P)T , we obtain v̇ = (F − V)v, where
F is the new infection rate in each class and V is the tran-
sition rate for each class by transferring in or out of each
class, given by

F =

⎛
⎜⎜⎝

0 θaβ(t) β(t) θpβ(t)
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ ,

V =

⎛
⎜⎜⎝

δ 0 0 0
−δ(1 − fI) γA 0 0

−δfI 0 γI 0
0 0 −fPγI ω

⎞
⎟⎟⎠ ,

Fig. 2 The flow diagram of the compartmental model. Host states are indicated by circles and transitions are indicated by arrows
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from which we can obtain the effective reproduction
number of the model (Eq. (1)) as the spectral radius
ρ(FV−1) of the next generation matrix FV−1. The effec-
tive reproduction number Rt is given by

Rt = β(t)
(

θa(1 − fI)
γA

+ fI
γI

+ θpfI fP
ω

)
. (2)

Specifically, the basic reproduction number is recovered
as R0 = β0

(
θa(1−fI )

γA
+ fI

γI
+ θpfI fP

ω

)
, where β0 is the trans-

mission rate in the early stage. The difference between
interventions of suppression and mitigation is the aim
for affecting the epidemic. Suppression aims at halting
the epidemic with extremely strict strategies to satisfy the
condition Rt < 1, while mitigation aims at slowing down
the epidemic with relaxed control strategies, resulting in
a reduced Rt larger than 1. A strict suppression is more
likely to have negative impacts on economics and social
lives, while a gentle mitigation may not be able to effi-
ciently control the epidemic. Thus, how to implement an
effective intervention strategy to balance the aims is an
important and difficult issue to answer.
In order to devise efficient intervention strategies to

control epidemics, one has to consider medical resources
a city possesses, since infected cases require medical
resources for treatment. Also, the timing of interventions
being deployed plays a key role in containing epidemic. A
delayed, relaxed intervention strategy might be uneffec-
tive for controlling the epidemic, since the accumulated
existing hospitalized infections may overload the medi-
cal resources and further promote the spread of epidemic.
Thus, at this stage, a strict suppression strategy is pref-
erentially deployed. This is exactly the strategy some
countries like UK adopted. On the other hand, if the
existing hospitalized infections are not at risk for medical
resources, a gentle, relaxed mitigation strategy would be
sufficient enough to control the epidemic.
In the following, we assume that intervention strategies

deployed by a city are closely related with its capacity of
medical resources Im and a tolerance level for epidemic It .
At time t0, if the total hospitalized cases during a period τ

are higher than the capacity of medical resources Im with
factor c (0 < c ≤ 1), a strict suppression strategy will
be implemented; otherwise, if the number of hospitalized
cases is higher than some tolerance parameter It , a mit-
igation intervention will be deployed. Then, the effective
reproduction number Rt is given by

Rt =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

αsR0, if
t∑

t−(τ−1)
H(t) > cIm, t ≥ t0 (suppression)

αmR0, if
t∑

t−(τ−1)
H(t) > It , t ≥ t0 (mitigation)

where αs and αm are the mean intensity values associating
with suppression and mitigation, respectively, followed by
a given distribution [29]. Here, for simplicity, we assume
that both αs and αm are constants satisfying αs < αm <

1. The parameter Im represents the capacity of medical
resources, which may depend on the economical level. For
instance, in the US, Im = 1.2 beds per thousand peo-
ple. The parameter It represents the tolerance level for
epidemic, e.g., It = 100

N means that the tolerance of 100
infections in the population. The relationship between
parameters Im and It is tuned by the factor c. A value of c
satisfying cIm > It can capture the condition of suppres-
sion and mitigation, i.e., αs < αm. Given the parameters
for controlling strength, i.e., αs and αm, and the start-
ing time t0, the role of interventions is captured by the
evolving curve of Rt or β(t).
It is to note that the deployment of an interven-

tion depends on the number of recently hospitalized
cases

∑t
t−(τ−1) H(t), which is related with the accumu-

lated confirmed cases
∑t

t−(τ−1) I(t). In reality, evaluat-
ing the exact value of I(t) is fundamental to understand
the impacts of interventions on the epidemic. For the
COVID-19, since the real number of infections is gener-
ally unknown and only the number of confirmed cases is
available, it is necessary to use some approaches to eval-
uate [29, 33]. Here, in the following, for the real data
analysis, we apply a deconvolution method proposed in
[29] to estimate the real number of infection cases from
the reported infection cases as the initial values of the
model. Then, we study the impact of interventions of
suppression and mitigation on the epidemic.

Results
Modeling results
We first perform simulations on the proposed model in
a host population with no interventions. Then, we com-
pare the effects of interventions such as suppression,
mitigation, and the combination of them with the pro-
posed model. The total population is set as N = 106
and the fractions of exposed individuals and symptomatic
infected individuals are E(0) = 6 × 10−4 and I(0) =
4 × 10−4, respectively. The basic reproduction number
is set as R0 = 2.2 for the COVID-19 as Ref. [34]. The
incubation period is 1

δ
= 5.1 days [35]. The fraction of

symptomatic infections is fI = 0.82 as calculated in Ref.
[36]. The infectious periods for symptomatic and asymp-
tomatic infection are 1

γI
= 1

γA
= 2.3 days [24]. Since it has

been found that there is no difference in the transmission
rates between symptomatic and asymptomatic patients
[32], we set θa = 1. Usually, the infectiousness of severe
infected individuals is higher than that of symptomatic
infectious individuals. Here, we assume θp = 1 for sim-
plicity. The fraction of infections requiring hospitalization
is set as fP=0.3 and the delay between severe infection and
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hospitalization is 1
ω
=2.7 days [24] and the hospital stay is

assumed as 1
μ

= 8 days. According to the number of daily
deaths and the existing infections in WuHan, the frac-
tion of hospitalized infections to die is calculated as fD =
0.065. Without specification, the factor constant c is set as
c = 0.8. We did simulations with several values of c and
found that the choice of c does not change themain results
of the present study. Most of the parameters are chosen
according to the recently published results and some of
them are assumed, as summarized in Table 1. Figure 3
illustrates the results for the baseline model, where no
interventions are involved. We observe that the infected
and hospitalized number reaches the peak at around 50
and 60 days, respectively, approaching 4.5% and 3% of the
population. The fraction of deaths reaches 0.8% of the
population, approximately 8000 people.

Effects of suppression intensity αs and the starting time t0
In this scenario, we assume that if the fraction of accumu-
lated hospitalization cases during the past τ days, e.g., τ =

Table 1 Parameters used in the main text

Parameter Description Value (range)

β(t) Transmission rate with
time

β(t) = Rt(
θa(1−fI)

γA
+ fI

γI
+ θpfI fP

ω

)

R0 Basic reproduction
number

2.2 [34]

1
δ

Incubation period 5.1 days [35]
1
γI

The infectious period for
symptomatic infection

2.3 days [24]

1
γA

The infectious period for
asymptomatic infection

2.3 days [assumed]

fI The proportion of symp-
tomatic infection

0.8 [36]

1
ω

The delay days between
severe infection and
hospitalization

2.7 days [24]

1
μ

Hospital stay period for
severe infection

8 days [24]

fP The propotion of infection
requiring hospitalization

0.3 [24]

fD The proportion of severe
infection to die after
hospital stay

0.065[calculated] [31]

θa Infectious factor for
asymptomatic infections

1.0 [32]

θp Infectious factor for severe
infections

1.0 [assumed]

Im Medical resources 0.0023 [calculated] [37]

It Tolerance parameter for
infection

100
N [assumed]

αs Suppression coefficient [ 0.1, 0.4] [assumed]

αm Mitigation coefficient [ 0.5, 0.8] [assumed]

7,
∑t

t−7H(t), is larger than the medical resources by a fac-
tor, cIm, a suppression intervention will be implemented.
We take it as a constant control intensity with the average
value αs = 0.3, 0.1 starting at time t0 = 10, 20, 30. These
parameters are chosen such that the effective reproduc-
tion numberRt is approximatively less than 1. In Fig. 4, we
see that with the introduction of a suppression measure
with αs = 0.3, the peak of infections dramatically reduces
to a lower level. For instance, the epidemic peak is reduced
by 4.5% to 0.7% at t0 = 30. The earlier the intervention
is deployed, the lower the peak of infections will be. If
the intervention is deployed 20 days earlier, the infection
could be further reduced less than 0.15%, see Fig. 4c. Ear-
lier deployment of suppression strategies flatted the curve
of dynamics with a significantly reduced peak value and
the fraction of hospitalized cases remain at a lower level.
The fraction of deaths is also reduced to a lower level due
to the extremely efficient intervention of suppression. For
instance, at t0 = 20, the fraction of deaths is controlled
less than 1%� of the population. In addition, since the
introduction of suppression intervention depends on the
number of the accumulated hospitalized cases, both the
existing infections and the hospitalized infections show
a dynamical period of peaks. Earlier deployment of the
intervention further brings a more frequent change.
With a more intensive suppression (αs = 0.1), the sharp

reductions in infections and hospitalizations narrow the
curve of the dynamics. In addition, a timely intensive sup-
pression can reduce the deaths to 0.5%� of the population
at t0 = 10. Even with a delayed intervention at t0 = 30,
the deaths can be reduced to approximately 1%� of the
population and the curve of hospitalizations decreases
faster. Therefore, to save lives from epidemic, an efficient,
strict suppression should be deployed as early as possible.
The decreasing slopes of the epidemic curves also provide
insightful information for evaluating the effect of different
control measures.

Effect of mitigation intensity αm and the starting time t0
Since a suppression intervention is likely to bring nega-
tive effects on economics and social activities, a gentle
mitigation intervention is feasible to gradually reduce the
basic reproduction number R0. If the ratio of the accu-
mulated existing hospitalized cases during the past week
is larger than some tolerance parameter It , the mitiga-
tion intervention is implemented. To compare different
mitigation measures, we consider αm = 0.7, 0.5, eval-
uating Rt = 1.54, 1.1 ∈[ 1,R0], respectively. In Fig. 5,
we see that with a very gentle mitigation αm = 0.7, the
peak of infections reduces to approximately half of that
with no interventions, and the ratio of deaths reduces to
6%� of the population. Due to the limited role of mitiga-
tion intervention in controlling the epidemic, the timing
of the intervention does not take obvious effects on the
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Fig. 3 The epidemic dynamics of the model (Eq. (1)) with no interventions. The symptomatic infectious (I, black curve), severe infectious (P, blue
curve), hospitalized infectious (H, red curve) and dead (D, green curve) are shown in time

peaks of both infections and deaths. In addition, compar-
ing with the sharp reduction in the curve of the epidemic
under suppression intervention, the curve of the epidemic
under mitigation further flattens and lasts for longer time.
The dynamical period of the peaks of infections is not
observed due to the gentle mitigation in slowing down the
epidemic.
A more intensive mitigation intervention with αm = 0.5

further flatterns the curve of epidemic dynamics with a
reduced peak value. The ratio of deaths is also dramati-
cally reduced to less than half of that with no interven-
tions, even starting at late time t0 = 30. With a more
intensive mitigation, the starting time of the mitigation
measure plays a key role in changing the curve of the
epidemic dynamics. Earlier interventions can efficiently
suppress the epidemic spread and reduce the deaths.

A combined intervention of suppression andmitigation
From the above analysis, we find that with an appropriate
suppression intervention, the epidemic can be efficiently
controlled in short time, while with a gentle mitigation
intervention, the epidemic can be slowed down to some
degree. To further understand the effects of the two types
of interventions on the epidemic, we investigate a strat-
egy of combined intervention of suppression and miti-
gation. Instead of a manual adjustment of the cycle of
the intervention period, we propose a dynamical inter-
vention measure composed of suppression and mitigation
depending on the infection level. If the accumulated num-
ber of the existing hospitalization cases during the last
week is larger than the capacity of medical resources by
a factor, then a strict suppression is deployed to sup-
press the epidemic spread in order to avoid overloading

Fig. 4 Comparison of the epidemic dynamics under suppression interventions with αs = 0.3 (left column) and αs = 0.1 (right column) starting at
different time. a and d t0 = 30; b and e t0 = 20; c and f t0 = 10. Other parameters are the same as Table 1
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Fig. 5 Comparison of the epidemic dynamics under the intervention of mitigation with αm = 0.7 (left column) and αm = 0.5 (right column) starting
at different time. a and d t0 = 30; b and e t0 = 20; c and f t0 = 10. Other parameters are the same as Table 1

the medical resources. If it is larger than some accepted
value, determined by policy-makers, then a gentle, relaxed
mitigation intervention is implemented. By doing so, the
system can dynamically adjust the interventions depend-
ing on the existing hospitalization cases. Based on this
assumption, we propose a strategy of combined interven-
tion by setting parameters as αs = 0.3 (Rt = 0.66 < 1)
and αm = 0.7 (Rt = 1.54 > 1) starting at different time t0.
From Fig. 6, we see that when the intervention is

deployed at delayed time t0 = 30, due to the increased
accumulated number of hospitalized infections, a sup-
pression measure lasting for more than one and a half
months is necessary in order to keep the epidemic under
control, after which a relaxed mitigation measure can
follow. Since the deployment of a relaxed mitigation

measure may cause the increase of hospitalized infec-
tions again, then a strict suppression can be further
imposed. Such a periodic iteration of suppression andmit-
igation proceeds with the hospitalized infections being
controlled under a lower level. The period wave for
the curve of epidemic dynamics is determined by the
intervention time t0, the medical resources Im and the
tolerance parameter It . A timely intervention switching
between suppression and mitigation will lead to a signif-
icant reduction in both the hospitalized infections and
deaths.
Our analysis is different from previous study [13], where

a period of lockdown or quarantine is fixed manually.
By dynamically alternating the intervention with the epi-
demic dynamics, it is possible to keep the infection under

Fig. 6 The epidemic dynamics with a combined intervention of suppression and mitigation for different intervention time t0. a t0 = 30; b t0 = 20; c
t0 = 10. The right column corresponds to the effective reproduction number Rt calculated by the intervention strategies. Parameters are set as
αs = 0.3 and αm = 0.7. Other parameters are the same as Table 1
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control while allowing a sustainable economy as well as
normally social activities.

Real world data analysis
In the following, we explore the impact of intervention
measures on epidemic by analyzing the data of Wuhan
for the COVID-19 epidemic. We are aware that the actual
infection number is unknown and can only be inferred
from other epidemiological observations (e.g., the daily
confirmed cases). Such observations are lagging behind
the infection events due to inevitable time delays between
an individual being infected and reported (e.g., days for
symptom onset). In Ref. [29], a deconvolution method
is proposed to estimate the actual infection cases from
the daily reported confirmed cases with the renewal pro-
cess. Detailed descriptions of the method refer to Ref.
[29]. In this work, we applied this method to infer the
actual infection cases on Jan. 11th, 2020. The daily num-
ber of onset patients inWuhan (i.e. daily confirmed cases)
is obtained from the study by Pan et al. [38]. Then, we
evaluate the infection cases on Jan. 11th as 284. Com-
bined with the information of the ratio of symptomatic
infection over asymptomatic infection fI

1−fI , the number of
asymptomatic infected cases is evaluated as A(0) = 62.
By assuming that the incubation period is 5.1 days, we
can get the number of exposed cases on Jan. 11th from
the number of onset patients on Jan. 16th as E(0) = 359.
The numbers of recovered cases and death cases on Jan.
11th, 2020 are obtained from [31]. The total population of
Wuhan is N = 11081643. The basic reproduction num-
ber is estimated as R0 = 2.2 [34] and accordingly, the
transmission rate is calculated as β0 = 0.7422. With the

available data of beds number in Wuhan, the capacity of
medical resource of Wuhan is calculated as Im = 0.0023
[37]. Other parameters are the same as in Table 1.
Figure 7a shows the epidemic dynamics with no inter-

vention. We see that with no interventions being intro-
duced, it will cause more than ninety thousand deaths in
Wuhan. While in reality, as a part of the national emer-
gency response, public transport were suspended, public
gathering was banned in Wuhan [10, 39]. The measures
taken in Wuhan dramatically reduced the death number
less than four thousand by April 17th, 2020 and the peak
of infections around thirty-two thousand on Feb. 19th,
2020, as shown in Fig. 7b. It is to note that measures such
as lockdown of Wuhan and the construction of mobile
cabin hospitals play a key role in suppressing the epidemic,
which reduce the reproduction number Rt < 1 in very
short time. To compare the model prediction with the real
case, we also perform simulations on the proposed model
with the real data. By setting t0 = 12 on the lockdown
day of Wuhan and αs = 0.3 in Fig. 7c, we see that the
extremely strict intervention will immediately reduce the
reproduction number Rt less than 1 and the deaths will
reduce to less than two hundred and the arrival of the peak
value will be one month earlier than expected. In reality,
the intervention intensity αs depends on several factors,
such as medical resources and the construction of mobile
cabin hospitals. The difficulty of obtaining these resources
may hinder the control of the epidemic.
Next, we investigate what would happen if dynamical

intervention were deployed in Wuhan, as shown in Fig. 8.
Depending on the intervention time t0, alternative inter-
ventions are dynamically deployed. For instance, with a

Fig. 7 The epidemic dynamics in Wuhan, China from Jan. 11th, 2020 to July 1st, 2020 under different situations. a No interventions; b real data; c
suppression intervention with t0 = 12 and αs = 0.3. The medical resources factor is c = 1. The lockdown period is indicated by the blue arrow
within the dashed lines
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Fig. 8 The epidemic dynamics in Wuhan with the combined interventions. a t0=40; b t0=30; c t0=12. The right column shows the effective
reproduction number Rt under the combined intervention with αs = 0.3 and αm = 0.7. The factor for medical resources is c = 1. Other parameters
are the same as Table 1

delayed time t0 = 40 (Fig. 8a), the number of infections
will increase more than fifteen thousands, consequently,
a strict suppression has to be deployed for more than
40 days in order to efficiently control the epidemic, after
which a gentle mitigation and a strict suppression alter-
natively follow. If the intervention start by 10 days earlier
(Fig. 8b), the peak value of infections can be reduced to
less than fifteen thousands. Then, a shorter suppression
followed by a shorter mitigation alternatively controls the
epidemic. Finally, if the intervention were deployed at
early time with t0 = 12 (Fig. 8c), the arrival of the peak
value of infections will be delayed and the epidemic is
completely controlled periodically.

In order to understand the impacts of the detection rate
on the epidemic, we carried out simulations with Wuhan
data for different choices of ω as ω = 1

2.7 ,
1
8.1 , respectively,

in Fig. 9. With no interventions, we see that it will cause
less than two hundred thousand severe infections and
more than three hundred thousand hospitalized infec-
tions (Fig. 9a). With the delay of detection, e.g., ω = 1

8.1 ,
the number of severe infections is doubled while the num-
ber of the hospitalized infections is reduced. In addition,
the arrival of the peak infection will be delayed for one
month, as shown in Fig. 9d.
Next, we observe the impacts of the detection rate ω

on the epidemic dynamics in Wuhan when the combined

Fig. 9 The epidemic dynamics in Wuhan for different choices of ω. ω = 1
2.7 (left column), and 1

8.1 (right column) a and d No interventions; b and e A
combined intervention at t0 = 12; c and f The effective reproduction number Rt under the combined intervention with αs = 0.3 and αm = 0.7. The
factor for medical resources is c = 1. Other parameters are the same as Table 1
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intervention strategy is involved at t0 = 12, as shown in
Fig. 9b and e. With a higher detection rate (ω = 1

2.7 ), the
number of severe infections reaches less than five thou-
sand and shows a periodical wave under control (Fig. 9b).
In such a situation, the intervention measure of suppres-
sion frequently alternates with mitigation (Fig. 9c). With
the decrease of the detection rate ω (e.g., ω = 1

8.1 ), severe
infections are hard to be detected and their number is
doubled to ten thousand (Fig. 9e). Since the hospitalized
infections are decreased, consequently, a longer period of
suppression and mitigation is necessary in order to keep
the epidemic under control (Fig. 9f ).

Discussion
So far, although several vaccines for the COVID-19 are
ready to deploy, non-pharmaceutical interventions are
still effective actions to control the COVID-19 pandemic.
Therefore, how to implement appropriate interventions
for the next stage is fundamentally important for the con-
trol of epidemic while sustaining normally social life. It is
interesting to point out that extremely strict interventions,
such as lockdown and quarantinemeasures, have substan-
tial effects on changing the epidemic dynamics. With a
strict suppression strategy, the number of deaths and that
of infections can be reduced to a lower level while long-
term measures may have negative impacts on economics
and social life.
To solve such a dilemma, we propose a strategy of

combined intervention of suppression and mitigation,
which dynamically alternates according to the epidemic
dynamics. The deployment of suppression interventions
is assumed to be relevant with the capacity of medical
resources, that is, if the accumulated number of hospi-
talized infections during a given period is close to the
capacity of medical resources with a factor, then a strict
suppression will be implemented to avoid overloading
medical resources. If the number of hospitalized infec-
tions is more than some tolerance level, a relaxed mitiga-
tion, such as social distancing and hygiene measures, may
be sufficient enough to control the epidemic. Depend-
ing on the tolerance parameter, the mitigation strategy
can be dynamically switched on or off. Our study shows
that early deployment of a suppression intervention will
shift the peak value to an earlier date. While timely imple-
ment of a mitigation intervention will flatten the epidemic
curve with a prolonged period. With a strategy of com-
bined intervention of suppression and mitigation, the epi-
demic is contained with an acceptable level, where the two
measures alternatively interchange with different periods.
Such a dynamical deployment of interventions is able to
keep the trade-off between economics and epidemic, and
take less negative impacts on social life. We believe that
such an approach may be adopted as a strategy until the
available of effective vaccine.

Our study has certain limitations as well. In reality,
the periodic waves of infections in different nations show
diverse features, e.g. peaks and periods, depending on how
the prevention measures are deployed. Using a simplified
Heaviside function alternating between two interventions
is not sufficient enough to reflect such a complicated situ-
ation in reality. Instead, a non-linear function is expected
to offer a solution. Consequently, the present analysis
and interpretation of the results are limited to a model-
ing study for such a phenomenon of periodic waves of
infections.

Conclusions
By analysing the data for countries in battling against the
COVID-19 pandemic, we found a periodic-like wave in
the number of infections in several countries, which indi-
cates a clear relationship between the infection and the
deployed interventions when facing the COVID-19 epi-
demic. The present study explores the combined impacts
of suppression and mitigation measures on the epidemic.
The findings are as follows: (a) depending on a city’s
capacity of medical resources and its tolerance on infec-
tious population, a combined intervention of suppression
and mitigation can efficiently reduce the peak of infec-
tions and negative effects on social lives and economics;
(b) an immediate, strict suppression measure is highly
efficient in reducing the number of infections and brings
less losses on people’s lives, as occured in Wuhan, China;
(c) a delayed intervention has to be accompanied by a
longer suppression followed by a shorter mitigation alter-
natively, which is expected to balance the loss of people’s
lives and that of economics for a long-term control of the
COVID-19.
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