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Abstract. Boolean networks (BNs) provide an effective modelling tool
for various phenomena from science and engineering. Any long-term
behaviour of a BN eventually converges to a so-called attractor. Depend-
ing on various logical parameters, the structure and quality of attractors
can undergo a significant change, known as a bifurcation. We present
a tool for analysing bifurcations in asynchronous parametrised Boolean
networks. To fight the state-space and parameter-space explosion prob-
lem the tool uses a parallel semi-symbolic algorithm.
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1 Introduction

Boolean networks (BNs) provide an effective mathematical tool to model compu-
tational processes and other phenomena from science and engineering. BNs rep-
resent a generalisation of other relevant mathematical models, which appeared
previously as cellular automata (CA), suggested by Wolfram [39] for computa-
tion modelling, or formal genetic nets [24] and Thomas networks [37], proposed
for gene regulatory networks. This gives an idea of the versatility of BNs in dif-
ferent applications (mathematics, physics chemistry, biology, ecology, etc.) and
engineering (computation, artificial intelligence, electronics, circuits, etc.).

The development of formal methods for analysis and synthesis of Boolean net-
works has recently attracted a lot of attention [11,18,20,28,36]. In this paper, we
are primarily interested in BN models for computational systems biology [29]. In
general, biological processes are emerging from complex inter- and intra-cellular
interactions and they cannot be sufficiently understood and controlled without
the help of powerful computer-aided modelling and analysis methods [38]. BNs
serve an important purpose of describing overall interactions within a living cell
at an appropriate level of abstraction and they provide a systematic approach
to model crucial states of cell dynamics — so-called phenotypes [22].
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The level of abstraction provided by BNs makes them an important tool for
design of targetted therapeutic procedures such as cell reprogramming [36] based
on changing one cell phenotype to another, allowing regeneration of tissues or
neurons [21]. Since phenotypes are determined by long-term behaviour of bio-
logical systems, fully automatised identification of phenotypes by employing BN
models is a necessary step towards the future of modern medicine. Owing to the
fact there is a continuous lack of sufficiently detailed (mechanistic) information
on biological processes, there is definitely a need to work with models involving
uncertain (or insufficient) knowledge. In this paper, we present a unique tool that
makes a significant contribution towards fully automatised analysis of long-term
behaviour of BN models with uncertain knowledge.

We start with giving some intuition on BNs. A BN consists of a set of Boolean
variables whose state is determined by other variables in the network through
a set of Boolean update functions assigned to the variables (different update
functions can be assigned to different variables) and regulations placed on them.
If at each point of time all the update functions are applied simultaneously we
speak about synchronous dynamics, if only one of the update functions is chosen
non-deterministically to modify the corresponding Boolean variable, we speak
of asynchronous dynamics. In this paper we consider asynchronous Boolean net-
works only.

In real-world applications, the update functions for some of the variables are
typically (partially) unknown and are represented as logical parameters of the
network. We speak of parametrised Boolean networks [40] in this case. If all the
parameters are fixed to a concrete Boolean function, a parametrised BN turns
into a (non-parametrised) BN.

The long-term behaviour of a BN, starting from an initial state, has three
possible outcomes. Briefly, the first situation is when the network evolves to
a single stable state. Such states are the fixed points or point attractors or
stable states. The second situation is that the network periodically oscillates
through a finite sequence of states—an oscillating attractor or attractive cycle
(the discrete equivalent of a limit cycle in continuous systems). The third case is
what we call a disordered attractor (or chaotic oscillation [32]), an attractor that
is neither stable not periodically oscillating and in which the system may behave
unpredictably, due to the nondeterminism of the asynchronous semantics of BNs.
Attractors are particularly relevant in the context of biological modelling as they
are used to represent differentiated cellular types or tissues (in the case of fixed
points) [2] and biological rhythms or oscillations (in the case of cycles) [17].

The set of network states that converge to the same attractor forms the
basin of attraction of that attractor [7]. Attractors (and their basins) are dis-
joint entities and the state space is compartmentalised by imaginary “attractor
boundaries”. The entire dynamics of a Boolean network can be represented as a
state transition system in which the trajectories from initial states are depicted,
revealing the basins of attraction and associated attractors. We call such a rep-
resentation the attractor landscape of the network [13].

In parametrised BNs the attractor landscape changes as the parameters are
varied. Some of these changes may lead to a qualitatively different landscape
(defined, e.g., in the count and/or quality of attractors). Such a qualitative
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change is called a bifurcation and the values of parameters for which it occurs
are called bifurcation points. Determining (all) bifurcation points for a network,
called attractor bifurcation analysis, is an important task in the analysis of
BNs [4].

While BN models are intuitive, mathematically simple to describe, and sup-
ported by analytical methods [12], analysis of large models appearing in real cases
is severely limited by the lack of robust computational tools running efficiently on
high-performance hardware. Several computational tools have been developed for
construction, visualisation and analysis of attractors in non-parametrised BNs.
Amongst them, the established tools include ATLANTIS [34], Bio Model Ana-
lyzer (BMA) [6], BoolNet [31], PyBoolNet [27], Inet [7], The Cell Collective [23],
CellNetAnalyzer [25], and ASSA-PBN [30]. Another group of existing tools tar-
gets the parameter synthesis problem for parametrised BNs. The most prominent
tools here are GRNMC [20], GINsim [10] (indirectly through NuSMV [14]), and
TREMPPI [35]. In general, parameter synthesis tools can be used to identify
parameters producing a specified long-term behaviour (depending on the logics
employed), however, they do not provide a sufficient solution for identification
and classification of all attractors in the system. Finally, it is worth noting that
there have recently appeared several tools aiming at control of cell behaviour
through BNs (i.e., driving a cell into the desired state). A well-known represen-
tative of these tools is ViSiBooL [33].

To the best of our knowledge, none of the existing tools is capable of perform-
ing attractor bifurcation analysis in parametrised models. Bifurcation analysis
has been recently recognised as a fundamental approach that provides a new
framework for understanding the behaviour of biological networks. The ability
to make a dramatic change in system behaviour is often essential to organism
function, and bifurcations are therefore ubiquitous in biological networks such
as the switches of the cell cycle. The tool AEON is supposed to fill in the gap
in the existing tools supporting analysis of Boolean network models.

AEON builds on methods and algorithms for asynchronous parametrised BNs
we have introduced in our previous research [1,3-5]. To deal with the state-space
and parameter-space explosion problem, the tool implements a shared-memory
parallel semi-symbolic algorithm. The results the tool provides to the user can
be used for example to the design of “wet” experiments, better understanding
of the system’s dynamics, or to control or re-program the system. As attractors
model phenotypes, one of the most urgent needs for computer aided support,
such as AEON can provide, is in applications in therapeutic innovations.

We believe that attractor bifurcation computed by AEON will shift the cur-
rent technology toward a comprehensive method when integrated with tools
aimed at control or other analysis methods.

2 Attractors in Parametrised Boolean Networks

In this section, we define precisely the problem of attractor bifurcation analy-
sis. We also give an overview of the necessary technical background needed to
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describe the algorithmic solution and its implementation. More details can be
found in [4].

A Boolean network (BN) consists of a finite set of state variables V (whose
elements we denote by A, B, ...), a set of regulations R C V x V, and a family
of Boolean update functions F = {Fy | A € V}. If (B,A) € R, we say that B is
a regulator of A. For each A € V, we call the set C(A) = {B € V| (B,A) € R} of
its regulators the contert of A. A state of the BN is an assignment of Boolean
values to the variables, i.e. a function ¥V — {0,1}. The type signature of each
update function F} is given by the context of A as Fy : {0,1}¢®) — {0 1}.

In Boolean networks, one often describes various properties of the network
regulations. Here, we focus on three most basic types of regulation: We say that
(A,B) € R is observable if there exists a state where changing the value of A
also changes the value of Fg. In the tool, edges that might be non-observable are
drawn using dashed lines.

We say that a regulation (A,B) € R is activating if by increasing A, one
cannot decrease the value of Fz. Symmetrically, the regulation is inhibiting if by
increasing A, one cannot increase the value of Fp. In the tool, activating edges are
denoted using green colour and sharp arrow tips, inhibiting edges are denoted
using red colour and flat arrow tips, and edges that might be neither activating
nor inhibiting are denoted using grey colour.
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Fig. 1. Illustration of a (parametrised) BN and its state transition graph. (Color figure
online)

Let us now consider an example of a BN with V = {A,B, C}, the regulations
R as denoted in Fig.1 (left) and the update functions: F = AV —-BV —C, Iy =
AV C, Fo = —B. We can see that all regulations are observable and the colour
(and shape) of the arrows respects the properties of activation and inhibition,
e.g. (B, A) is an inhibition, because by increasing the value of B, we cannot increase
the value of Fj.

The semantics of a Boolean network is given as a directed state transition
graph. The state space of the graph is the set of all possible assignments of
Boolean values to the variables, i.e. {0,1}Y. We consider the state of the Boolean
network to evolve in an asynchronous manner, i.e. each variable is updated
independently. We thus add a transition s — t if s # ¢ and if there exists
a variable A such that t(A) = Fy(s) and #(X) = s(X) for all X € V \ {A}. We
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also use the notation —* to denote the reflexive and transitive closure of —,
i.e. s —* t means that the state ¢ is reachable from the state s.

The semantics of the BN from our example is illustrated in Fig. 1 (middle).
The states are represented as Boolean triples denoting the values assigned to the
variables A, B, and C, respectively.

The long-term behaviour that we are interested in is captured by the notion
of attractors. In discrete-state systems, attractors are represented by terminal
strongly connected components (TSCCs) of the graph. A TSCC is a maximal
set of states S such that for all s, t € S, s —* t, and for all s € S, s — t implies
tes.

To classify the attractors of a given BN, we consider three primary kinds of
long-term behaviour:

— stability (©) We say that an attractor is stable, if it consists of a single state,
in which the network stays forever.

— oscillation () We consider an attractor to be oscillating if it is a single cycle
of states. The size of such cyclic attractor is often referred to as its period.

— disorder (=) Finally, an attractor is said to be disordered if it is neither stable
nor oscillating. This means that although the network will stay in the attrac-
tor forever, it will behave somewhat unpredictably due to nondeterminism.

The long-term behaviour of a BN is then characterised by a multi-set over the
universe of the three behaviours {®, O, =}. We call such multi-set a behaviour
class and we denote the set of all possible behaviour classes €. In our example,
the BN has only one attractor, and this attractor is stable; it consists of the
single state 110, see Fig. 1 (middle).

To deal with the fact that the update function family F might not be fully
known, we extend the Boolean network with a set of logical parameters which
determine the exact behaviour of each update function. These parameters have
the form of uninterpreted Boolean functions, which can be used as part of the
update functions’ description.

Formally, we assume a finite set of parameter names 3, whose elements we
denote by P, Q, ...; we assume that every P € P has an associated arity ap
meaning that P is an ap-ary uninterpreted function over Boolean values. Note
that nullary uninterpreted functions are also allowed and can be seen as sim-
ply Boolean parameters. We call an interpretation that assigns to each P € I3
an ap-ary Boolean function a parametrisation. We usually work with a subset of
parametrisations, called the valid parametrisations and denoted by P.

A parametrised Boolean network consists of a set of variables V), a set of reg-
ulations R C V xV as in the non-parametrised case, a set of parameter names ‘L3,
its associated set of valid parametrisations P, and a family of parametrised update
functions § = {Fy | A € V}. Each F) is written as a Boolean expression that
may contain the uninterpreted functions of .

Let us now modify the previous example so that we view the BN from Fig. 1
(left) as a parametrised one with the following update functions: F, = AV—-BV—C,
ﬁB = P(A,C), ﬁc = —B, where P is a parameter name with arity 2. The set
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of valid parametrisations is constrained symbolically using the description of
activations and inhibitions in Fig. 1 (left). In this case, there are only two possible
parametrisations p; (denoted by #) and ps (denoted by ¢). The parametrisation
p1 assigns to P the function (z,y) — x V y, while ps assigns to P the function
(z,y) — xAy. Note that other assignments would violate the description, namely
that both (A,B) and (C,B) are observable and activating.

By fixing a concrete parametrisation p € P, we can interpret all the param-
eter names and thus transform the parametrised update functions into non-
parametrised ones, obtaining a (non-parametrised) BN, called the p-instantiation
of the parametrised BN. We then generalise the definition of attractors to
parametrised BNs, saying that a set of states S is an attractor in parametri-
sation p € P if S is an attractor in the p-instantiation.

The asynchronous semantics of a parametrised BN can be described using an
edge-coloured state transition graph. The transitions of this graph are assigned
a set of so-called colours—in our case, the colours correspond exactly to the
parametrisations. The states are given as in the non-parametrised case. We then
say that s — t if there exists a parametrisation p such that s — ¢ in the p-
instantiation. The set of colours of s — t is the set of all such parametrisations.
In our example, the graph is depicted in Fig.1 (right; the edges are annotated
with &, @, or both).

Problem Formulation. We now formulate the problem of attractor bifurcation
analysis of parametrised BN as follows: Given a parametrised BN with a set of
valid parametrisations P, compute the bifurcation function A : P — € that
assigns to each parametrisation p the behaviour class of the p-instantiation of
the given parametrised BN.

In our example, the function .4 maps p; (#) to {®} (one stable attractor
{110}) and p2 (#) to {O} (one oscillating attractor {100,101,111,110}).

3 Attractor Bifurcation Analysis with AEON

The workflow of our approach, as implemented in the tool, is illustrated in Fig. 2.
As an input, we take a parametrised BN including a graphical description of the
regulations. The tool computes its asynchronous semantics as a symbolic edge-
coloured graph represented using BDDs [8]. This is then used as an input to
a parallel TSCC detecting algorithm based on [1], which extracts the attractors
on the fly. Each attractor is classified as one of the three above-mentioned types
and this information is used to incrementally build the bifurcation function A,
also represented symbolically using BDDs. More details about the algorithm as
well as the classification procedure can be found in [4].

The bifurcation function induces a partitioning of the parameter space in
which two parametrisations are equivalent if their p-instantiations have the same
behaviour class. This partitioning is presented to the user as a list of behaviour
classes together with the cardinality of the respective parameter space partitions,
see Fig.3. The user can select one of these classes and obtain a witness BN,
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Fig. 2. The workflow of the AEON tool.

i.e. a p-instantiation of the parametrised BN where p is one of the corresponding
parametrisations. Finally, the tool also provides the whole bifurcation function
encoded as BDDs—this output can be used for post-processing by further tools.

4 Implementation

The tool architecture consists of two components as seen in Fig. 4: the compute
engine, and a web-based, user-facing GUI application (the client). The engine
is responsible for the actual computation and acts as a web server to which the
client establishes a connection. Using web-based GUI enables portability across
different platforms, and the separation of the user interface from the compute
engine enables the user to run the computation remotely on high-performance
hardware.

Bifurcation Function Cycb Dap

Ago —i CycE
YE —

Behavior
class
® ®
[OXO]
o®
JOROXO}
E=20]

[XCXO]

= disorder | © oscillation | @

Witness
count

73420209540
21083142067
2854200216
724781245
132356778
11644584
947608
20874

Witness

Witness
Witness
Witness
Witness

Witness
Witness

Witness

stability

\ Cych
Rux
Rb P ARV

Wee

CycB

~

—

— E2F

Notch

Fig. 3. Screenshot of the tool displaying a parametrised BN together with the bifur-
cation analysis results.
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One of the responsibilities of the client is to provide a user friendly, multi-

platform editor of parametrised BNs, since no popular BN editors currently
support parameters. Architecturally, the client consists of several modules:

Live Model: In-memory representation of the currently displayed model.
Compute Engine Connection maintains the communication between the
client and the compute engine.

Network Editor: An interactive drag-and-drop editor for drawing the struc-
ture of the BN (variables, regulations). The implementation is based on the
popular Cytoscape [19] library for graph visualisation and manipulation.
Parametrised BN Editor: The update functions can be modified in a sep-
arate parametrised BN editor tab. This module is also responsible for basic
integrity checks and static analysis of the BN, some of which is asynchronously
deferred to the compute engine.

Import/Export facilitates serialisation and transfer of the BNs to other tools.
We currently provide a compact text-based format specifically designed for
AEON and a universally adopted XML-based SBML level 3 qual standard [9].

Client (e | ] Compute Engine
Param. BN 2
8 % Editor g 1ib-PBN 1ib-BDD
3 A Network g . i i
Editor K 2
&
. 5 \
5 @
&
s I £
K Import Live 8 TSCC TSCC
& Export Model 3, Classifier Search
(] ]
> 5
. [

Fig. 4. Overview of the tool architecture showing the main components of the GUI
client and the compute engine. Arrows represent the general flow of information
between individual components.

The compute engine is written entirely in Rust to ensure fast and reliable

operation (as well as easy portability). The functionality of the engine is split
into separate libraries to allow later reuse:

1ib-BDD: Our own robust, thread-safe, scalable Rust-based implementation
of BDDs.

1ib-PBN: A general purpose library for working with parametrised BNs.
It provides serialisation to and from the AEON text format as well as
SBML. Most importantly, it provides a parameter encoder that maps sets
of parametrisations of the parametrised BN to BDDs. Using this encoder,
the library implements an on-the-fly generation of the edge-coloured state
transition graph corresponding to the asynchronous semantics of the given
parametrised BN.
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— TSCC Search algorithm implements the component search algorithm as pre-
sented in [1]. The algorithm uses parallel reachability procedures as well as
asynchronous processing of independent parts of the state space to fully
utilise available CPUs and thus speed up the computation. The algorithm
is extended with appropriate cancellation points so that the user can stop the
computation when needed.

— TSCC Classifier classifies and stores information about the discovered com-
ponents. Specifically, for each non-empty behaviour class, we store a BDD
representation of the parametrisations that result in this type of behaviour.

Aside from the general overview of the tool, we would like to highlight two
additional aspects of AEON:

On-the-Fly Results: The attractors are discovered gradually. At any time during
the computation the user may inspect the partial result, i.e. the bifurcation
function computed so far. Although this is not the final outcome, such partial
information can still prove useful, e.g. if unexpected attractor behaviour is found
and the update functions of the model need to be adjusted.

SBML with Parameters: In our implementation, when dealing with fully instan-
tiated networks, we always output valid SBML. Unfortunately, the current
SBML standard does not allow parameters or uninterpreted functions inside the
update function terms. In fact, the update functions in SBML are represented
using MathML! which in general allows arbitrary mathematical expressions, but
its use in SBML is restricted. To export parametrised BNs, we intentionally dis-
regard the restriction and our tool produces MathML formulae with parameters.
Note that existing SBML implementations can be easily extended to also support
parametrised BNs, since they already contain MathML parsers.

Both the client? and the compute engine® are released as open source under
the MIT License. Furthermore, an online version of the client is available at
https://biodivine.fi.muni.cz/aeon/, including links to pre-built binaries of the
computation engine for all major OSes.

5 Evaluation

We evaluated the efficiency and applicability of AEON tool on a set of real
biological models taken from the GINsim model database [10], ranging from
small toy examples to large real world models. The experiments were performed
on a 32-core AMD Ryzen workstation with 64 GB of memory. All tested models
are available in AEON source code repository (see footnote 3) as benchmark
models.

! https://www.w3.org/TR/MathML3/.
2 https://github.com/sybila/biodivine-acon-client.
3 https://github.com /sybila/biodivine-aeon-server.
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The results are reported in Table1. In general, the results show that the
combination of symbolic representation of parametrisations and shared-memory
parallel exploration of the state space allowed us to handle realistic BNs with
large parameter spaces and non-trivial number of attractor bifurcations in rea-
sonable time. Finally, let us note that the findings provided by AEON are in line
with known properties of these biological models and even have a potential to
provide new insights on the modelled biological processes.

Table 1. The evaluation results. Number of classes refers to the number of distinct
behaviour classes discovered by the algorithm. The times in the form minutes:seconds
refer to total runtime on 1 and two 32 CPU cores respectively.

Model name State Param. space size | No. of classes | Time Time
space size (1cpu) | (32cpu)

Asymmetric | 25 ~218 11 0:05.62|0:03.39

Cell Division

Budding Yeast | 2° ~218 6 0:35.22(0:02.93

(Orlando)

TCR 210 ~2M 17 0:26.61|0:04.42

Signalisation

Drosophila g4 ~236 8 27:48.1(1:42.28

Cell Cycle

Fission Yeast |2'° ~231 201 25:20.9|4:00.29

Cell Cycle

Mammalian | 2'° ~2 176 38:39.6 8:02.14

Cell Cycle

Budding Yeast | 2'8 ~22%6 7 Timeout |52:28.1

(Irons)

In particular, in the case of the TCR Signalisation model, the authors have
shown in [26] that their non-parametrised model produces seven possible stable
states and one non-trivial attractor. By using AEON, we were able to confirm
their findings as well as analyse a fully parametrised version of the model, finding
sixteen other possible behaviours. Interestingly, in this model, all discovered
seventeen behaviour classes consist of exactly eight attractors.

For the Budding Yeast (Orlando) model [16], the authors state that for several
different parametrisations, the model always reaches a stable state (based on
simulation). Our analysis performed with AEON has confirmed that the original
instantiation of the model has indeed a single stable attractor. Moreover, we have
found that in the fully parametrised version of the model, almost ninety thousand
instantiations have a single stable attractor. Additionally, we have also found
there is almost an equal number of instantiations producing disordered attractors
and also several oscillating attractors. AEON is capable to generate witnesses
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for all of these situations thus opening the biological questions targeting the
existence of the corresponding phenotypes in nature.

The Fission Yeast Cell Cycle model [15] is known to contain one primary
stable attractor as well as eleven artificial attractors. It is known that various
multi-valued modifications of the original model exist that remove these arti-
ficial stable attractors from the model while preserving the only single stable
attractor [16]. By parametrising the model adequately and applying our method
using AEON, we have discovered that a large portion of the parameter space of
the model also produces a single stable attractor.
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