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A B S T R A C T

Many applications in biomedical imaging have a demand on automatic detection of lines, contours, or
boundaries of bones, organs, vessels, and cells. Aim is to support expert decisions in interactive applications
or to include it as part of a processing pipeline for automatic image analysis. Biomedical images often suffer
from noisy data and fuzzy edges. Therefore, there is a need for robust methods for contour and line detec-
tion. Dynamic programming is a popular technique that satisfies these requirements in many ways. This
work gives a brief overview over approaches and applications that utilize dynamic programming to solve
problems in the challenging field of biomedical imaging.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Dynamic Programming (DP) introduced by Richard Bellman [1] is
a widely used technique to solve optimization problems in a simple
and efficient way. In computer vision, Amini et al. [2] showed on the
example of active contours how DP can be utilized to perform energy
minimization. Furthermore, DP was particularly used to detect lines
in images [3] especially in the field of road detection in satellite
images for example by Merlet and Zerubia [4], while Buckley and
Yang [5] applied DP to solve a shortest path (SP) problem.

In biomedical imaging DP is a popular technique to find contours,
lines and boundaries of organs, bones, vessels and cells. This sur-
vey focuses on applications in the field of biomedical imaging in
particular on the detection and tracking of contours and structures
by means of DP.

We organize our work as follows. In Section 2 we motivate this
work by giving a short overview of issues in biomedical imaging.
Then, in Section 3 we introduce common problems solved by DP and
show examples of applications in Section 4. Finally, we conclude our
work in Section 5.

* Corresponding author at: Department of Mathematics and Computer Science,
University of Münster, Münster, Germany.

E-mail addresses: kathrin.ungru@uni-muenster.de (K. Ungru),
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2. Motivation

In biomedical imaging many computer vision problems involve
the detection of objects in pictures acquired through the vari-
ous types of imaging techniques. A goal is to help physicians to
automatically detect, track and analyze structures in biomedical
images, to reduce the expert’s workload, increase the productivity,
and improve the accuracy of the diagnosis.

2.1. Application Overview

An example is the detection of the endocardial border of the
heart [6–9] and its movement [10–12] that gives valuable knowledge
(visually and quantitatively) about the heart function. Also artery and
vessel boundary detection, e.g. presented in [13–21] is of great inter-
est, where the detection and evaluation of vessel boundaries and
vessel thickness (intima-media) is a marker to detect stenosis [16]
or helps in the diagnosis of atherosclerosis [15,19]. The work in [22]
proposes a technique to access the tree of fine vessels to determine
their progress and density. Beside investigations in the field of blood
supply, biomedical imaging is used to detect every kind of tumors,
organs, bones, and even cells. The works in [23–26] propose methods
to detect the ribs, spines and bones or specific parts of the spine,
while [27,28] focus on tumor and cancer detection. The segmenta-
tion of microscopic cells includes approaches, where cell borders are
detected fully automatically, e.g. [29–31], or where a single cell is

http://dx.doi.org/10.1016/j.csbj.2017.02.001
2001-0370/ © 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.csbj.2017.02.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.csbj.2017.02.001&domain=pdf
http://www.elsevier.com/locate/csbj
http://creativecommons.org/licenses/by/4.0/
mailto: kathrin.ungru@uni-muenster.de
mailto: jiang@uni-muenster.de
http://dx.doi.org/10.1016/j.csbj.2017.02.001
http://creativecommons.org/licenses/by/4.0/


256 K. Ungru, X. Jiang / Computational and Structural Biotechnology Journal 15 (2017) 255–264

segmented in a preselected ROI as done in [32,33]. Finally, there are
various applications that utilize DP in ophthalmology to examine
parts of the eye [34–36] and in the field of mammography to detect
breast cancer [37–41].

2.2. Method Overview

Imaging modalities, e.g. MRI, ultrasound, X-ray, and microscopy,
not only differ from their fundamental physical idea, but also in
terms of usage (with contrast marker or without; invasive or not),
application (2D or 3D; still images or image sequences), and the
object or body part of interest. There exist a wide range of techniques
and applications to detect and analyze their content. Some appli-
cations work totally automatically and some need user interaction.
Most of these approaches have to deal with difficulties like inhomo-
geneities in the intensity of the targeted structures, strong noise or
other artifacts depending on the acquisition system.

In terms of the described problems and the demand on a spe-
cific robustness, DP draws particular attention in biomedical imaging
as it always finds a global optimum and it outputs a connected
path despite of the presence of inhomogeneities and holes in the
underlying image features. The various studies, introduced in this
section, have in common to use DP in numerous ways.

Specific applications evoke specific questions. Most of the
reviewed works try to find the shortest path to detect a contour
or boundary in the image by minimizing some energy function by
means of dynamic programming. Finding a contour or line by DP,
for instance in ultrasonic data, demands techniques to properly
carve out edges in the presence of noise and artifacts. This requires
appropriate filtering and noise reduction such as proposed by Jia et
al. and Lee et al. [26,27] or the integration of high-level information
and prior knowledge to overcome uncertainties as approached by
Oost et al., Koh et al. and Ungru et al. [9,23,42].

Another application with specific requirements are circular
objects like cardiac and vascular borders in ultrasound and MRI
[10,11,13] or cells in microscopic images [29,31-33]. Also the
detection of the mammographic mass in a preselected ROI [37–41]
or the segmentation of the optic disk in retinal fundus images of
the eye as done in [36] aims to find circular structures by means
of DP. These applications arise the need of finding a circular path
with minimal cost: a circular shortest path (CSP). A CSP beside the
optimality constraint demands the closedness of the contour as fur-
ther restriction and is generally discussed by Sun and Pallottino [43]
and Appleton and Sun [44] and applied on biomedical images among
others in [8,10,11,13,24,29,33,37-39].

The evaluation of vessel border thickness [15,17-19], spine
boundaries [25,45], ribs [24], or retinal [35] and corneal layers [34]
necessitates to detect structures with two or more nearly parallel
contours. In general, the set of simultaneous paths with the lowest
cost in total is referred to as multiple shortest path (MSP). Neverthe-
less, it is important to note that not all of the works above search for
an optimal solution for this problem.

A special type of shortest paths are active contours. Active
contours are popular in biomedical imaging and can be implemented
with DP as shown by Amini et al. [2]. Active contours usually need
an initial contour, which is obtained by user interaction, random
generation, or a contour of a previous frame (in image sequences).
This initial contour is attracted iteratively through some forces to a
local minimum as originally proposed by Kass et al. [46]. While active
contours by Kass et al. are modeled as continuous curves, Amini
et al. introduce a discrete DP-based optimization approach, where
contours are represented by some control points connected via
splines. A non-iterative approach of deformable contours is proposed
in [10,11] to attract a contour (represented by a few control points)
to the left ventricular border in MRI and track it over time. Other

approaches like [19,25] mainly use shape constraints instead of ini-
tial points to diminish the search space to arrange the contour points
and attract it to an object border. Deformation and tracking over time
is also examined in the approach of Pham and Doncescu [28].

A further application of DP in biomedical imaging is proposed
in [22], where a vascular tree is detected and represented as a
graph by means of a region growing technique based on DP. This
approach is the only reviewed approach that is not based on energy
minimization.

3. Problems and Solutions

As discussed in Section 2 the introduced applications can be
categorized into a few problems. Most of them can be summarized as
energy minimization tasks. A transfer of these problems into graphs
allows us to simplify and generalize the description of the vari-
ous reviewed approaches. An optimal path, hence the path with the
lowest cost in a graph is also known as shortest path. This section
gives a brief overview of shortest path problems solved by DP and
introduces the most common methods (Table 1).

3.1. Solving Shortest Path Problems by Dynamic Programming

A graph is a structure that contains nodes connected by edges. A
path in a graph is a connection of several nodes via edges. Each edge
can be associated with a specific weight, also known as cost. Then,
finding the shortest path in a graph means finding the path with the
lowest cost sum of all edges in the path. According to Felzenszwalb
and Zabih [47] there are two forms of shortest path problems. The
single-source type searches the shortest path from a source point s to
each of the remaining nodes while the all-pairs search tries to find
the shortest path between each possible pair of nodes in a graph. The
mentioned shortest path problems can be solved by generic shortest
path algorithms such as proposed by Dijkstra [48]. For an overview
we refer to [49].

The single-source shortest path is the most frequently used
type and can be efficiently solved by DP. Dynamic programming
sequentially solves the shortest path problem by splitting it into sim-
pler subproblems. Starting at node s, at each state i = 1, . . . , n, the
algorithm evaluates the shortest path back to s. Because DP works
sequentially, it can only find shortest paths in a directed acyclic graph
(DAG) that is exemplary illustrated in Fig. 1.

A shortest path search is often utilized for discrete energy min-
imization as shown in [5]. A common description of energy in
computer vision consists of two terms: energy based on observations
in some underlying data and energy of some prior, including con-
straints of smoothness:

E = Edata + Eprior (1)

Table 1
Efficiency of the main methods.

Method

SP O(k2n)
Matrix-based approaches

– SP O(kmn)
– MSP O(kpmpn)
– CSP - MSA O(km2n)
– CSP - IPA O(kmn̂), n̂ > n
– CSP - MBTA O(kmn)

Active contours
– ordinary approach O(k3n)
– circular contours, MSA O(k4n)
– circular contours, randomly fixed neighbors O(k3n)
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Fig. 1. Possible paths (x1, x2, . . . , xn) in a graph from node s to node t for the case k = 4.

Let (x1, x2, . . . , xn) be an arbitrary path of n elements. Then, the energy
of this path is defined as:

E = E(x1, x2, . . . , xn)

The energy of the optimal path (x∗
1, x∗

2, . . . , x∗
n) is obtained by

minimizing E:

min(E) = E(x∗
1, x∗

2, . . . , x∗
n)

In accordance to formula (1) the energy of a discrete path can be
described as follows:

E(x1, x2, . . . , xn) =
n∑

i=1

c(xi) +
n∑

i=2

d(xi−1, xi) (2)

where the data term c(xi) is the cost of the path passing through xi

and the smoothness term d(xi−1, xi) is the cost of the partial path
between xi−1 and xi. c(xi) can be, e.g., a feature computed on the basis
of image intensity data, while d(xi−1, xi) is typically a geometrical
cost where specific neighborhoods can be penalized in terms of their
position to each other, and thus is based on some prior knowledge of
the path characteristics.

To perform DP, the energy evaluation of a path is split into simpler
subproblems:

E(x1) = c(x1)

E(x1, x2) = E(x1) + c(x2) + d(x1, x2)

E(x1, x2, . . . , xi) = E(x1, x2, . . . , xi−1) + c(xi) + d(xi−1, xi)

E(x1, x2, . . . , xi, . . . , xn) = E(x1, x2, . . . , xi, . . . , xn−1) + c(xn) + d(xn−1, xn)

with 1 ≤ i ≤ n. The energy at each state is the sum of the preceding
energy and the current cost. Now energy minimization by DP is
performed with the following recursive formula:

C1(x1) = c(x1)

Ci(xi) = c(xi) + min
xi−1

(Ci−1(xi−1) + d(xi−1, xi)) (3)

Ci typically is a table of k entries, where each entry xi stores the
minimal cumulative cost of the shortest path from xi back to the
beginning of the graph. Hence, by evaluating the minimum of all cost

entries at Cn, one can find the starting point of the global shortest
path through the entire graph from state n back to state 1 by:

x∗
n = arg min

xn
Cn(xn)

such that for the cumulative cost entry at x∗
n it holds:

Cn(x∗
n) = E(x∗

1, x∗
2, . . . , x∗

n) = min(E)

Finally, starting with x∗
n we are able to track back the global shortest

path in order of decreasing i with:

x∗
i = arg min

xi
(Ci(xi) + d(xi, x∗

i+1)) (4)

The advantages of DP on shortest path problems become
noticeable by looking at the processing time of the algorithm. An
exhaustive search for the shortest path in the graph visualized in
Fig. 1 would yield a complexity of O(kn). By applying DP the effi-
ciency increases to O(k2n), as for each of the O(n) tables there are
O(k) entries to be filled in, in a time O(k) caused by the minimization
of the neighbors. This is more efficient than, for example, to run the
generic shortest path algorithm of Dijkstra with O(k2n log(kn)) on
this problem. For more details we refer to the work of Felzenszwalb
and Zabih [47].

Algorithm 1. Solving shortest path problems in a DAG.

With the previous definitions any DAG can be handled. Also an
image matrix or grid can be seen as a graph, where the neighboring
pixels are connected. To solve shortest path problems in images it is
needed to turn the image graph into a DAG. The two most common
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techniques are discussed in Sections 3.2 and 3.4. Another way of DAG
creation is performed by the RACK algorithm proposed by Jiang et
al. [50]. In this work a DAG is built based on some skeleton points,
set by the user, depicting the skeleton of an object of interest. This
method enables the segmentation of objects of any shape via DP. Also
the work in [39] introduces an alternative way of DAG construction
to compute circular structures in the original image space instead of
transforming it into a polar representation (cf. Section 3.3 for more
details).

3.2. Matrix-Based Shortest Path

A common application of DP is to find a connected contour (line,
boundary) in an m × n image matrix or grid as shown in Fig. 2. This
contour is a shortest path traversing the image from left to right (or
top to bottom), where it passes each image column (or row) exactly
once. In the following we refer to the type of contours traversing the
image from left to right, but the description can also be applied to
contours from top to bottom by interchanging rows and columns.

A pixel-node xi of the path is connected to its neighbors xi−1 in
the previous column; most commonly three connected neighbors
(k = 3). This simplifies Fig. 1 to having each node connected to
three predecessors only. Due to the DP process in each column i
the cumulative cost of each pixel-node xi is computed sequentially
starting in the first column according to formula (3). Hence, each
table Ci contains m entries of cumulative minimal costs, such that the
number of possible starting points for the backtracking procedure in
formula (4) equals to the number of rows of the image matrix. Beside
a restriction to a specific number of neighbors k ≤ m the DP process
is equal to the shortest path algorithm introduced in the previous
section.

In common approaches each pixel, hence node, obtains a cost
based on local features. This may be, for instance, the intensity f(xi)
of a pixel itself or its gradient magnitude to find a line along edges:

c(xi) = − ‖∇f (xi)‖

Note that the sign of the gradient feature must be inverted in terms
of energy minimization.

Gradient and intensity based costs suffer from strong noise or
fuzzy edges that can lead to ambiguities in the local pixel neighbor-
hood, and thus to a misleading path. To avoid this, another class,
named region-based contour detection by DP, is proposed in [32,33].
Region-based segmentation methods compute their cost based on
regional information rather than local features. In contrast to finding
a path along the strongest edge, it finds an optimal path that splits
two homogeneous regions. The cost of a pixel xi splitting two regions,

say the region above and the region below, according to Jiang and
Tenbrinck [32], is computed as follows:

c(xi) =
∑

xabove

‖ f (xabove) − labove‖ +
∑

xbelow

‖ f (xbelow) − lbelow‖

where ‖ •‖ can be any valid norm, xabove and xbelow are the pixels above
and below the current pixel xi, and labove and lbelow are simply the
averages of these pixels, respectively.

In terms of processing time a matrix-based shortest path solved
by DP has to store O(m) entries into O(n) tables in O(k) time and
thus has a complexity of O(kmn), that is linear to the image size. An
exhaustive search in turn would yield a complexity of O(kn−1m) on
this problem. The described methods are illustrated on the example
of contours, where the smallest element is a pixel. Instead of pixels
one can also take elements of higher order, like segments, that define
the curve (see Section 3.4). This may lead to higher robustness and
less processing costs, but highly depends on the specific application.
Finally, for the detection of 3D surfaces in medical images we refer
to [14], where the 2D matrix-based DP algorithm is expanded to
detect 3D surfaces. Cheng and Liu [13] point out that 3D DP due to its
high complexity is somehow unpractical. To improve this issue they
introduce constraints to limit computational time.

3.3. Circular Shortest Path

A CSP is a special form of a shortest path with the restriction that
start and end nodes are connected. One can imagine applications
in 360◦ panoramic or surface images, or finding circular structures
in images. In biomedical applications the circular structures can be
masses in mammography, the endocardial border, or cells in micro-
scopic images (cf. Fig. 3), but also body surface images, e.g. of ribs,
that have the same start and end points on the left and right side of
a projected 2D surface map [24] (cf. Fig. 7).

Circular structures like cells or the cardiac border often are
detected by transforming it into a polar representation, where each
ray around a center point in the middle of the structure depicts a col-
umn in the polar space. Then, the circular contour corresponds to a
contour from left to right as discussed in Section 3.2 and illustrated
in Fig. 3 (c).

Another possibility of finding circular structures in images is pro-
posed in [39]. Instead of converting the image space into a polar
representation that may yield interpolation issues, the authors create
a DAG based on the polar coordinates of the pixel-nodes. Through
this approach, optimization is not as before evaluated in relation
to the nodes in the preceding column, but to the nodes in the
8-neighborhood that have a lower polar angle. Hence, ordering

a b

Fig. 2. (a) A contour detected in the ROI of a carotid artery image; (b) backtracking process in a cumulative cost matrix as discussed in Section 3.1.
Source: (Reprinted from [17], with permission from Elsevier).
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(a) (b)

(c) (d)

Fig. 3. (a) SP of a HEp-2 cell in Cartesian space; (b) CSP of the cell in Cartesian space; (c) SP in polar space; (d) CSP in polar space evaluated with IPA.
Source: (HEp-2 cell data from [51]).

factor to meet the sequential nature of DP in this case is not given
through the x coordinate (column) of a node in Cartesian space but
rather through the polar coordinate of the nodes with respect to a
predefined center (cf. Fig. 4).

The circularity in both methods is achieved by constraining the
closedness of the contour. Note that only convex and star-shaped
contours1 can be detected in both cases. Several CSP strategies
are examined on the example of matrix-based DP by Sun and
Pallotini [43] and Appleton and Sun [44] to constrain the closedness.
The goal is to find a contour in an m × n matrix or grid supposing
the matrix were wrapped onto a cylinder and hence the first and
last columns of the matrix are neighbors. Not all of these algorithms
guarantee to find the globally optimal CSP or even any circular path.
But, according to Sun and Pallotini [43] the algorithms can be com-
bined to reach a certain accuracy or at least the closedness of the
result. In the following we briefly discuss the basic ideas.

3.3.1. Multiple Search (MSA)
The multiple search algorithm is a straightforward method that

gives a guarantee of closedness and optimality. The algorithm selects
the first node in the first column and determines the corresponding
neighbors in the last column. All nodes in the first and last column
are set to a very high cost value except of the selected nodes that
keep their costs. After this initialization phase, the matrix-based DP
is performed. This is repeated for each node in the first column, thus
m-times. Finally, the minimal cost path is evaluated out of the m
candidates. This algorithm has a complexity of O(km2n) as it runs
m-times the matrix-based DP algorithm.

3.3.2. Image Patching (IPA)
The image patching algorithm is a simple and fast method, where

the image size is extended by copying a patch, meaning a specified
number of columns on the left, onto the right side of the image
and vice versa (cf. Fig. 3 (d)). This attracts the contour detection to
circularity, but does not give a guarantee of closedness. As it just
performs the DP optimization once, the algorithm runs in O(kmn̂),

1 A star-shaped contour is characterized by the existence of a point p such that for
each point q of the contour the segment pq lies entirely within the contour.

where n̂ > n is the size of the extended image. To force the algorithm
to be closed, it can be repeated with different patch sizes.

3.3.3. Multiple Backtracking (MBTA)
The multiple backtracking algorithm, as the name says, simply

tracks all path candidates in the last column back to the first column
(instead of backtracking the one with the lowest minimal cost). If the
nodes in the first and last column of a path candidate are neighbors,
the found path is a possible candidate for the CSP. After this step,
again the minimum of all possible candidates is the resulting CSP.
While Sun and Pallotini just state that this algorithm has a high
probability to find a CSP, Malon and Cosatto [33] and Cardoso et
al. [39] prove that this algorithm actually guarantees to find at least
one solution for this problem. The complexity is the same as the
complexity of the matrix-based algorithm O(kmn).

Fig. 4. Some example nodes and their adjacent neighbors in a DAG ordered by the
polar angle.
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3.3.4. Branch and Bound
A technique is proposed in Appleton and Sun [44] to perform

a branch and bound method. Therefore a lower bound is evalu-
ated by performing the matrix-based DP algorithm once without the
closedness constraint. The cost of the found shortest path serves as
lower bound to decrease the search space for the circular shortest
path.

3.4. Active Contours by Dynamic Programming

We briefly mentioned before that contours must not necessarily
consist of pixels. They can also be composed by segments or some
control points that define a curve by spline or polygon approxima-
tion. This leads us to another popular class of contour detection
approaches, the active contours. As mentioned before, active contour
models (or snakes) were originally introduced by Kass et al. [46] as
continuous curves that are initialized for example by user interaction
and iteratively attracted through some internal and external forces to
edges or pixel intensities in an image. The attraction process is per-
formed with the help of generic energy minimization methods. Later
on, the work of Amini et al. [2] showed the possibilities of energy
minimization via DP on the example of active contours.

An active contour according to Amini et al. is defined by n control
points that are connected via splines. Each control point of an initial
contour has k possibilities in its local pixel neighborhood to move
to. This again is covered by the graph in Fig. 1, as it is a shortest
path problem as described in Section 3.1, where each pixel in the
neighborhood of control point i denotes a node in the graph at state i.

The energy definition is similar however a little extended to the
definition in formula (1):

E = Edata + Econ︸ ︷︷ ︸
Eext

+ Eprior︸ ︷︷ ︸
Eint

(5)

The internal energy Eint is identical to the smoothing term Eprior. The
external energy Eext contains the energy based on the image data
(Edata) and the energy of a hard constraint Econ = −k|xa − xb| that
is a spring-like cost between a point on the curve and a point in the
image. This cost gives the possibility to force the curve in direction to
some user defined points outside the initial contour. In the discrete
case the total energy is defined as follows:

E(x1, x2, . . . , xn) =
n∑

i=1

c(xi)

︸ ︷︷ ︸
Eext

+
n∑

i=2

d(xi−1, xi) +
n−1∑

i=2

e(xi−1, xi, xi+1)

︸ ︷︷ ︸
Eint

(6)

where c(xi) contains hard constraints and data costs based on
local intensity or gradient features (or a combination of both).
The smoothing terms d(xi−1, xi) and e(xi−1, xi, xi+1) are specified as
follows:

d(xi−1, xi) := a |xi−1 − xi|2
e(xi−1, xi, xi+1) := b |xi−1 − 2xi + xi+1|2

The first order term d favors the points to become closer to one
another and the second order thin-plate term e favors the points to
become equidistant.

The second order term e needs a point xi+1 that is not
yet available at state i in the ordinary DP. Therefore, Amini et
al. [2] propose an adjustment called “time-delayed” DP. For each
combination (xi, xi+1) all k neighbors xi−1 are determined and the
cost e(xi−1, xi, xi+1) is evaluated such that for the optimization step

according to formula (3) by means of DP applies:

C1(x1, x2) = c(x1) + d(x1, x2)

Ci(xi, xi+1) = c(xi) + d(xi, xi+1) + min
xi−1

(Ci−1(xi−1, xi) + e(xi−1, xi, xi+1))

(7)

Note that this step multiplies the amount of entries in table Ci by k
as there exist k × k possible combinations of (xi, xi+1) at each state of
the DP process. After computing the cumulative minimal cost values
at each state (control point), the backtracking process is performed
according to:

x∗
i = arg min

xi

(
Ci(xi, x∗

i+1) + e(xi, x∗
i+1, x∗

i+2)
)

(8)

To obtain a final developed contour the described DP process is to be
repeated iteratively as long as the energy converges.

The complexity of the contour approach in comparison to the
ordinary algorithm in Section 3.1 increases from O(k2n) to O(k3n). At
each of the O(n) control points a table of size O(k2) of possible node
combinations is to be written according to the number of neighbors
xi−1 of the combination (xi, xi+1). The number of iterations addition-
ally multiplies the computational cost. Finally, it is to be mentioned
that a high amount of k pixels in the neighborhood of a control point
indeed increases the search space around a control point and hence
the globality of the result, but comes with an increase of complexity.
This is to be considered by selecting an appropriate value for k.

Algorithm 2. One iteration of the active contours algorithm by DP.

Realizing a circular active contour means to handle the first and
last control point as neighbors. This would imply a circular graph
with smoothness costs d(xn, x1), e(xn−1, xn, x1) etc., that is in turn
not solvable by DP. One can overcome this problem by fixing two
neighborhood points (nodes) around the first and the last control
point, respectively. Similar to the MSA variant in Section 3.3, all pos-
sible pairs of nodes are to be tested, which increases the complexity
to O(k4n). The high processing cost in terms of active contours can
be overcome, according to Felzenszwalb and Zabih [47], by randomly
fixing two neighboring nodes at each iterative step. This keeps the
contour close, but still lets the curve converge against a minimum
over time with an ordinary complexity of O(k3n).

3.5. Multiple Shortest Path

Finally, the discussed methods (matrix-based shortest path,
active contours) can be extended to a multiple shortest path
approach as examined for example in [15,19], see Fig. 5 for an illus-
tration. Let p be the amount of simultaneously detectable paths. This
means that there must exist at least p directed acyclic graphs of the
same structure. Each of the p paths in the graphs consists of n nodes.
The authors of [19] use a general vector notation to describe the
parallel nodes xi = (xi,1, xi,2, . . . , xi,p)T at each state in the optimal



K. Ungru, X. Jiang / Computational and Structural Biotechnology Journal 15 (2017) 255–264 261

Fig. 5. Detection of intima-media thickness in ultrasound carotid artery image.
Source: (Reprinted from [19], with permission from Elsevier).

path search. This results in the following general definition for p
simultaneous contours by extending the energy definition in formula
(1):

E(x1, x2, . . . , xn) =
n∑

i=1

c(xi) +
n∑

i=2

d(xi−1, xi) (9)

Accordingly, to the definition of ordinary DP in formula (3) for MSP
applies:

C1(x1) = c(x1)

Ci(xi) = c(xi) + min
xi−1

(Ci−1(xi − 1) + d(xi−1, xi)) (10)

and the backtracking starting at i = n is represented by:

x∗
i = arg min

xi
(Ci(xi) + d(xi, x∗

i+1)) (11)

This looks very similar to the single path optimization by DP, where
the data cost term is often defined as the sum of the single con-
tour costs c(xi) =

∑p
t=1 c(xi,t). The smoothing term d(xi − 1, xi) in this

definition includes more than just the smoothness within the single
curves, which is called intra-curve smoothness. It also includes inter-
curve constraints considering the behavior between the multiple
curves including a specified minimal distance to each other.

As an example the approach in [15] defines the following terms
c(xi) =

∑p
t=1 G(xi,t) and d(xi − 1, xi) = a|D(xi − 1)−D(xi)|+b||xi − 1 −

xi‖1 with p = 2 to realize the algorithm, where ‖ •‖1 denotes the
L1-norm and D(xi) = xi,2−xi,1. Data costs are computed with the help
of a gradient edge filter G( • ). Additionally, to guarantee a specific
distance between the two curves and to avoid overlapping, the
following must be valid for all opposing points on the two lines
Dmin ≤ D(xi) ≤ Dmax.

The most considerable difference to a single path approach,
despite of the smoothness term, is the increase of complexity.
Considering a dual path approach with p = 2 and k = 3 neighbors
without any constraints, there are 9 possible combinations of pre-
ceding node pairs to the current pair of nodes. In general in case
of matrix-based MSP this turns out to a complexity of O(kpmpn), as
there are O(mp) possible pairs of nodes in a column, that have O(kp)
preceding neighbors to be optimized. The dramatical increase of pro-
cessing time in dependence to p shows the importance of constraints
to reduce the search space.

3.6. Region Growing for Vessel Tree Detection

As last method in this section we present a region growing
algorithm based on DP proposed in [22]. It is the only technique that
does not minimize energy and is in this form method and application
at once. The detection of vessels refers to two problems: a segmenta-
tion problem and a centerline detection problem. In [22] a centerline
detection is proposed which is particularly approached to the detec-
tion of small vessels. The DP algorithms reviewed in the previous

sections build a tree of possible optimal paths. This characteristic of
DP is utilized in [22] to build an acyclic graph that connects the entire
pixels in the image (cf. Fig. 6) by a method called ordered region
growing (ORG). The proposed ORG algorithm is classified as DP, as
there exist two characteristic steps: a recursion step and a backtrack-
ing step. The ORG algorithm works with sets of pixels, where each
pixel is a node in the graph. The graph connectivity is found by set-
ting a seed point x1, e.g. by user interaction, and by setting the initial
region to R(x1) = {x1}. A region grows by adding the neighboring
pixels N (xi) (8-connected neighbors in 2D) of the seed xi in iteration
i. A seed xi of a region R(xi) is found by maximizing the intensity
values of the border pixels IB of the previous region R(xi−1):

xi = max(IB(R(xi−1))

R(xi) = R(xi−1) ∪ N (xi)

A new edge of the graph is then created by connecting the found seed
to each of its neighbors:

Ei+1 = Ei ∪ {xi, ni}

where ni ∈ N (xi).
The region growing step by adding the neighbors of some optimal

seed point can be seen as the recursive accumulation process in DP.
The backtracking now is performed to examine the vessel tree. By
selecting two nodes in the graph, one can track back the path from
one to the other. This path depicts, for instance, a vessel of interest.
Finally, Yim et al. [22] propose a trimming procedure to improve the
found graph and delete irrelevant branches.

4. Applications

In Section 3 we have given a general overview of common
problems and their solutions by utilizing dynamic programming.
This section summarizes the reviewed papers and analyzes their
applications according to the previously presented methods.

In Section 3.2 we described a matrix-based shortest path
algorithm that, in the most common form, detects contours based on
image gradients, thus requires relatively strong edges. It is noticeable
that this typical approach is applied to image modalities with com-
paratively low noise and high contrast, e.g. MRI [6,8,16,23]. Contour
detection in this case is part of a processing pipeline that aims for
high-level decisions such as, e.g., stenosis detection in the work
of [16]. Here, matrix-based DP is used to refine a rough segmenta-
tion of vessels in 3D obtained by a 3D region growing algorithm.
The refinement by DP is performed slice by slice inside a specific
search area initialized by the result of the previous segmentation.
The diameter of the cross-section of the vessel is then used to get
information about potentially constricted vessels.

In contrast to MRI, ultrasonic data often suffers from fuzzy edges
and strong noise like speckle. Hence, a filtering system is pro-
posed by Lee et al. [27] to enhance edges in ultrasonic images with
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Fig. 6. Detection of the vessel tree; (a) original image; (b) entire vessel tree retrieved by the ORG algorithm.
Source: (Reprinted from [22], with permission from Elsevier).

high presence of scatters, speckle and other artifacts. To suppress
strong noise by filtering techniques it is needed to select a relatively
large filter kernel. The disadvantage is the potential loss of details.
Gradient-based techniques work on local features so that a path
can be misled through ambiguities in a local pixel neighborhood.
Also microscopic cell images often suffer from weak edges, such as
from inhomogeneities in the cell nuclei. To overcome this problem
region-based contour detection by DP based on a regional splitting
cost is used in [32,33] (cf. Section 3.2) rather than local edge data.
Particularly, a generic framework is proposed in [32] to compute the
splitting cost in various ways.

Other works try to overcome noise and artifacts by proposing
a coarse segment-based contour and accurate shape constraints. A
technique is proposed in [25] to simultaneously detect the left and
right spine boundary described by piece-wise linear segments. The
DP algorithm hence is not performed pixel-wise, but segment-wise
while the gradient-based cost calculation is done by accumulating
the cost of the pixels inbetween the end-points of the segments, such
that the contour search is not limited by the local pixel neighbor-
hood of the segment’s end-points but rather by a more regional cost
computation. The shape of the two nearly parallel contours on the
one hand is constrained by the contour progress itself (intra-curve
constraints) and the two contours interacting with each other (inter-
curve constraints), likewise described in the previous Section 3.5. The
smoothing constraints of [25] contain constraints of first d(xi−1, xi)
and second order e(xi−1, xi, xi+1). The second order smoothing term
is not available in the classical DP algorithm as mentioned in
Section 3.4. Hence, to avoid higher complexity the work in [25]
does not incorporate the smoothness cost into the DP approach, but
proposes an adjusted backtracking process to do so.

The authors of [15] advance the approach of [25,45] by integrating
the before mentioned smoothness term into the dual DP algorithm,
but avoid the computation of second order smoothness. The goal
of the work is to detect arterial walls in ultrasonic artery images
to measure intima-media thickness. Therefore, two contours lim-
iting the intima-media above and below are detected by dual DP.
While Cheng and Jiang, and Wei et al. [15,45] basically try to fit a
line against the strongest image edges, the work in [19] goes a step
further and proposes to perform the line fitting with the help of a
Hough transform. The cost evaluation is performed very similar to
the ordinary Hough accumulation process. Smoothness parameters
again manage angular and spacial distances in the form of inter- and
intra-curve constraints, where a spring-like intra-curve constraint is
necessary to handle the connectivity of the single line segments.

A rib detection method is proposed in [24] in abdominal 3D
MRI based on a multiple contour approach and a circular short-
est path solution. In several steps a 2D cost matrix is generated
out of the 3D data and a 2D surface map shown in Fig. 7. Seven
ribs and hence seven contours are detected from left to right.
This is done slightly different from the previous multiple contour
methods by computing seven cumulative cost matrices indepen-
dently and including a distance penalty into the backtracking of the
DP algorithm. This encloses a minimal distance constraint between
the seven simultaneous paths and avoids the increase of complexity
as the algorithm runs in O(pkmn) instead of O(kpmpn) (here p = 7)
by accepting the loss of global optimality.

As the rib detection is based on an enfolded surface, the rib
contours are circular. To guarantee the closedness of the contours,
the authors suggest to run the algorithm a second time. In this sec-
ond run, the found path is used as prior knowledge to guarantee the
closedness, such that the actual node is only connected to the pre-
ceding node if it leads back to the starting point known from the
precalculated path. Finally, it has to be mentioned that although this
algorithm finds multiple circular paths with a specific minimal dis-
tance to each other, it is not guaranteed to find the optimal global
solution.

Further applications for CSP search are microscopic cells as shown
in [29] that applies a matrix-based contour detection to oval-shaped
objects exemplified on yeast cells and a circular path algorithm
based on Sun and Pallotini [43] and discussed in Section 3.3. Also
Malon and Cosatto [33] implement a closed contour approach that
resembles the multiple backtracking algorithm (MBTA) of Sun and
Pallotini, the work in [30] segments bone marrow cells based on a

Fig. 7. Rib detection in a 2D surface map.
Source: (Reprinted from [24], with permission of Springer).
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method used in [38], where the weights of the various cost compo-
nents are evaluated in a training process. Both works are based on
an approach in [37] who examine DP to detect masses in computer
aided mammography. Timp and Karssemeijer [37] utilize the image
patching algorithm (IPA) to compute a closed contour. The optimal
patch size here is evaluated heuristically by slightly increasing the
patch size and evaluating the number of closed contours. An optimal
patch size according to Timp and Karssemeijer [37] is the one, where
all found shortest paths are circular.

An example for works that consider closedness in the application
of cardiac images is [8] that compares the multiple search method
with a branch-and-bound approach applied to myocardial border
detection.

Also the work in [10] is mainly devoted to cardiac MR images and
discusses a closedness constraint. The authors introduce DP as a tool
for detecting, matching and tracking deformable contours in medical
images. The approach can be categorized to active contours although
it is non-iterative and searches a continuous eight-connected path
rather than a set of control points as illustrated in Section 3.4. Nev-
ertheless, the initialization phase is similar, while n characteristic
points are to be selected to determine a search window and to
restrict the DP contour search. The work in [10] utilizes a multi-scale
technique to achieve greater processing efficiency while sacrificing
guaranteed optimality. The authors proposed this algorithm to detect
contours and to track them over time. For the tracking process spe-
cific points of high curvature are evaluated from the previous contour
and taken as initial control points for the next contour detection.
Thereby it is assumed that the movement between the subsequent
frames is small and the new contour can be found inside the defined
search window. For further examples of interactive organ and bone
segmentation in biomedical images we refer to [28,52].

There are further applications of DP where, in comparison to the
applications above, DP is not the essential method to perform a seg-
mentation task. Moreover these applications utilize DP to optimize
a segmentation result on a higher level. Hence, an automatic detec-
tion of the left ventricular wall is proposed in [9] by using high-level
features leaned on experts knowledge like shape, texture, and con-
traction dynamics to train an active appearance model (AAM) [53]
on the basis of manually marked contours. However, the AAM is not
incorporated into DP, but taken to perform a rough segmentation to
define a search space for the subsequent DP process. DP itself in this
algorithm is computed on low-level features based on the intensity
values inside the predefined search window.

The work of [7] is an example that uses high-level information to
detect the cardiac boundary in 3D ultrasonic data. In this work a 3D
shape prior is trained to be fitted via DP to a slice of the ultrasonic
heart data. The contour detection itself is then likewise done via DP
by matching a trained texture pattern with the help of the previously
fitted shape model.

5. Conclusion

Most of the reviewed approaches are hybrids of the methods dis-
cussed in Section 3. The main differences lie in the computation of
cost and the application of different smoothness constraints. Further-
more, lack of a possibility to integrate global shape priors into the DP
process, several approaches search for possibilities to constrain their
algorithms according to a-priori knowledge based on the applica-
tion. These constraints typically refer to geometrical characteristics
of the observed objects or structures. Hence, for many approaches
parameterization is essential. We gave one example of incorporating
high-level information by applying DP. Thus, introducing high-level
features might be a field of investigations in future. Furthermore, we
see a demand in generally incorporating higher order smoothness
constraints into the DP algorithm as this is often mentioned but

seldom implemented. Another issue, which is of particular interest
in medical image analysis, is that of noise modeling [54,55]. Many
existing image segmentation methods (implicitly) assume signal-
independent additive Gaussian noise and hence their application
leads to suboptimal results, e.g. for ultrasound imaging, which is sub-
ject to multiplicative speckle noise. It will be useful to integrate such
noise models into dynamic programming based active contours [2]
and region-based contour detection by dynamic programming [32].

As a last remark we point out that dynamic programming is lim-
ited to optimally detecting 2D contours only. The same optimization
problem in 3D space is related to segmenting smooth surfaces in
3D volume datasets or detecting smooth contours in videos. There
is no direct way of extending the DP solution to the general 3D case
(without cost explosion). Fortunately, efficient solutions do exist for
this problem [56,57], which have resulted in numerous applications.
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