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Seed point is prerequired condition for tracking based method for extracting centerline or vascular structures from the angiogram.
In this paper, a novel seed point detection method for coronary artery segmentation is proposed. Vessels on the image are first
enhanced according to the distribution of Hessian eigenvalue in multiscale space; consequently, centerlines of tubular vessels are
also enhanced. Ridge point is extracted as candidate seed point, which is then refined according to its mathematical definition.The
theoretical feasibility of this method is also proven. Finally, all the detected ridge points are checked using a self-adaptive threshold
to improve the robustness of results. Clinical angiograms are used to evaluate the performance of the proposed algorithm, and the
results show that the proposed algorithm can detect a large set of true seed points located on most branches of vessels. Compared
with traditional seed point detection algorithms, the proposed method can detect a larger number of seed points with higher
precision. Considering that the proposed method can achieve accurate seed detection without any human interaction, it can be
utilized for several clinical applications, such as vessel segmentation, centerline extraction, and topological identification.

1. Introduction

Currently, vascular diseases are major threats to human
health. Although a variety of imaging technologies exist,
such as computed tomography angiography (CTA), magnetic
resonance angiography (MRA), and ultrasound (US), X-ray
angiography remains the gold standard for the interventional
treatment of coronary artery diseases because of its high
resolution and imaging speed. Foreshortening and overlap-
ping are the major obstacles for the accurate identification
of vascular structures because X-ray angiography is an
integrated projection of the whole body in 3D space to 2D
images. Vascular extraction technology aims to calculate the
centerline, diameter, and direction vector of the vascular
structure from X-ray angiograms; hence, it can provide
the necessary reference for computer-aided diagnosis and
treatment of vascular diseases.

To date, the widely used vascular extraction method
in clinical practices is still the manual delineation method,

which is very time-consuming and subjective. As its impor-
tant clinical value, automatic vascular tree extractionmethod
has been studied intensively in the past two decades, such are
morphology based methods [1, 2], multiscale based methods
[3, 4], edge detection based methods, and image registration
basedmethods [5–7]. Among all methods, the tracking based
methods propose to estimate centerline and diameter within
the vascular boundaries, which do not need to scan the whole
angiogram. Hence, the tracking based methods are usually
with higher calculation efficiency than the other methods.

Generally, the tracking procedure proceeds from one or
several manually delineated seed points. As the seed points
are randomly selected from the angiogram, the reproducibil-
ity of the tracking algorithms are very much depended on
the personal experience. Many researchers hence focus on
improving the robustness of the tracking algorithm through
seed optimization. Collorec and Coatrieux [8] detected seed
points by scanning local extreme points and obtained a large
set of seed points inside the vessels. However, extracted seed
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points need to be refined because of the presence of noise.
While Fritzsche et al. [9] combined the global threshold opti-
mization for improving the robustness of the seed extraction,
the global threshold may also lead to a large amount of false
seed points in the background. Moreover, Boroujeni et al.
[10] proposed an automatic seed point detection method by
detecting edge points and checking the symmetric features in
its neighboring regions. After all the boundaries are detected,
the center line seed points can be calculated at the symmetric
center of the edge points. All the above methods have greatly
promoted the automatic seed detection methods.

In this paper, a novel adaptive ridge point refine-
ment method is proposed for seed detection in coronary
angiograms. First, based on the tubular feature distribution
of Hessian matrix of the angiogram, vascular structures
are enhanced according to the eigenvalue distribution in
multiscale space. Second, the continuity property of eigen-
value and eigenvector of a Hessian matrix in multiscale
space is theoretically analyzed. Third, based on theoretical
analysis, the proposed theorem of ridge point existence
is utilized to design the ridge discriminant function. And
the candidate ridge points are extracted according to the
predefined discriminant function. Afterwards, the detected
points are refined according to a self-adaptive threshold that
is calculated based on the order statistics of the detected ridge
points.

2. Method

2.1. Characteristic of Ideal Vascular Topology. Let 𝐼(𝑀) repre-
sent the intensity of a point𝑀 in the image; then, the intensity
distribution of the local feature around𝑀 can be calculated
as follows [11]:

𝐼 (𝑀 + 𝛿𝑀) = 𝐼 (𝑀) +𝑀
𝑇
∇𝐼 (𝑀)

+𝑀
𝑇
𝐻(𝑀)𝑀 + 𝑜 (‖𝑀‖) ,

(1)

where ∇𝐼(𝑀) = ((𝜕/𝜕𝑥)𝐼(𝑀), (𝜕/𝜕𝑦)𝐼(𝑀)) is the gradient
of the image 𝐼 at the point 𝑀 with respect to the 𝑥-axis
and 𝑦-axis, while (𝜕/𝜕𝑥)𝐼(𝑀) and (𝜕/𝜕𝑦)𝐼(𝑀) are the first-
order partial derivatives of 𝐼(𝑀) in the directions of 𝑥 and 𝑦,
respectively. And the Hessian matrix 𝐻(𝑀) of point 𝑀 can
be calculated as follows:
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where (𝜕2/𝜕𝑥2)𝐼(𝑀) and (𝜕
2
/𝜕𝑦
2
)𝐼(𝑀) denote the second

partial differential of 𝐼(𝑀) in the direction of 𝑥 and
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denote the second partial differential of 𝐼(𝑀). If the second-
order differential of 𝐼(𝑀) is continuous, then we have
(𝜕
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Figure 1: Relationship between the two eigenvectors of the Hessian
matrix with respect to vascular topology.

of each pixel of the angiogram. To be convenient for the
followed analysis, in this study, 𝜆

1
and 𝜆

2
are named as the

first eigenvalue and second eigenvalue of 𝐻(𝑀), and V
1
and

V
2
are denoted by first eigenvector and second eigenvector of

𝐻(𝑀), separately.
Ideally, due to its tubular structure, the penetrating path

of X-ray in the blood vessel decreases from the central axis
to edge position. Therefore, the gray level distribution of
the vessel in angiogram turns from dark to bright for its
centerline to the edge [12]. If we look at the grey scale
distribution of the blood vessel, the centerlines are rested
on the ridge lines constituted by a series of ridge points.
Generally, the ridge point is the local extreme with the
direction vector perpendicular to the vascular direction on
angiogram. Therefore, for the coronary artery in angiogram,
we have the following equation [13]:

0 ≈
󵄨󵄨󵄨󵄨𝜆1

󵄨󵄨󵄨󵄨 ≪ 𝜆
2
. (3)

According to the definition of the ridge, the two eigenvectors
of Hessian matrix can be denoted by the tangent direction
(𝑉
1
) and the vertical direction (𝑉

2
), as can be seen in Figure 1.

2.2. Multiscale Vascular Enhancement. Since the disturbance
of eigenvalue or eigenvector of the Hessian matrix is in the
same order [14], if the disturbance of the Hessian matrix
is 𝜀, then the disturbances of the corresponding eigenvalue
and eigenvector are 𝑂(𝜀) because of the existence of noise
in the angiogram. However, when zero-order disturbance
is Δ𝛿, the second-order disturbance is amplified twice. In
such condition, the use of eigenvalue or eigenvector will
introduce a large amount of error for vessel enhancement.
Hence, several researchers introduced multiscale operators,
such as Gaussian scale transformation, to minimize error
disturbance [3, 15, 16].TheGaussian functionhas beenproven
to be the only kernel function in the linear scale space by
Lindeberg [16, 17] and Florack et al. [18, 19]. According to
the property of the Gaussian function, the multiscale space
is not only linear but also satisfies several other properties,
such as spatial shift invariance, noncreation of local extreme,
rotational symmetry, and semigroup structure [20, 21].
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In this paper, the Frangi filter [13] is utilized to enhanced
vascular structure in the angiogram. For this filter, a single
scale function can be defined as follows:

𝐸 (𝑀, 𝜎) =

{{{{{

{{{{{

{

0 if 𝜆
2
< 0

exp(−
𝜆
2

1
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2

2

)[1 − exp(−
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2

1
+ 𝜆
2

2

2𝛽2
)]

otherwise,
(4)

where 𝜆
1
and 𝜆

2
are the first and the second eigenvalues,

while 𝛼 and 𝛽 are controlling coefficient. To obtain the best
vascular enhancement effect, the multiscale function should
have the highest response of all the sampled scales, which can
be formulized as follows:

𝐸 (𝑀) = max
𝜎min≤𝜎≤𝜎max

𝐸 (𝑀, 𝜎) , (5)

where [𝜎min, 𝜎max] is the predefined scaling range. Typically,
𝜎min and 𝜎max correspond tominimum andmaximum size of
vessels on image.

The image enhanced by multiscale eigenvalue of Hessian
matrix is usually referred to as a vesselness image. In a
vesselness image, the background of the nonvascular region
is suppressed, and the vessels appear brighter than that of
the original image. Moreover, the pixels along the directions
of vascular centerlines are strongly enhanced and appear
brighter than the ones perpendicular to the vascular direction
vector. Therefore, the ridge points on a vesselness image can
be extracted to stand for the seed points from the extraction
of blood vessels.

2.3. Continuity Analysis of Vesselness Image. In this study, the
candidate seed points are extracted by detecting ridge points
in a vesselness image based on the differential continuity
of the image, which includes gradient and Hessian matrix
together with its corresponding eigenvalue and eigenvector
for each pixel. Usually, they are not located at integer
coordinates and should be computed by interpolation. How-
ever, they should be continuous when being interpolated.
Therefore, the continuity of the abovementioned differential
information is very important for seed detection in the
angiogram.

In traditional methods of differential information analy-
sis, the differential information of the image is assumed to be
continuous. Theoretically, an image can be described as a 2D
continuous signal obtained from the optical sensor by light
integration. As such, the zero-order gray scale information
is a continuous function for the coordinates. To further
utilize the differential information, this study theoretically
analyzed the continuous property of gradient, eigenvalue, and
eigenvector.

Suppose that 𝑓(𝑥, 𝑦; 𝜎) represents an image convolved
by a Gaussian function with kernel of 𝜎; then we have the
following equation:

𝜕

𝜕𝑥
𝑓 (𝑥, 𝑦; 𝜎) ⊗ 𝑔 (𝑥, 𝑦, 𝜎) = 𝑓 (𝑥, 𝑦; 𝜎) ⊗

𝜕

𝜕𝑥
𝑔 (𝑥, 𝑦, 𝜎) ,

(6)

since

𝜕

𝜕𝑥
𝑔 (𝑥, 𝑦, 𝜎) = −

𝑥

𝜎2
𝑔 (𝑥, 𝑦, 𝜎) . (7)

Then, the continuity of an image in Gaussian space will be
transformed into the continuity of the image after Gaussian
convolution. Therefore, we first discuss the continuity of the
image after Gaussian smoothing in the following section.

According to Lemma A.1 (as can be seen in the section
of appendix), we found that any 1D continuous function
will be infinitely differentiable when it is convoluted with
the Gaussian function. Similarly, the vesselness image, which
is a two-dimensional continuous function, will be infinitely
differentiable with the application of Gaussian smoothing.
Essentially, if the vesselness image is at least differentiable in
the second-order, its gradient vector and Hessian matrix are
also continuous. As can be inferred fromLemma A.3, the two
eigenvalues of Hessian matrix of vesselness image are single
eigenvalue and the corresponding eigenvectors of these two
eigenvalues are continuous according to Lemma A.2. There-
fore, all the related differential terms, including gradient and
Hessian matrix together with its corresponding eigenvalue
and eigenvector of vesselness image, are continuous.

2.4. Seed Point Detection. In traditional methods, the detec-
tion of local maxima points in the image is a common
method of seeding. However, the points on the centerline
are essentially not the local maxima points in any direction.
Instead, they are the local maxima points on the directions
perpendicular to the centerline. In this paper, the ridge points
are extracted as candidates of seed points. The definition of
ridge point could be derived from the definition of local
extreme point, which can be described as follows [13].

Definition 1. Let 𝑓 : R𝑛 → R represent a second-order
continuous function. A point 𝑥 ∈ R𝑛 is a local extreme point
for𝑓 if (V ⋅∇)𝑓(𝑥) = 0 for every direction V; that is,∇𝑓(𝑥) = 0.
The extreme point can be classified as follows: (1) 𝑥 is a local
minimum point, if (V ⋅ ∇)2𝑓(𝑥) > 0 for every direction V; (2)
𝑥 is a local maximum point, if (V ⋅ ∇)2𝑓(𝑥) < 0 for every
direction V. The corresponding function value 𝑓(𝑥) at the
extreme point 𝑥 is named as the extreme value.

According to the Hessian matrix, the above definition of
local extreme point can be described as follows.

Definition 2. Let 𝑓 : R𝑛 → R be a second-order continuous
function. A point 𝑥 ∈ R𝑛 is as follows: (1) a local minimum
point for𝑓 if∇𝑓(𝑥) = 0 and theHessianmatrix of𝑥 is positive
definite (all the eigenvalues are positive); (2) a localmaximum
point if ∇𝑓(𝑥) = 0 and the Hessian matrix of 𝑥 is negative
definite (all the eigenvalues are negative).

A 𝑛-𝑑 type ridge point is the local maximum point in 𝑛-𝑑
orthogonal directions in 𝑛-dimensional space of which the
definition is as follows.

Definition 3. Let 𝑓 : R𝑛 → R be a second-order continuous
function. A point 𝑥 ∈ R𝑛 is a 𝑛-𝑑 type ridge point if and only
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if [V
1
, . . . , V

𝑑
]
𝑇
∇𝐼(𝑥) = 0 and 𝜆

𝑑
< 0, where, 𝜆

1
, . . . , 𝜆

𝑛
(𝜆
1
≤

⋅ ⋅ ⋅ ≤ 𝜆
𝑛
) are the eigenvalues of hessian matrix of point 𝑥 and

their corresponding eigenvectors are denoted by V
1
, . . . , V

𝑛
,

and 1 ≤ 𝑑 ≤ 𝑛.

To extract ridge points on the image, we need to find all
the points to meet the conditions that [V

1
, . . . , V

𝑑
]
𝑇
∇𝐼(𝑥) = 0

and 𝜆
𝑑
< 0. For angiograms, images are two-dimensional

data, ridge points are 1-type, and we need to detect the points
that satisfy (V

1
)
𝑇
∇𝐼(𝑥) = 0 and 𝜆

1
< 0. According to the

density of the real number, detecting all the ridge points
within a limited time is impossible because ridge points are
usually located on subpixel coordinates rather than on integer
coordinates. In this paper, we obtain a sufficient number of
ridge points based on the analysis of the gradient vector and
the Hessian matrix at discrete pixels.

Ridge Point Existence Criterion. Assume that 𝐼(𝑥) is a vessel-
ness image, for a point (𝑥, 𝑦) and its neighbor points (𝑥 +

1, 𝑦), (𝑥, 𝑦 + 1), and (𝑥 + 1, 𝑦 + 1). There must be a ridge
point (𝜉, 𝜂) (𝑥 ≤ 𝜉 ≤ 𝑥 + 1, 𝑦 ≤ 𝜂 ≤ 𝑦 + 1) between them
if the conditions are satisfied as follows:

max {V
1
∇𝐼 (𝑥, 𝑦) , V

1
∇𝐼 (𝑥 + 1, 𝑦) ,

V
1
∇𝐼 (𝑥, 𝑦 + 1) , V

1
∇𝐼 (𝑥 + 1, 𝑦 + 1)} > 0,

min {V
1
∇𝐼 (𝑥, 𝑦) , V

1
∇𝐼 (𝑥 + 1, 𝑦) ,

V
1
∇𝐼 (𝑥, 𝑦 + 1) , V

1
∇𝐼 (𝑥 + 1, 𝑦 + 1)} < 0,

max {𝜆
1
(𝑥, 𝑦) , 𝜆

1
(𝑥 + 1, 𝑦) ,

𝜆
1
(𝑥, 𝑦 + 1) , 𝜆

1
(𝑥 + 1, 𝑦 + 1)} < 0,

(8)

where ∇𝐼(𝑥, 𝑦) is the gradient vector at (𝑥, 𝑦) and 𝜆
1
(𝑥, 𝑦)

and V
1
(𝑥, 𝑦) are the first eigenvalue and the first eigenvector

of Hessian matrix at (𝑥, 𝑦).

Proof. According to the Lemmas A.2 and A.3 and
Theorem A.4, we know that since 𝐼(𝑥) is two-order
continuous, ∇𝐼(𝑥, 𝑦) and 𝐻(𝑥, 𝑦) are continuous. 𝜆

1
(𝑥, 𝑦)

is a single eigenvalue; therefore, 𝜆
1
(𝑥, 𝑦) and V

1
(𝑥, 𝑦) are

continuous for (𝑥, 𝑦).
Thus

max {V
1
∇𝐼 (𝑥, 𝑦) , V

1
∇𝐼 (𝑥 + 1, 𝑦) ,

V
1
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1
∇𝐼 (𝑥 + 1, 𝑦 + 1)} > 0,
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1
∇𝐼 (𝑥, 𝑦) , V

1
∇𝐼 (𝑥 + 1, 𝑦) ,

V
1
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1
∇𝐼 (𝑥 + 1, 𝑦 + 1)} < 0.

(9)

According to the intermediate value theorem of continuous
function, there is a point (𝜉, 𝜂) (𝑥 ≤ 𝜉 ≤ 𝑥+1, 𝑦 ≤ 𝜂 ≤ 𝑦+1),
which meets V

1
∇(𝜉, 𝜂) = 0.

And since 𝜆
1
(𝜉, 𝜂) can be achieved by linear interpolation

of 𝜆
1
(𝑥, 𝑦), 𝜆

1
(𝑥 + 1, 𝑦), 𝜆

1
(𝑥, 𝑦 + 1), and 𝜆

1
(𝑥 + 1, 𝑦 + 1),

𝜆
1
(𝜉, 𝜂) = 𝜔

3
[𝜔
1
𝜆
1
(𝑥, 𝑦) + (1 − 𝜔

1
) 𝜆
1
(𝑥 + 1, 𝑦)]

+ (1 − 𝜔
3
)

⋅ [𝜔
2
𝜆
1
(𝑥, 𝑦 + 1) + (1 − 𝜔

2
) 𝜆
1
(𝑥 + 1, 𝑦 + 1)] ,

(0 ≤ 𝜔
1
, 𝜔
2
, 𝜔
3
≤ 1) .

(10)

We have

max {𝜆
1
(𝑥, 𝑦) , 𝜆

1
(𝑥 + 1, 𝑦) ,

𝜆
1
(𝑥, 𝑦 + 1) , 𝜆

1
(𝑥 + 1, 𝑦 + 1)} < 0.

(11)

Then 𝜆
1
(𝜉, 𝜂) < 0.

According to Definition 3, the point (𝜉, 𝜂) is a ridge point.
And according to the ridge point existence criterion, the ridge
points can be detected by scanning the vesselness image line
by line. In this paper, we take the pixel point (𝑥, 𝑦) as the
ridge point (𝜉, 𝜂) to be a seed point. It can not only save
the interpolation burden but also guarantee the extraction
accuracy of the seed point.

2.5. Seed Point Refinement. A large amount of seed points
located in vascular boundaries can be detected using the
proposed method. However, a number of candidate seed
points located on the background, which are denoted as
pseudo seed points, can be observed because of the influence
of noise. In this study, an automatic seed point refinement
method is proposed based on the area gray scale distribution
of the detected seed points. With 𝑃 as the set of the sample
points located in the area of the detected candidate seed
points, a self-adaptive threshold function can be defined as
follows:

𝑇 = 𝑚 (𝑃) − 𝜔 ⋅ 𝑠 (𝑃) , (12)

where 𝑚(𝑃) is the median intensity value of arranged 𝑃 and
𝑠(𝑃) is the median of the absolute value of all the points of
𝑃 minus 𝑚(𝑃). 𝜔 is a weight factor, which controls the noise
and sensitivity of the intensity.

Figure 2(a) shows the extracted candidate seed points on
an angiogrambased on the proposed ridge detectionmethod.
As shown in the figure, a large number of seed points are
detected inside the vascular structures. However, some of
them are still detected in the background. Figure 2(b) shows
the refined results of the proposed method. As observed, the
pseudo seed points located in the nonvascular region are
removed, and most of the calculated seed points are inside
vascular boundaries, whereas some of them are located near
the vascular centerlines.

3. Experimental Results

To validate the performance of the proposed method, a
series of coronary angiograms acquired from a Philips Digital
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(a) (b)

Figure 2: Seed point calculation results in an angiogram. (a) Results of the ridge based method. (b) Results after seed refinement.
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Figure 3: Relationship between NDSP and enhancement parame-
ters 𝛼 and 𝛽.

Imaging device at Beijing Chaoyang Rea-Cross Hospital
were used. All angiograms have 512 × 512 resolution. The
experiments were carried out on a desktop computer with
an i7-2600 processor and 16G memory, and the proposed
method is comparedwith the other two traditional seed point
detection algorithms.

Figure 3 was designed to evaluate the number of detected
seed point (NDSP) with respect to the multiscale enhance-
ment filtering parameters of 𝛼 and 𝛽. For the experiment, the
sampling ranges of 𝛼 and 𝛽 are set at [0.25, 1] and [5, 20],
respectively, where the sampling step of 𝛼 and 𝛽 is set at
0.05 and 5. In this study, NDSP is defined as the number
of detected seeds with respect to the enhancement response
value larger than a predefined threshold of 𝜏. In this exper-
iment, the value of 𝜏 is set at 30. From the figure, if 𝛽 is set
constant, the NDSP values decrease quickly with increasing
𝛼. If 𝛼 is set constant, the NDSP values increase slowly
with increasing 𝛽. When 𝛽 is comparatively small, a large
amount of small enhanced noise appears in the angiogram.
Hence, suppressing the noise while preserving the effect of
enhancement during seed extraction is important.

To obtain the optimal enhancement parameters, the
structures of coronary arteries in the angiogram were manu-
ally delineated from the background. As such, the number of
pseudo seed points (NPSP) that rest in the background can be
effectively quantified. Figure 4 demonstrates the relationship
between NPSP and the enhancement parameters of 𝛼 and
𝛽. From the figure, if 𝛽 is set constant, NPSP first deceases
rapidly and then slowly with increasing 𝛼. On the other hand,
if 𝛼 is set constant, NPSP increases slowly with increasing 𝛽.

To obtain the optimal enhancement parameters, the false
detection ratio (FDR) is defined based onNDSP andNPSP as
follows:

FDR =
NDSP
NPSP

. (13)

Figure 5 demonstrates the relationship between FDR and
the enhancement parameters of 𝛼 and 𝛽. From the figure, if 𝛽
is set constant, FDR first deceases rapidly and then increases
slowly with the increasing 𝛼. On the other hand, if 𝛼 is set
constant, NPSP first deceases and then increases slowly with
increasing 𝛽. Therefore, there is a local minimum value of
FDR corresponding to the optimal enhancement parameters
of 𝛼 and 𝛽.

To quantify the performance of the proposedmethod, the
proposed seed point detection algorithm is compared with
themethods proposed by Fritzsche et al. [9] and by Boroujeni
et al. [10]. Figure 6 shows the seed extraction results from
all the methods. The first to fourth columns correspond to
the original angiograms, the results of Fritzsche, Boroujeni,
and those of proposed method, respectively. The first to
fifth rows correspond to five different data sets. For the
Fritzsche method, only a few seed points are detected,
which are mostly distributed in local parts of the vessels.
Moreover, some detected points rest in the background. For
the Boroujeni method, a number of detected seed points in
the first four images are very small. Although more seed
points are detected in the last image, detecting seed points
in some of the major branches is difficult. Evidently, our
proposedmethod can detectmore seed points inside vascular
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Figure 4: Relationship between NPSP and the enhancement parameters of 𝛼 and 𝛽.
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Figure 5: Relationship between the FDR and the enhancement
parameters of 𝛼 and 𝛽.

boundaries than the other two methods. Furthermore, the
detected seed points are evenly distributed in the whole
vasculature. Hence, it can be used more appropriately for the
tracking procedures for centerline extraction.

To evaluate the proposed automatic seed point detection
algorithm, three general measures of precision, recall, and
𝑓-measure are used in this paper. And the seed detection
precision can be quantified by the percentage of correct seeds
accounting for all the generated seeds; then we have the
following equation:

𝑃 =
TP

TP + FP
, (14)

where TP denotes the true positives (it is the total number
of the detected seed points that are located inside the true
vessels), while FP is the number of false positives (it is the
number of the detected seed points that are located in the
background).

The result of recall denotes the percentage of corrected
seed points that can be detected by the proposed algorithm,
and we have

𝑅 =
TP

TP + FN
, (15)

where FN denotes the number of false negatives; it is the total
number of true seed points that are wrongly discarded by the
refinement calculation procedure.

To balance between the precision and recall, the 𝑓-
measure is proposed as follows:

FM =
2 × 𝑅 × 𝑃

𝑅 + 𝑃
. (16)

Also, the total number of seed points and the number of
vascular branches that can be detected are utilized to evaluate
the preformation of algorithms, and they are denoted by𝑁1
and 𝑁2, respectively. 𝑁1 shows the ability that how much
seed points can be detected by the algorithm. The greater of
𝑁1means more vascular point will be detected in the image;
while the great of 𝑁2 means more vascular branches will be
detected in the image.

Table 1 compares the seed point detection results of
Fritzsche, Boroujeni, and the proposed method over five
groups of data sets. The mean values of 𝑁1 of the Fritzsche,
Boroujeni, and the proposed methods are 1127, 1845, and
2072, respectively. Obviously, the proposed method obtained
more seed points than the other two methods. In the same
manner, the mean values of precision of the Fritzsche,
Boroujeni, and the proposed methods are 88.1%, 96.3%, and
98.2%, respectively. It indicates that only a few detected
points of the proposed method are outside of the vascular
boundaries, while the mean values of recall and 𝑓-measure
of the Fritzsche, Boroujeni, and the proposed methods are
almost the same, but the proposed algorithm is slightly higher
than the other two methods. The mean values of 𝑁2 of
the Fritzsche, Boroujeni, and the proposed methods are 5,
7, and 8, respectively. Clearly, the proposed method detects
a larger number of vascular branches than the other two
methods. It can be concluded that the Boroujeni method is
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Figure 6: Seed point extraction results of five groups of data sets. The first to the fourth columns correspond to the source angiograms,
segmentation results of Fritzsche, Boroujeni, and the proposed methods. The first to the fifth rows correspond to five different data sets.
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Table 1: Comparison of the seed point detection results of the Fritzsche method, Boroujeni method, and the proposed method over five
groups of data sets.

Data Fritzsche method Boroujeni method Proposed method
𝑃 𝑅 FM 𝑁1 𝑁2 𝑃 𝑅 FM 𝑁1 𝑁2 𝑃 𝑅 FM 𝑁1 𝑁2

Data1 0.985 0.999 0.992 720 5 0.959 0.989 0.974 1272 9 0.994 0.999 0.996 1561 10

Data2 0.901 0.992 0.944 1488 7 0.973 0.998 0.985 1310 6 0.988 0.999 0.993 1760 9

Data3 0.912 0.981 0.945 1881 5 0.973 0.997 0.985 1131 5 0.990 0.999 0.994 1655 6

Data4 0.871 0.985 0.924 1129 4 0.936 0.989 0.962 1648 5 0.955 0.995 0.974 1079 6

Data5 0.736 0.948 0.829 416 2 0.976 0.992 0.984 3862 8 0.981 0.996 0.988 4306 11

Mean 0.881 0.981 0.927 1127 5 0.963 0.993 0.978 1845 7 0.982 0.998 0.989 2072 8

better than the Fritzschemethod, while the proposedmethod
outperforms the other two methods with respect to accuracy
and the ability of branch detection.

4. Conclusion

This study proposes a novel automatic seed point detection
method for X-ray angiographic images, which can be further
utilized for vascular segmentation aswell as centerline extrac-
tion. In study, the continuous properties of the eigenvalue and
eigenvector are analyzed in depth. Based on the ridge point
existence theorem, a novel discriminative function is pro-
posed for candidate seed point detection from the multiscale
Gaussian response of the angiographic image. The candidate
seeds are refined according to the intensity distribution of
neighboring pixels in the scanning lines. Furthermore, this
study also discussed the optimal parameters for accurate seed
detection.The study introduces five discrimination standards
to quantify seed detection ability and evaluate the perfor-
mance of different seed detection methods. The experiments
demonstrate that the proposed method is very effective and
robust for seed point detection in angiographic images with
mean values of 98.2% and 2072 for the precision and number
of detected seed points, respectively. Considering that the
proposed method is fully automatic and with high detection
ability, it can be utilized for fast centerline extraction as well
as structure measurement for coronary arteries in clinical
practice.

Appendix

Lemma A.1. For any 𝑓(𝑥) ∈ 𝐶, then 𝐹(𝑥) = 𝑓(𝑥) ∗ 𝑔(𝑥) ∈

𝐶
∞, where 𝑔(𝑥) = (1/√2𝜋)𝑒

−𝑥
2
/2.

Proof. Consider
𝐹 (𝑥) = 𝑓 (𝑥) ∗ 𝑔 (𝑥)

= ∫

+∞

−∞

𝑓 (𝑡) 𝑔 (𝑥 − 𝑡) 𝑑𝑡

=
1

√2𝜋
∫

+∞

−∞

𝑓 (𝑡) 𝑒
−(𝑥−𝑡)

2
/2
𝑑𝑡

=
1

√2𝜋

[𝑒
−𝑥
2
/2
∫

+∞

−∞

𝑓 (𝑡) 𝑑𝑡

+∫

+∞

−∞

𝑓 (𝑡) 𝑒
𝑥𝑡
𝑑𝑡 + ∫

+∞

−∞

𝑓 (𝑡) 𝑒
−𝑡
2
/2
𝑑𝑡]

:=
1

√2𝜋

[𝐹
1
+ 𝐹
2
+ 𝐹
3
] ,

(A.1)

where 𝐹
1
and 𝐹
2
are infinitely differentiable functions param-

eterized by 𝑥 and 𝐹
3
is a constant. Therefore 𝐹(𝑥) = 𝑓(𝑥) ∗

𝑔(𝑥) ∈ 𝐶
∞.

Lemma A.2. Let 𝐴, Δ𝐴 ∈ 𝐶
𝑛×𝑛, where 𝐴 = {𝑎

𝑖𝑗
} and

Δ𝐴 = {Δ𝑎
𝑖𝑗
}. If 𝜆 is a single eigenvalue of 𝐴 and 𝑉 is the

corresponding eigenvector of 𝜆, then for eigenvalue 𝜆(𝐴 + Δ𝐴)

and its corresponding eigenvector 𝑉(𝐴 + Δ𝐴) of 𝐴 + Δ𝐴, it
satisfied that 𝜆(𝐴 + Δ𝐴) → 𝜆 and 𝑉(𝐴 + Δ𝐴) → 𝑉, when
Δ𝐴 → 0.

Proof. Since the eigenvalue of the Hessian matrix is a con-
tinuous function for all the matrix elements and 𝜆 is a single
eigenvalue of𝐴, then for the eigenvalue 𝜆(𝐴+Δ𝐴) of𝐴+Δ𝐴,
𝜆(𝐴 + Δ𝐴) → 𝜆 when Δ𝐴 → 0. And for a sufficiently small
‖Δ𝐴‖, 𝜆(𝐴 + Δ𝐴) is a single eigenvalue of 𝐴 + Δ𝐴.

Since 𝜆 is a single eigenvalue of 𝐴, according to the
theorem of Jordan canonical form, we have rank(𝜆𝐸 − 𝐴) =

rank(𝐴) − 1, where 𝐸 is an 𝑛 × 𝑛 identity matrix. Hence, we
can find certain 𝑖 and 𝑗, for which the 𝑛−1 order nonsingular
matrix𝐴∗

𝑛−1
can be obtained by removing the elements of the

𝑖th row and the 𝑗th column of 𝐴.
According to

𝐴𝑉 = 𝜆𝑉, (A.2)

where 𝑉 = (V
1
, . . . , V

𝑛
)
𝑇, the coefficient matrix of the system

−

𝑚=𝑛

∑

𝑚=1
𝑚 ̸=𝑗

(𝑎
𝑘𝑚

− 𝛿
𝑘𝑚
𝜆) V
𝑚
= (𝑎
𝑘𝑗
− 𝛿
𝑘𝑗
𝜆) V
𝑗
, 𝑘 ̸= 𝑖, (A.3)

is nonsingular, where

𝛿
𝑖𝑗
=

{

{

{

1, 𝑖 = 𝑗

0, 𝑖 ̸= 𝑗.

(A.4)

Without loss of generality, we assume that V
𝑗
= 1.
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For a sufficiently small ‖Δ𝐴‖, 𝜆(𝐴 + Δ𝐴) is a single
eigenvalue of 𝐴 + Δ𝐴, and rank(𝜆𝐸 − (𝐴 + Δ𝐴)) = rank(𝐴 +

Δ𝐴)−1.The 𝑛−1 ordermatrix (𝐴+Δ𝐴)∗
𝑛−1

, which is obtained
by removing the elements of the 𝑖th row and the 𝑗th column
of 𝐴 + Δ𝐴, is also nonsingular. Hence, the system of linear
equations

−

𝑚=𝑛

∑

𝑚=1
𝑚 ̸=𝑗

(𝑎
𝑘𝑚

+ Δ𝑎
𝑘𝑚

− 𝛿
𝑘𝑚
𝜆 (𝐴 + Δ𝐴)) V𝑚 (𝐴 + Δ𝐴)

= (𝑎
𝑘𝑗
+ Δ𝑎
𝑘𝑚

− 𝛿
𝑘𝑗
𝜆 (𝐴 + Δ𝐴)) V𝑗 (𝐴 + Δ𝐴) , 𝑘 ̸= 𝑖,

(A.5)

have a unique solution V
1
(𝐴+Δ𝐴), . . . , V

𝑗−1
(𝐴+Δ𝐴), V

𝑗+1
(𝐴+

Δ𝐴), . . . , V
𝑛
(𝐴 + Δ𝐴), and they are continuous functions of

Δ𝐴. If we choose V
𝑗
(𝐴 + Δ𝐴) = V

𝑗
= 1, there will be

𝑉 (𝐴 + Δ𝐴) = (V
1 (𝐴 + Δ𝐴) , . . . , V𝑗−1 (𝐴 + Δ𝐴) ,

V
𝑗 (𝐴 + Δ𝐴) , V𝑗+1 (𝐴 + Δ𝐴) , . . . ,

V
𝑛 (𝐴 + Δ𝐴))

𝑇

󳨀→ 𝑉,

(A.6)

when Δ𝐴 → 0.

Lemma A.3. If the image 𝐼(𝑥, 𝑦) is second-order continuous,
then the two eigenvalues 𝜆

1
and 𝜆

2
of Hessian matrix of the

point (𝑥, 𝑦) are unequal, and their corresponding eigenvalues
V
1
and V
2
are orthogonal to each other.

Proof. If 𝐼(𝑥, 𝑦) ∈ 𝐶
2, then 𝐼

𝑥𝑦
= 𝐼
𝑦𝑥
; that is, the hessian

matrix 𝐻(𝑥, 𝑦) of (𝑥, 𝑦) is symmetrical. According to the
properties of real symmetric matrices, the two eigenvectors
of𝐻(𝑥, 𝑦) are orthogonal.

The two eigenvalues can be obtained by solving the
characteristic polynomial

󵄨󵄨󵄨󵄨󵄨󵄨

𝜆−𝐼
𝑥𝑥
−𝐼
𝑥𝑦

−𝐼
𝑦𝑥
𝜆−𝐼
𝑦𝑦

󵄨󵄨󵄨󵄨󵄨󵄨
= 0 as follows:

𝜆
2
− (𝐼
𝑥𝑥
+ 𝐼
𝑦𝑦
) 𝜆 + 𝐼

𝑥𝑥
𝐼
𝑦𝑦
− 𝐼
2

𝑥𝑦
= 0. (A.7)

The two eigenvalues are equal if and only if

(𝐼
𝑥𝑥
+ 𝐼
𝑦𝑦
)
2

− 4 (𝐼
𝑥𝑥
𝐼
𝑦𝑦
− 𝐼
2

𝑥𝑦
) = 0. (A.8)

From (A.8) we have

(𝐼
𝑥𝑥
− 𝐼
𝑦𝑦
)
2

+ 4𝐼
2

𝑥𝑦
= 0. (A.9)

𝐻(𝑥, 𝑦) has two equal eigenvalues if and only if

𝐼
𝑥𝑥
= 𝐼
𝑦𝑦
,

𝐼
𝑥𝑦
= 𝐼
𝑦𝑥
= 0.

(A.10)

By solving (A.10), we have

𝐼
𝑥
= 𝑐
1
,

𝐼
𝑦
= 𝑐
2
,

(A.11)

where 𝑐
1
and 𝑐
2
are constant. To satisfy (A.11), 𝐼(𝑥, 𝑦) ≡ 𝑐,

where 𝑐 is constant; that is, the intensity of image 𝐼(𝑥, 𝑦) is
constant, which is in conflict with our application.Therefore,
for each point (𝑥, 𝑦) on image 𝐼(𝑥, 𝑦), the two eigenvalues 𝜆

1

and 𝜆
2
of the Hessian matrix𝐻(𝑥, 𝑦) are unequal.

Theorem A.4. If an image 𝐼(𝑥, 𝑦) ∈ C2, for any point (𝑥, 𝑦)
on 𝐼(𝑥, 𝑦), its eigenvalues and eigenvectors of Hessian matrix
are continuous.

Proof. If 𝐼(𝑥, 𝑦) ∈ C2, the Hessian matrix 𝐻(𝑥, 𝑦) is
(
𝐼
𝑥𝑥
𝐼
𝑥𝑦

𝐼
𝑦𝑥
𝐼
𝑦𝑦

), where the elements 𝐼
𝑥𝑥
, 𝐼
𝑥𝑦
, 𝐼
𝑦𝑥
, and 𝐼

𝑦𝑦
are all

continuous. According to the definition of eigenvalues, the
two eigenvalues 𝜆

1
(𝑥, 𝑦) and 𝜆

2
(𝑥, 𝑦) are two real roots of the

characteristic polynomial of𝐻:

𝑓 (𝜆) =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜆 − 𝐼
𝑥𝑥

−𝐼
𝑥𝑦

−𝐼
𝑦𝑥

𝜆 − 𝐼
𝑦𝑦

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= 0. (A.12)

For continuous functions, their roots are also continuous;
that is 𝜆

1
(𝑥, 𝑦) and 𝜆

2
(𝑥, 𝑦) are continuous. Therefore, the

eigenvalues of Hessian matrix of image are continuous.
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