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Abstract Methionine (Met) is an essential amino acid
and critical precursor to the cellular methyl donor
S-adenosylmethionine. Unlike nontransformed cells,
cancer cells have a unique metabolic requirement for
Met and are unable to proliferate in growth media
where Met is replaced with its metabolic precursor,
homocysteine. This metabolic vulnerability is com-
mon among cancer cells regardless of tissue origin
and is known as “methionine dependence”, “methio-
nine stress sensitivity”, or the Hoffman effect. The
response of lipids to Met stress, however, is not well-
understood. Using mass spectroscopy, label-free
vibrational microscopy, and next-generation
sequencing, we characterize the response of lipids to
Met stress in the triple-negative breast cancer cell line
MDA-MB-468 and its Met stress insensitive derivative,
MDA-MB-468res-R8. Lipidome analysis identified an
immediate, global decrease in lipid abundances with
the exception of triglycerides and an increase in lipid
droplets in response to Met stress specifically in
MDA-MB-468 cells. Furthermore, specific gene
expression changes were observed as a secondary
response to Met stress in MDA-MB-468, resulting in a
downregulation of fatty acid metabolic genes and an
upregulation of genes in the unfolded protein
response pathway. We conclude that the extensive
changes in lipid abundance during Met stress is a
direct consequence of the modified metabolic profile
previously described in Met stress–sensitive cells.
The changes in lipid abundance likely results in
changes in membrane composition inducing the
unfolded protein response we observe.
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Methionine (Met) metabolism is an integral aspect in
cellular function and is particularly important in can-
cer. Cancer cells that cannot proliferate in growth me-
dium when Met is replaced with its metabolic
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precursor, homocysteine (Hcy), have been character-
ized as being “methionine dependent” or “methionine
sensitive” (1). Previous studies indicate that cancer cells
that become resistant to Met stress or “methionine in-
dependent”, lose their transformed phenotype (2–4).
Just as other metabolic alterations have been recog-
nized as signatures of transformed cells, Met meta-
bolism is a unique metabolic requirement of cancer
and is referred to as the Hoffman effect (1, 5, 6).

Methionine is an essential metabolite and is the pre-
cursor to S-adenosylmethionine (SAM), the principal
methyl donor in the cell. SAM serves as a co-factor for a
variety of methyltransferases that catalyze methylation
events on DNA, RNA, proteins, and lipids (7). After
donating its methyl group, SAM is converted into
S-adenosylhomocysteine and further processed to
Hcy. At this point, Hcy can be catabolized in
the transsulfuration pathway or methylated to regen-
erate Met by way of methionine synthase and
5-methyltetrahydrafolate or betaine homocysteine
methyltransferase and betaine, a product of choline.
Both SAM and betaine are direct components of Met
metabolism and closely linked to phospholipid
processing.

Phosphatidylcholine (PC) and phosphatidylethanol-
amine (PE) are the two most abundant lipid species in
the cell and play an important structural role in cell
membranes. Both PC and PE can be synthesized de
novo through the two branches of the Kennedy
pathway referred to as the CDP-choline and CDP-
ethanolamine pathways, respectively (8, 9). In normal
cells, the majority of PC is synthesized through the
CDP-choline pathway. Choline links Met and PE meta-
bolism as it is a precursor of betaine, which can
regenerate Met by way of betaine homocysteine
methyltransferase, and it can be regenerated by PC
catabolism via phospholipase D (10). Interestingly, both
choline and PC levels have been shown to be aberrantly
upregulated in cancer along with many of their asso-
ciated enzymes including phospholipase D (11–14). In a
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less prominent pathway for PC synthesis, SAM is
necessary for three sequential methylations on PE by
the enzyme phosphatidylethanolamine N-methyl-
transferase (15, 16). In both human and yeast studies,
atypical Hcy or S-adenosylhomocysteine levels lead to
deregulation of phospholipid and triglyceride lipid
metabolism (17, 18). The level in which these two path-
ways can influence each other indicate a tight balance
between Met metabolism components and lipid
synthesis.

The connection between Met and lipid metabolic
pathways have been extensively researched in the
context of liver dysfunction and heart disease in the
presence of high Hcy levels. Recent work has extended
these studies to different types of cancers of varying
malignancy, and thus, the role of lipid metabolism and
its connection to the Met pathway is becoming more
clear in tumor progression and metastasis (13, 14, 19). In
a continued effort to understand the metabolic
response during Met stress, we performed lipidomic
analyses in parallel to the untargeted metabolic and
stable isotope-tracing study previously reported (4).
Using the Met-dependent, triple negative breast cancer
cell line MDA-MB-468 (MB468) and its Met-
independent derived clone MDA-MB-468res-R8
(MB468res-R8 or R8), we have characterized the dy-
namic lipid response in cancer cells during Met stress.
MATERIALS AND METHODS

Cell lines, growth conditions, and treatments
MB468 and MB468res-R8 cell lines were maintained in

DMEM (Sigma-Aldrich, D0422) supplemented with 10% dia-
lyzed FBS (Omega Scientific), 1.5 μM cyanocobalamin (vitamin
B12), 4 mM L-glutamine, 100 μM L-cysteine (Fisher Scientific),
and 100 μM L-methionine (Sigma-Aldrich). In the case of
methionine-free media, 370 μM DL-homocysteine (Sigma-
Aldrich) was added in the absence of methionine.

To induce ER stress, MB468 and MB468res-R8 cells were
treated with the 1 μM thapsigargin (Sigma-Aldrich, T9033) for
4 h. To inhibit PERK activation, cells were treated with 1 μM
GSK2656157 (Millipore Sigma, 5.04651.0001) 1 h before media
switch or thapsigargin treatment and replaced in the new
media.
Lipidome analysis
Lipidome analysis was performed by collecting 5 × 106 cells

per sample—pellet weights were measured for additional
normalization. Each time point includes four biological rep-
licates. Cell lysates were extracted as previously described (20).
Briefly, 225 μl of chilled methanol containing an internal
standard mixture [PE (17:0/17:0); PG (17:0/17:0); PC (17:0/0:0);
C17 Spingosine; C17 Ceramide; SM (d18:0/17:0); Palmitic Acid-
d3; PC (12:0/13:0); Cholesterol-d7; TG (17:0/17:1/17:0)-d5; DG
(12:0/12:0/0:0); DG (18:half:0/0:0); MG (17:0/0:0/0:0); PE (17:1/
0:0); LPC (17:0); LPE (17:1)] and 750 μl of chilled methyl tertiary
butyl ether (Sigma-Aldrich) containing the internal standard
22:1 cholesteryl ester was added to cell lysates. Isotopically
labeled internal standards included deuterated (d)-palmitate-
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d3, cholesterol-d7, and TG(17:0/17:0/17:0)-d5. Remaining lipid
standards were selected as these were not identified in human
plasmas during method development. We note that internal
standards were used for normalization purposes and to cor-
rect for retention time drift, thereby increasing accuracy of
annotations. Samples were shaken for 6 min at 4◦C using an
Orbital Mixing Chilling/Heating Plate (Torrey Pines Scienti-
fic Instruments) followed by the addition of 188 μl of room
temperature distilled water. Samples were vortexed, centri-
fuged, the upper layer transferred to a new 1.5 ml micro-
centrifuge tube, and subsequently dried to completeness
under reduced pressure. Upon complete dryness, samples
were resuspended in methanol:toluene (90:10) with 50 ng/ml
12-[[(cyclohexylamino)carbonyl]amino]-dodecanoic acid
(Cayman Chemical).

Lipid extracts were subsequently analyzed on an Agilent
1290A Infinity Ultra High Performance Liquid Chromatog-
raphy system with an Agilent Accurate Mass-6530-QTOF in
both positive and negative mode. The column (65◦C) was a
Waters Acquity UPLC CSH C18 (100 mm length × 2.1 mm
internal diameter; 1.7 μM particles) containing a Waters Acq-
uity VanGuard CSH C18 1.7 μM pre-column. The solvent sys-
tem included A) 60:40 v/v acetonitrile:water (LCMS grade)
containing 10 mM ammonium formate and 0.1% formic acid
and B) 90:10 v/v isopropanol:acetonitrile containing 10 mM
ammonium formate and 0.1% formic acid. The gradient
started from 0 min 15% (B), 0–2 min 30% (B), 2–2.5 min 48%
(B), 2.5–11 min 82% (B), 11–11.5 min 99% (B), 11.5–12 min 99% (B),
12–12.1 min 15% (B), and 12.1–15 min 15% (B). The flow rate was
0.6 ml/min and with an injection volume of 1 μl for ESI (+)
and 5 μl for ESI (−) mode acquisition. ESI capillary voltage
was +3.5 kV and −3.5 kV with collision energies of 25 eV and
40 eV for MS/MS collection in positive and negative acqui-
sition modes, respectively. Data were collected at a mass range
of m/z 60–1,700 Da with a spectral acquisition speed of 2
spectra per second. Method blanks and pooled bioreclamation
plasma samples were included to serve as additional quality
controls.

Data were processed using MZmine 2.10. All peak intensities
are representative of peak heights. Peaks were annotated by
matching experimental accurate mass MS/MS spectra to MS/
MS libraries including Metlin-MSMS, NIST12, and LipidBlast
(2). Spectral matching was automated using the MSPepSearch
tool and manually curated using the NIST Mass Spectral
Search Program v.2.0g. Metabolite libraries were created, in
positive and negative ionization modes, containing all
confirmed identified compounds. MZmine's Custom database
search tool was used to assign annotations based on accurate
mass and retention time matching using a m/z tolerance of
10 ppm and a RT tolerance of 0.1 min.
Coherent anti-Stokes Raman scattering/stimulated
Raman scattering microscopy

MB468 and MB468res-R8 cells were seeded at 200,000 cells
per plate, 24 h before the start of the experiment in 35 mm
glass bottom dishes (Fisher Scientific, NC9268399). Cells were
rinsed twice with PBS before a media switch to methionine
media (Met+) or homocysteine media (Met-Hcy+) for 0, 0.5, 2,
4, or 12 h. Cells were fixed before imaging by washing twice
with PBS, treating with a 4% formaldehyde/PBS solution for
20 min at room temperature, washing with PBS three times,
and storing cells at 4◦C in PBS.

For lipid labeling experiments, MB468 and MB468res-R8
cells were seeded in 35 mm glass bottom dishes at 350,000
cells per plate, 12 h before the start of the experimental time



course. Cells were cultured in either unlabeled glucose media or
labeled glucose media prepared with 100 μM L-methionine or
370 μMDL-homocysteine. Unlabeled glucose media contains 4.5 g/
L of glucose, and labeled glucose media contains 4.5 g/L of
D-glucose-1,2,3,4,5,6,7-d7 (Sigma-Aldrich, 552003). Recipe for
base media: DMEM without glucose (Caisson Labs, DMP04-
10LT) supplemented with 10% dialyzed FBS (Omega Scienti-
fic), 1.5 μM vitamin B12, 4 mM L- glutamine, 1 mM sodium
pyruvate, 44 mM sodium bicarbonate, and 50x amino acid mix.
Recipe for 50x amino acid mix: L-arginine HCl 0.084 g/L,
cysteine HCl 0.018 g/L, glycine 0.03 g/L, L-histidine HCl
0.042 g/L, L-isoleucine 0.105 g/L, L-leucine 0.105 g/L,
L-phenylalanine 0.066 g/L, L-serine 0.066 g/L, L-threonine
0.095 g/L, L-tryptophan 0.016 g/L, and L-valine g/L.

Lipid synthesis analysis was performed by culturing cells in
unlabeled glucose media with Met for 12 h, washing cells twice
with PBS, adding labeled glucose media with Hcy for 0, 0.5, 2, 4, or
12 h, and then fixing with formaldehyde as described above.
Lipid degradation analysis was performed by culturing cells
in labeled glucose media with Met for 12 h, washing cells twice
with PBS, adding unlabeled glucose media with Hcy, and then
fixing with formaldehyde as described above.

Cells were imaged using a 76-MHz mode-locked Nd:vana-
date laser that provides a beam at 1,064 nm functioning as the
Stokes beam and a second harmonic generated beam at
532 nm to pump an optical parametric oscillator. The pump
beam generated by the optical parametric oscillator is
spatially and temporally overlapped with the Stokes beam and
sent to the microscope. The two beams are focused on the
cells through a 60×, 1.2 numerical aperture water objective
lens. The generated coherent anti-Stokes Raman scattering
(CARS) signals are collected through the condenser and
focused onto a Hamamatsu photomultiplier tube with a 650 ±
50 nm bandpass filter in front. The stimulated Raman scat-
tering (SRS) signals are collected and detected with a Thorlab
photodiode (FDS1010, Thorlabs, Inc.) and a high O.D. bandpass
filter (Semrock, Inc.) Both signals were measured to identify
the cells and their morphology using the nonresonant back-
ground (CARS) and quantify lipid content (SRS, which is
background free).
Gene expression analysis
Total RNA from MB468 and MB468res-R8 cells was

extracted using the RNeasy Plus Mini Kit (Qiagen, 74134), and
library preparation was performed using the TruSeq RNA
Library Preparation Kit v2 (Illumina, RS-122-2001 and RS-122-
2002) with the ERCC RNA Spike-In mix (ThermoFisher,
4456740) to control for sample preparation variation. PolyA
selected libraries were sequenced using single-end, 100 bp
reads at the University of California, Irvine Genomics High
Throughput Facility on an Illumina HiSeq 4000 system.

Raw reads were aligned to a custom reference sequence,
defined as the union of the human reference genome
(GRCh38/hg38, UCSC Genome Browser) and the ERCC spike-
in sequences (http://tools.invitrogen.com/downloads/
ERCC92.fa) using HISAT2 alignment software (21). Number
of reads mapped to each gene feature was quantified by
featureCounts in the Rsubread package, and unwanted sam-
ple variation was determined by RUVSeq (22, 23). Read counts
were normalized, and differential gene expression analysis
was performed using DESeq2 (24). Pathway enrichment
analysis was conducted via gene-set enrichment analysis (25).
Gene-set enrichment analysis was performed on the DESeq2
normalized expression signals via a running-sum statistic
procedure to determine the enrichment of biological
Lipid
pathways from the Molecular Signature Database Hallmark
Gene Set Collection (26).

Real-time quantitative PCR analysis
Total RNA from MB468 and MB468res-R8 cells was

extracted using the RNeasy Plus Mini Kit (Qiagen, 74134).
Equal amounts (1.5 μg) of RNA was reverse transcribed using
SuperScript II Reverse Transcriptase (Invitrogen) per manu-
facturer's instructions—with the exception of using 0.3 uL of
SuperScript II per reaction. Gene expression was quantified
using SYBR Green (Bio-Rad, 1725124) and Bio-Rad CFX
Connect real-time PCR detection system. Primer sequences
are as follows: CHOP (forward) 5′-AGAACCAGGAAACG-
GAAACAGA-3′, (reverse) 5′-TCTCCTTCATGCGCTGCTTT-
3′; ASNS (forward) 5′-TGCACCATGTGTGGCATTTG-3′;
(reverse) 5′-AGCAGCAGTTGGTGTATCCAT-3′. Relative
gene expression to Met+ control sample was determined us-
ing CFX Maestro software (Bio-Rad).

RESULTS

Methionine stress induces a global lipid response
Unlike normal, nontransformed cells, the majority of

cancer cells are unable to survive in growth media
where Met has been replaced with its metabolic pre-
cursor, Hcy (4, 27–30). To elucidate the role of Met in
cancer, we use a Met-dependent and Met-independent
cell pair: MB468 and MB468res-R8, respectively. While
reversion of a transformed, Met-dependent cell to a
nontransformed, Met-independent phenotype is a rare
event, MB468 cells are one of the few cell lines capable
of such a reversion. As previously reported by Hoff-
man et al. (3), we were able to generate Met-independent
clones by culturing the parental cell line, MB468, in Hcy
media (Met-Hcy+) for a prolonged period of time (4, 30,
31). The revertant clone, MB468res-R8, was selected as a
control for these studies as it most closely resembles the
parental cell in both morphology and proliferation rate
while exhibiting a nontransformed, Met-independent
phenotype (4, 30).

Using MB468 and MB468res-R8 cells, we previously
reported immediate metabolic changes in response to
Hcy media in a cell line–specific manner (4). We
further expanded on these metabolic findings and
focused on the lipidomic response during Met stress.
Both MB468 and MB468res-R8 cells were cultured in
normal, Met media (Met+), or transitioned to Hcy me-
dia (Met-Hcy+) for 2, 4, 8, 12, and 24 h, and lipids were
measured by ultra-high performance liquid chroma-
tography-quadrupole time-of-flight mass spectroscopy
(Fig. 1). We focus on early time points to avoid cell cycle
effects imposed by the arrested growth of MB468 and
continued proliferation of MB468res-R8 in Met-Hcy+
media (4, 30). Within 2 hours of exposure to Met-
Hcy+ media, we observe a remarkable decrease in all
lipid classes in MB468 cells (Fig. 1A). Interestingly, tri-
glyceride abundance levels began a steady trend of
recovery as early as 4 h postmedia switch, unlike the
majority of lipid classes measured. In contrast to MB468
remodeling in response to methionine stress in cancer 3
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Fig. 1. Homocysteine media induces a global lipid response in MB468 and MB468res-R8 cells. A: MB468 and (B) MB468res-R8 cells
were cultured in Met+ or Met-Hcy+ media over the course of 24 h, measured by ultra-high performance liquid chromatography-
quadrupole time-of-flight mass spectroscopy, and normalized to dry cell weight. Heatmaps indicating lipid classes are color filled
based on relative change to the Met+, time-zero sample. Yellow indicates a decrease in metabolite abundance, and magenta indicates
an increase relative to Met+, time-zero control. Cer, ceramide; DG, diglyceride; GlcCer, glucosylceramide; LPC, lysophosphati-
dylcholine; PC, phosphatidylcholine; PE, phophatidylethanolamine; PG, phosphatidylglycerol; PI, phosphatidylinositol; PS, phos-
phatidylserine; SM, sphingomyelin; TG, triglyceride.
cells, the Met-independent MB468res-R8 cells show a
global increase in lipid abundance with the exception
of triglycerides (Fig. 1B). The decline in MB468res-R8
triglyceride levels is not as immediate as observed in
MB468 cells, it takes up to 4 h in Met-Hcy+ media to
observe a decline in the majority of triglyceride species.
The contrast in global lipid behavior between the two
cell lines may suggest differential coping mechanisms
in response to Met stress or the remodeling of lipid
behavior in MB468 as opposed to the expected general
lipid increase/decrease trend for a proliferating cell in
MB468res-R8. Importantly, these effects are initiated
4 J. Lipid Res. (2021) 62 100056
long before cell cycle arrest is induced and are thus
autonomous responses in lipid metabolism character-
istic for the Met-dependent state (30).

Phosphatidylcholine and phosphatidylethanolamine
abundance acutely decrease in response to
methionine stress

Phospholipids are the largest class of lipids in the cell,
and their synthesis is directly connected to Met meta-
bolism (Fig. 2A). Both PC and PE are synthesized de
novo in the endoplasmic reticulum via the Kennedy
pathway using choline and ethanolamine, respectively
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Fig. 2. Phospholipids respond to homocysteine in MB468 cells. A: Schematic of homocysteine metabolism indicating the connection
of SAM and choline in phospholipid synthesis. Three methylation reactions on PE using SAM as a co-factor are necessary to syn-
thesize PC through the PEMT pathway. Choline is used as a precursor to PE in the Kennedy pathway. PC contributes to free choline
through the enzyme phospholipase D. Figure adapted from Obeid et al. (32). Both MB468 (magenta) and MB468res-R8 (gray) were
cultured in Met+ or Met-Hcy+ media over the course of 24 h, measured by ultra-high performance liquid chromatography-
quadrupole time-of-flight mass spectroscopy, and normalized to dry cell weight. B: PC and (C) PE peak height values of all lipid
species within each class were combined for each replicate and plotted for each time point. All time points are normalized to the
median value of the Met+, time-zero sample. D: The ratio of PC/PE is plotted for MB468 and MB468res-R8 cell lines. Mean values of
replicates for (A) PC and (B) PE were calculated for each time point, and PC mean values were divided by PE mean values for each
time point. Statistical significance of difference between means was determined by Welch's t-tests and Benjamini-Hochberg pro-
cedure using the Met+, time-zero sample as a reference, P-values are indicated: *P ≤ 0.05. E: Diacylglyceride values were calculated
and plotted as described above for PC and PE. F: Choline peak height values are shown at 0, 4, 12, and 24 h postmedia switch. DMG,
dimethylglycine; GSH, reduced glutathione; GSSG, oxidized glutathione; Hcy, homocysteine; Met, methionine; 5-MTHF,
5-methyltetrahydrofolate; PC, phosphatidylcholine; PE, phosphatidylethanolamine; PEMT, phosphatidylethanolamine N-methyl-
transferase; SAH, S-adenohomocysteine; SAM, S-adenosylmethionine; THF, tetrahydrofolate.
(8). Choline not only serves as a precursor to PC but
provides cellular betaine that can remethylate Hcy for
Met regeneration (7, 33). As indicated by global lipid
analysis (Fig. 1), MB468 and MB468res-R8 levels of PC
(Fig. 2B) and PE (Fig. 2C) respond to Met-Hcy+media in
distinct fashions. In MB468 cells, PC and PE abundance
levels drop below 90% and 80%, respectively, within 2 h
postmedia switch. However, lipid abundances in
MB468res-R8 cells indicate a steady increase over time
and return to starting abundance levels by
24 h—following an expected lipid abundance trajec-
tory for proliferating cells.

PE can be methylated three times by phosphatidyl-
ethanolamine N-methyltransferase using SAM as a
methyl donor to synthesize PC (Fig. 2A) (9). Although
newly synthesized SAM levels are reduced during Met
stress, the PC/PE ratio increases within 2 h postmedia
switch in MB468 cells (Fig. 2D) (4). This result excludes
SAM limitation as a driving factor for PC and PE
reduction, because if SAM were the limiting factor in
PC synthesis, a decrease in the PC to PE ratio would be
Lipid
observed (34). However, the PC/PE ratio increase is
likely because of a greater loss of PE levels than PC as
previously noted. While declining abundance is
observed in both PC and PE in response to Met-Hcy+
media, the considerable reduction of PE may indicate
a greater sensitivity in this lipid class to Met stress as has
been shown for ferroptosis (35).

It is interesting to note phospholipid abundances in
time-zero samples cultured in Met+ media (Table 1). In
breast cancer, PC and PE are detected at elevated levels
as compared with normal cell and tissue samples, and
fittingly, PE levels are approximately three times
higher in MB468 than MB468res-R8 cells (36). In
contrast, PC levels are comparable between the two cell
lines. The increase in PE in MB468 may put these cells
in a vulnerable state as the PC/PE ratio is modified and
perhaps less resilient to stress, making the cells more
susceptible to damage by oxidative stress and inducing
an ER stress response by lipid disequilibrium (37).

Both diacyglycerol (DAG) and choline contribute to
the biosynthesis of PC and PE in the Kennedy pathway
remodeling in response to methionine stress in cancer 5



TABLE 1. Mean peak height values of phospholipids in methionine media, time-zero samples

Lipid Speciesa MB468 Mean MB468 Std. Dev MB468resR8 Mean MB468resR8 Std. Dev MB468/R8 Ratiob P-Valuec

PC 7.5e+07 5.5e+06 7.9e+07 6.1e+06 0.95 3.6e-01
PE 7.3e+06 9.1e+05 2.6e+06 2.7e+05 2.80 1.1e-03
PC/PE 1.0e+01 5.2e-01 3.0e+01 1.2 0.34 5.7e-06
PPC 2.5e+06 3.6e+05 1.2e+05 9.2e+03 20.44 8.6e-04
PPE 3.4e+06 6.1e+05 1.2e+06 1.1e+05 2.94 4.1e-03
PC/PPC 3.0e+01 1.9 6.3e+02 6.4 0.05 4.2e-08
PE/PPE 2.1 1.1e-01 2.2 4.5e-02 0.96 2.0e-01

PC, phosphatidylcholine; PE, phophatidylethanolamine.
aLipid species were combined for each lipid class within each of the four replicates. These values were then used to calculate the mean

values and standard deviations.
bThe MB468 andMB468res-R8 ratios for each lipid class were calculated by taking the MB468 mean value and dividing by the MB468res-

R8 (R8)\mean value.
cSignificance was calculated using a Welch's t-test (unpaired, two-sided, unequal variance, 95% confidence level) comparing the time-zero,

control sample replicate values of MB468 and MB468res-R8.
in the ER (9). With its own unique metabolic response to
Met-Hcy+ media, DAGs gradually decrease over time
in MB468 cells, whereas little change is observed in
MB468res-R8 cells (Fig. 2E). Interestingly, choline
abundances increase after 12 h postmedia switch in
MB468 and within 4 h in MB468res-R8—a similar
response to Met-Hcy+ media as previously reported on
reduced and oxidized glutathione (Fig. 2F) (4). The
unique profile of DAGs in MB468 may reflect its
depletion as the cell attempts to restore declining PC
abundances and choline levels increase to meet the
sudden demand of PC synthesis. Furthermore, DAG
depletion could also be a result of its use as a precursor
for other lipid species including phosphatidic acid and
triglycerides (38).

Oxidative stress–induced lipid peroxidation may
influence lipid remodeling

The immediate decrease in global lipid abundances
in response to Met-Hcy+ media likely indicates lipid
damage. Lipid peroxidation is a process that targets
unsaturated lipids in the presence of free radicals or
prooxidants and is one potential route for lipid damage
when cells are cultured in Met-Hcy+ media. In the
presence of oxidative stress, prooxidants attack unsat-
urated lipids resulting in lipid radicals. Lipid peroxyl
radicals are produced when oxygen reacts with the
lipid radical, and these reactive lipid species propagate
damage by reacting with more unsaturated lipids.
Neither lipid radicals nor lipid peroxyl radicals are
identified as the original lipid species because the mass
(m/z) is altered, and therefore, a different spectrum for
the newly formed oxidized lipid species is generated
(39, 40). In our study, we did not employ mass spec-
trometry techniques to measure oxidized lipids; how-
ever, we have previously measured oxidized lipids in
individual cells using fluorescence lifetime imaging
and showed a rapid and dramatic increase in oxidized
lipids when MB468 cells are shifted to Hcy medium (4).
We therefore suggest that the immediate decrease in
lipid abundance is because of an increase in oxidized
lipid species that are no longer interpreted as the
6 J. Lipid Res. (2021) 62 100056
original lipid species. The lipid peroxidation reaction
can be terminated in the presence of an antioxidant
such as reduced glutathione, a cellular oxidant readily
available to neutralize casualties of oxidation (41, 42).

As previously reported, both reduced and oxidized
glutathione levels increase in response to Hcy
media–induced oxidative stress in MB468 and
MB468res-R8 cells (4). Interestingly, glutathione levels
increase in MB468 cells by 12 h postmedia switch,
whereas MB468res-R8 cells respond earlier within 4 h.
This delayed glutathione response in MB468 may allow
lipid peroxidation to occur, decreasing phospholipid
abundances immediately. Upon glutathione upregula-
tion in MB468, phospholipids attempt to recover to
starting levels without success by 24 h postmedia switch
(Fig. 2B, C). Upregulation of glutathione suggests a
response to oxidative stress, which is further validated
by oxidative stress assays in MB468 and MB468res-R8
cells that indicate a mild reduction in ROS levels over
time in Hcy media (supplemental Fig. S1).

It is worth noting that MB468res-R8 cells may be able
to further circumvent lipid damage and facilitate re-
covery with an increase in glutamine. As glutamine can
contribute to the cysteine pool for GSH synthesis and
thus cellular redox homeostasis, we observe an early
increase in glutamine within 2 h postmedia switch (P =
0.007), which coordinates with our previous cysteine
results (4). In MB468 cells, however, no significant
changes are observed (ANOVA P = 0.747). It is likely
that the increased abundance of glutamine also con-
tributes to the spike at 2 h postmedia switch observed in
alpha-ketoglutarate (P ≤ 0.001), citric acid (P = 0.01084),
and malic acid (P ≤ 0.001) in MB468res-R8 cells. These
concomitant increases in tricarboxylic acid cycle me-
tabolites and precursors for lipid metabolism may help
alleviate the consequences of Met stress in MB468res-
R8 cells.

Triglycerides have a distinct response to methionine
stress

An immediate global lipid response to Met stress is
only observed in MB468 cells, yet both cell lines indicate



a unique behavior in triglycerides as compared with
other lipid species. Here, we focus on triglycerides from
the lipidomic experiment summarized in Fig. 1. To
understand the overall response of triglycerides over
time in Met-Hcy+ media, all MB468 and MB468res-R8
triglyceride lipid abundances were clustered, and four
distinct trends were identified (Fig. 3A) (43). Each
cluster represents a unique trend, and there is
remarkably minimal to no overlap of cell origin, con-
firming the distinct triglyceride response in Met-
dependent and Met-independent cells. MB468 tri-
glycerides typically decline in abundance within 2 h
postmedia switch and attempt to recover by 8 (cluster 1)
or 24 h (cluster 2) (Fig. 3A). MB468res-R8 cells also
separate into two unique clusters, one with declining
abundances by 4 h postmedia switch (cluster 3) and
another that first increases in abundance at 2 h post-
media switch then decreases at 12 h (cluster 4) (Fig. 3A).
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Lipid
These differences in triglyceride trajectories indicate
that both cell lines have a unique response to Met-Hcy+
media and a unique feature of triglycerides segregates
the cell-dependent response.

Triglycerides consist of a glycerol backbone and
three fatty acid (FA) tails of varying chain length and
unsaturated, double bonds. In order to determine any
unique features of triglycerides that may be most
affected during Met stress, correlation tests were per-
formed on triglycerides in MB468 and MB468res-R8.
We first tested lipid species with a combined tail
length between 50 and 58 carbons and a single unsat-
urated bond. Our results indicate that both MB468 and
MB468res-R8 triglycerides with a combined tail length
of 50 carbons have unique profiles that only correlate
with lipid species within each cell line (Pearson corre-
lation coefficient r = 0.56) (Fig. 3B, top left panel). As
the combined tail length increases to a combined length
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of 58 carbons, the profiles of both cell lines begin to
look more similar (Pearson correlation coefficient r =
0.87) (Fig. 3B, bottom left panel). Next, we performed
correlation tests on triglycerides in MB468 and
MB468res-R8 with a combined tail length between 50
and 58 carbons and 4 unsaturated bonds. Our results
indicate distinct profiles in MB468 and MB468res-R8
cells for lipid species with a combined tail length of
50 (Pearson correlation coefficient r = 0.03) (Fig. 3B, top
right panel). Interestingly, at a combined tail length of
58 carbons, the lipid profiles in MB468 and MB468res-
R8 become inversely correlated (Pearson correlation
coefficient r = −0.68) (Fig. 3B, bottom right panel).
These data suggest a particularly unique response of
longer chain, heavily desaturated triglycerides in Met-
dependent and Met-independent cells.

Further analysis of cluster composition indicates that
the number of unsaturated bonds is the unique feature
separating the triglyceride response to Met-Hcy+media
(Fig. 3A). Triglycerides in MB468 are primarily repre-
sented in clusters 1 and 2 (Fig. 3A); between these two
clusters, cluster 1 mostly contains single unsaturated
lipids, whereas cluster 2 contains lipid species with 3 or
more unsaturated bonds (Fig. 3C). MB468res-R8 pre-
dominantly composes clusters 3 and 4 (Fig. 3A), with a
distinct division of lipids in cluster 3 containing only
lipid species with 1–3 unsaturated bonds and a range of
unsaturated lipid species in cluster 4 (Fig. 3D).

These data indicate that MB468 and MB468res-R8
cells have unique lipid profiles in response to Met-
Hcy+ over time regarding abundance levels. Both cell
lines have unique profiles for lipid species with a single
unsaturated double bond compared with four unsatu-
rated, double bonds with little to no difference in
profiles with the same number of unsaturated bonds
but of varying combined tail lengths.

Lipid droplets accumulate in MB468 in response to
methionine stress

In addition to modified triglyceride behavior, an in-
crease in lipid droplet abundance is also observed in
MB468 cells in response to Met stress. Lipid droplets are
dynamic organelles originating from the ER and
comprised of a neutral lipid core of triglycerides and
cholesterol esters surrounded by a phospholipid
monolayer (44). Using CARS and SRS microscopy to
specifically detect C-H bonds in FAs, we quantify lipid
content per cell (45). Using this method, lipid abun-
dances are measured as the number of pixels that
belong to lipid droplets in a cell over the total pixel
numbers of the entire cell (46).

Both MB468 and MB468res-R8 cells were cultured in
Met+ (0 h) or Met-Hcy+media (0.5, 2, 4, 24 h), and fixed
samples were analyzed by CARS microscopy (Fig. 4A,
B). In normal culturing conditions (Met+), MB468res-
R8 cells have twice the lipid content per cell of
MB468 cells (P ≤ 0.001). However, lipid content per cell
does not change in MB468res-R8 cells upon Met-Hcy+
8 J. Lipid Res. (2021) 62 100056
media switch (ANOVA P = 0.93). In contrast, MB468
lipid content per cell increases within 30 min postmedia
switch to Met-Hcy+, and elevated abundance levels
remain stable after 2 h exposure to Met stress (ANOVA,
P ≤ 0.001). It is important to note that both lipid droplets
and triglycerides have been linked directly with
oxidative phosphorylation, for which we observe a
downregulation in both MB468 and MB468res-R8 cells
(4, 47, 48). Thus, the differences observed in both tri-
glyceride trends and lipid droplet accumulation in
response to Hcy media are likely not a result of
impaired oxidative phosphorylation alone.

To better understand the remodeling of lipid meta-
bolism in MB468—specifically the acute decrease in
lipid abundance (Fig. 1A) and increase in lipid droplets
(Fig. 4A, B), we combined SRS and CARS microscopy
methods with deuterium-labeled glucose as a lipid
precursor to label and monitor lipid dynamics (49, 50).
Two experiments were designed to understand the
mechanism of lipid degradation and synthesis during
Met stress. First, we measured lipid degradation in
MB468 and MB468res-R8 by labeling lipids with
deuterated glucose in Met+ media for 12 h then
switching the cell cultures to unlabeled Met+ (0 h) or
Met-Hcy+ media (0.5, 2, 4, 12 h) (Fig. 4C, left panel and
Fig. 4D). Fixed samples were measured using SRS and
CARS microscopy for deuterium-labeled lipid droplets
and total lipid pool. Both cell lines were labeled to
approximately ∼20% after the 12 h labeling period, and
lipid content (deuterium-labeled lipid droplets/ total
lipid pool) was normalized to the unlabeled, time-zero
sample. Both cell lines presented similar decreasing
trajectories over time, although MB468res-R8 cells lose
their label faster within the first 30 min postmedia
switch (MB468–0.16, MB468res-R8–0.13). However,
labeled lipid content per cell ratios between the cells
maintain a 0.03 difference over time. Thus, lipid
degradation appears very similar in both Met-
dependent and -independent cell lines.

Alternatively, lipid synthesis was determined by
monitoring the increased presence of deuterium-
labeled lipid content per cell over time. Both MB468
and MB468res-R8 cell lines were cultured in Met+ (0 h)
or Met-Hcy+ media prepared with deuterium-labeled
glucose (0.5, 2, 4, 12 h) and imaged by SRS and CARS
microscopy (Fig. 4C, right panel and Fig. 4E). MB468
cells respond to the Met-Hcy+ media shift with a rapid
increase in lipid synthesis up to 4 h postmedia switch as
compared with MB468res-R8. However, lipid synthesis
plateaus after 2 h in Met-Hcy+ media, whereas
MB468res-R8 continues to synthesize lipids resulting in
significantly more lipid synthesis after 12 h postmedia
switch. With similar rates of lipid degradation between
MB468 and MB468res-R8 cells, it appears that lipid
synthesis is the predominate responding pathway to
Met stress. The immediate acceleration of synthesis is
likely a response to compensate for acute global loss of
lipids (Fig. 1A), but the increased rate of synthesis is not
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sustained in Met-dependent cells, thus, leading to
overall lower lipid production as compared with Met-
independent MB468res-R8 cells (Fig. 4B).

Gene expression during methionine stress
To further elucidate the metabolic response to Met

stress, gene expression analysis was performed on
MB468 and MB468res-R8 cells cultured in Met+ (0 h) or
Met-Hcy+ media (2 or 12 h). Although MB468 and
MB468res-R8 cells originate from the same genetic
background, their expression profile in Met medium
was surprisingly different. When these cells were shif-
ted to Met-Hcy+ medium, expression programs in both
cell lines were significantly remodeled to adapt to the
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modified growth conditions. Expression changes in
response to Met stress were specific for MB468 and
MB468res-R8 cells. Expression changes were only
observed after prolonged culturing under Met stress,
indicating that the observed rapid effects on lipid
profiles were likely independent from transcription
(Fig. 5A and Table 2). We applied gene set enrichment
analysis using hallmark gene set collections and
observed a prominent downregulation of FA metabolic
genes in MB468 cells at 12 h postmedia switch as
compared with MB468res-R8 cells (Fig. 5B) (25, 26, 51).
Further analysis of gene ontology FA pathways indi-
cated a 2-fold downregulation of 22.3% of genes in FA
biosynthetic processes and 15.9% of genes in the FA
Fatty Acid Gene Sets
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TABLE 2. MB468 fatty acid metabolic genes upregulated or
downregulated at 2 and 12 h postmedia switch as compared to time-

zero

GO Pathway Genea
Fold

Change—2 h
Fold

Change—12 h

Biosynthetic process PTGIS 0.88 0.19
Biosynthetic process FADS1* 0.97 0.22
Biosynthetic process MSMO1 0.85 0.22
Biosynthetic process EDN2* 0.99 0.23
Biosynthetic process FADS2* 0.95 0.24
Biosynthetic process PTGS1 0.76 0.24
Biosynthetic process SCD 0.89 0.25
Biosynthetic process AKR1C3* 1.03 0.26
Biosynthetic process FASN* 0.98 0.30
Biosynthetic process LTA4H* 1.00 0.37
Biosynthetic process ELOVL6* 0.92 0.40
Biosynthetic process FA2H* 1.09 0.41
Biosynthetic process GGT1 0.65 0.42
Biosynthetic process ACLY* 0.97 0.42
Biosynthetic process ELOVL5* 1.00 0.43
Biosynthetic process ABCD3* 0.93 0.45
Biosynthetic process ALOX15* 0.97 0.47
Biosynthetic process OXSM* 0.94 2.27
Biosynthetic process MGLL* 1.02 2.38
Biosynthetic process MLYCD 0.89 2.40
Biosynthetic process ALOXE3 2.12 11.43
Beta oxidation CRAT* 0.96 0.21
Beta oxidation ACADS* 0.90 0.37
Beta oxidation ABCD3* 0.93 0.45
Beta oxidation ACADM* 1.01 0.48
Beta oxidation ECI2 0.89 0.48
Beta oxidation BDH2* 1.08 0.49
Beta oxidation ACOX3 0.83 0.49
Beta oxidation SESN2 4.86 8.10

aGenes marked with (*) indicate fold change between 0.9 and 1.1
at 2 h postmedia switch.
beta-oxidation pathway at 12 h postmedia switch as
compared with time-zero (Fig. 5C and Table 2). MB468
upregulated genes in FA biosynthetic and beta-
oxidation processes are minimal—5.6% and 2.3%,
respectively. As previously noted, effects on transcrip-
tion are mostly delayed as exemplified by the gene
expression profiles of FASN, ELOVL6, and ACLY in
the FA biosynthetic processes pathway and CRAT,
ACADM, and ACADS in the FA beta-oxidation
pathway (Table 2). Therefore, it seems that a global
shut down in lipid metabolism is a consequence of Met
stress with a more pronounced effect in gene synthesis
at 12 h postmedia switch.

The global lipid response, remodeled triglyceride
behavior, decrease in lipid synthesis, and increase in
lipid droplet abundance suggest that Met stress may
largely affect functions of the ER. To further investi-
gate this connection, we looked into the unfolded pro-
tein response (UPR), which is a cellular stress response
pathway related to the ER and the ER stress response.
Gene set enrichment analysis indicates no uniform
response in UPR as subsets of genes are both upregu-
lated and downregulated by 12 h postmedia switch
(Fig. 5D). However, key genes found downstream of the
UPR, including C/EBP homologous protein (CHOP),
asparagine synthetase (ASNS), GADD34, and FGF21
were upregulated (Fig. 5E–H).
Lipid r
To understand the response of CHOP and ASNS,
quantitative PCR was performed on MB468 and
MB468res-R8 cells cultured in Met+, Met-Hcy+, or
Met+Hcy+ medias. Cells were also treated with the ER
stress inducing agent thapsigargin as a positive control
(Fig. 5G, H). CHOP is a multifunctional transcription
factor that responds to a wide variety of cellular stresses
and is well-known to be upregulated during UPR and
ER stress responses (52). As expected, CHOP was upre-
gulated in response to thapsigargin in both MB468 and
MB468res-R8 (Fig. 5G). Interestingly, CHOP was also
upregulated in MB468, but not MB468res-R8, cells
when cultured in Met-Hcy+media. Furthermore, ASNS
is transcriptionally regulated by activating transcript 4
and CHOP during the UPR and amino acid response
(53, 54). While ASNS expression levels are moderately
elevated in response to thapsigargin in both MB468 and
MB468res-R8, a 2-fold upregulation is observed in
MB468 cultured in Met-Hcy+ media (Fig. 5H). Both
CHOP and ASNS upregulation is observed during Met
stress in MB468 cells, suggesting full or partial activa-
tion of multiple stress response pathways, including ER
stress, UPR, and the amino acid response.

DISCUSSION

We monitored lipid species during the initial phases
of Met stress response in triple negative breast cancer
cells MDA-MB-468. This cell line has been selected as a
model because genetically largely identical, but Met-
independent derivatives MB468res-R8 have been
developed (4, 30, 31). We found extensive and fast lipid
remodeling in response to Met stress in the breast
cancer cell line MB468. We show an immediate, global
decrease in lipid abundances with the exception of
single unsaturated triglycerides, that was specific for
Met-dependent cancer cells. Furthermore, lipid content
per cell increases in response to Met stress specifically
in MB468 but not MB468res-R8 cells. Gene expression
changes are observed as a later response, indicating an
overall decrease in FA metabolic genes and an upre-
gulation of specific genes downstream of the unfolded
protein response pathway, which was not observed in
Met-independent cells.

Interestingly, numerous reports indicate that Hcy
influences triglyceride biosynthesis and export, ER
stress and UPR induction, and gene expression in
cardiac and hepatic systems (55–57). Here, we see a
comparable response profile in a cancer-specific
setting that investigates the cell proliferation arrest
and apoptosis when cancer cells are shifted to Met-
Hcy+ medium. Notably, these effects of Hcy me-
dium on cancer cells is not related to the presence of
Hcy, but a manifestation of changed remodeled
metabolism when Met is replaced by Hcy (6). This is
also evident from UPR induction studies where
addition of Hcy to MET containing medium has no
effect on CHOP or ASNS induction, whereas
emodeling in response to methionine stress in cancer 11



Met-Hcy+ medium leads to CHOP and ASNS induc-
tion (Fig. 5G, H).

We have previously reported that Met stress in breast
cancer cells can be rescued with SAM supplementation,
suggesting that the impact on the one-carbon cycle and
cellular methylation is causing a major cellular stress
(30). We therefore expected to see an impact of PC
levels because methylation of PE is hampered. Howev-
er, we did not observe any change in the PC/PE ratio,
but rather fast reduction of both phospholipid species
specifically in MB468 cells. Our previous metabolite
tracing studies suggested that cancer cells redirect Hcy
to the transsulfuration pathway to increase the syn-
thesis of glutathione and compensate for increased
oxidative stress under these growth conditions (1, 4). We
also observed an increase in lipid oxidation based on
fluorescence lifetime imaging studies (4). We therefore
hypothesize that the very rapid loss of several lipid
species in MB468 cells may be because of a burst in
lipid oxidation, which removes these species from
detection by our mass spectrometric approach. We
believe this is a likely scenario because lipid synthesis is
rapidly increasing during this early phase of Met stress
and is in fact more active in MB468 than in MB468res-
R8 cells.

The robust effect on lipid content and the rapid
change early after cancer cells were shifted to Hcy
medium was surprising. Most of these effects are
much earlier than gene expression effects are
observed. It is therefore likely that the lipid compo-
sition in cancer cells during Met stress is a direct
effect of the remodeled metabolism we observed in
previous studies (4). Additional changes we observed
in transcription profiles, lipid droplet accumulation,
and UPR induction are likely adaptations or conse-
quences of the initial impact by metabolic remodel-
ing to adjust to Met stress. Future studies will be
important to dissect signals that induce these adaptive
changes to fully understand the role of lipid meta-
bolism in the cancer-specific metabolic dependence
on methionine.
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42. Ayala, A., Muñoz, M. F., and Argüelles, S. (2014) Lipid Peroxi-
dation: production, Metabolism, and Signaling Mechanisms of
Malondialdehyde and 4-Hydroxy-2-Nonenal. Oxid Med. Cell
Longev. 2014, 1–31

43. Futschik, M. E., and Carlisle, B. (2005) Noise-robust soft clus-
tering of gene expression time-course data. J. Bioinform Comput.
Biol. 3, 965–988

44. Martin, S., and Parton, R. G. (2005) Caveolin, cholesterol, and
lipid bodies. Semin. Cell Dev. Biol. 16, 163–174

45. Zumbusch, A., Holtom, G. R., and Xie, X. S. (1999) Three-
dimensional vibrational imaging by coherent anti-stokes raman
scattering. Phys. Rev. Lett. 82, 4142–4145

46. Hou, J., Williams, J., Botvinick, E. L., Potma, E. O., and Tromberg,
B. J. (2018) Visualization of breast cancer metabolism using
multimodal nonlinear optical microscopy of cellular lipids and
redox state. Cancer Res. 78, 2503–2513

47. Johnson, A. C. M., Stahl, A., and Zager, R. A. (2005) Tri-
glyceride accumulation in injured renal tubular cells: alter-
ations in both synthetic and catabolic pathways. Kidney Int.
67, 2196–2209

48. Ta, N. L., and Seyfried, T. N. (2015) Influence of serum and
hypoxia on incorporation of [14C]-d-glucose or [14C]-l-gluta-
mine into lipids and lactate in murine glioblastoma cells. Lipids.
50, 1167–1184

49. Zhang, L., Shi, L., Shen, Y., Miao, Y., Wei, M., Qian, N., Liu, Y., and
Min, W. (2019) Spectral tracing of deuterium for imaging
glucose metabolism. Nat. Biomed. Eng. 3, 402–413

50. Huang, K. C., Li, J., Zhang, C., Tan, Y., and Cheng, J. X. (2020)
Multiplex stimulated Raman scattering imaging cytometry re-
veals lipid-rich protrusions in cancer cells under stress condition.
iScience. 23, 100953

51. Liberzon, A., Subramanian, A., Pinchback, R., Thorvaldsdóttir, H.,
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