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Small-world complex network generation
on a digital quantum processor

Eric B. Jones 1,2 , Logan E. Hillberry 3, Matthew T. Jones4,5, Mina Fasihi4,
Pedram Roushan6, Zhang Jiang6, Alan Ho6, Charles Neill 6, Eric Ostby6,
Peter Graf1, Eliot Kapit4,7 & Lincoln D. Carr 4,7

Quantum cellular automata (QCA) evolve qubits in a quantum circuit
depending only on the states of their neighborhoods and model how rich
physical complexity can emerge from a simple set of underlying dynamical
rules. The inability of classical computers to simulate large quantum systems
hinders the elucidation of quantum cellular automata, but quantum compu-
ters offer an ideal simulation platform.Here, we experimentally realizeQCAon
a digital quantum processor, simulating a one-dimensional Goldilocks rule on
chains of up to 23 superconducting qubits. We calculate calibrated and error-
mitigated population dynamics and complex network measures, which indi-
cate the formation of small-world mutual information networks. These net-
works decohere at fixed circuit depth independent of system size, the largest
of which corresponding to 1,056 two-qubit gates. Such computations may
enable the employment of QCA in applications like the simulation of strongly-
correlated matter or beyond-classical computational demonstrations.

One of the most profound observations regarding the natural world is
that, despite the simple set of physical laws that underpin it, the uni-
verse displays a plethora of complex, emergent phenomena, encoun-
tered in fields as diverse as biology, sociology, and physics1–3. Examples
of classical systems where complexity arises as a result of many inter-
acting degrees of freedom are ecosystems, the human brain, and
power grids4. Certain classical cellular automata (CA) show how com-
plexity can arise from simple rules without the controlling hand of a
designer5. CApossess the ability to generate oscillatory, self-replicating
structures and in some instances are themselves Turing complete6–10.

It is known, however, that the laws constituting our best model of
the universe arequantummechanical rather than classical11. Therefore,
in order to simulate the emergence of complexity more fundamen-
tally, one ought to investigate computational models that are pre-
dicated upon quantum mechanics. Goldilocks quantum cellular
automata (QCA)12, are a class of computational models that exhibit
emergent complexity despite being constructed from repeated blocks
of simple local unitary operators13. They involve trade-offs in the local

neighborhood such as are known to be sources of complexity in
classical systems and essential to self-organized criticality14. Some
Goldilocks QCA have been shown to generate mutual information
networks that exhibit signatures of complexity, such as large network
clustering, short average path length, and broad node-strength dis-
tribution, typically only observed in classical, small-world networks
like social or biological networks12. In addition, QCA have been pro-
posed for other applications such as lattice discretization in the
simulation of strongly-correlated matter, quantum field, and gravita-
tional theories15–17. However, the categorical limitation on the ability of
classical computers to simulate the time evolution of large quantum
systems is a bottleneck for the discovery and exploration of QCAmore
generally, hampering the theoretical illumination of the class of sys-
tems as a whole18. Meanwhile, the last few years have seen the creation
of sizeable digital quantum processors that are already demonstrating
their value as tools of scientific discovery19–25. Due to their universality,
such processors are ideal platforms on which to elucidate the physics
and complexity characteristics of QCA.
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Herein, we simulate a particular one-dimensional QCA on a
Sycamore-class superconducting processor depicted schematically in
Fig. 1a–d. Through the calculation of population dynamics and a
complex network characterization of the two-body mutual informa-
tion matrix, we establish that such QCA form small-world mutual
information networks and thereby exhibit emergent physical com-
plexity. Our results contribute to enabling the widespread use of near-
term quantum processors as QCA simulators and offer a template for
how to experimentally investigate QCA generally. We note that com-
plex network analysis has already made a largely, though not wholly,
theoretical impact on quantum information. One example arises in
one-way quantum computing26 in which complex, network-structured
graph states27 are irreversibly transformed using projective measure-
ments. Another occurs in the context of the quantum internet where
communication channels between geographically-distant quantum
devices are either imposed28 by fiber optic networks or implied29 by
satellite downlink capabilities. Notably, satellite-based quantum com-
munication channels have recently been shown to support small-world
connectivity30. Our work differs significantly from these examples.
Where one-way quantum computing has experimentally realized
complex graph states by design via projective measurement, our work
shows that QCA dynamically generate them in an emergent fashion.
Where the quantum internet considers geographic networks, our
networks of correlations emerge from unitary dynamics without any
notion of physical distance except the locality of interactions. Finally,
the complex networks occurring herein emerge on a generally-pro-
grammable, gate-model quantum processor, that is, an experimental
platform with real-world constraints, such as processor noise, not
necessarily present in prior theoretical work and different in nature
than in prior experimental work.

Results
Quantum cellular automata
A one-dimensional (1D) quantum elementary cellular automaton
may be defined as a chain of L quantumbits (qubits) whose states are

updated according to repeated blocks of neighborhood-local uni-
tary operations along a discrete time axis. When every qubit’s state
has been updated, a QCA cycle, t, is completed. After selecting 1D
chains of high-quality qubits from the available hardware graph
(Fig. 1a; see also Supplementary Note 2), the structure (Fig. 1b) of
a 1D QCA experiment is comprised of an initialization step,
followed by the application of some number of QCA cycle unitaries
out to cycle t 2 f0,1, . . . , tmaxg, and the measurement of appropriate
observables.

The particular QCA that we simulate is the totalistic, three-site
Goldilocks rule T6 with a uniformHadamard activation unitary applied
to each qubit and boundary conditions equivalent to fixed ∣0is (see
Supplementary Note 1)12. We note that the QCA notation T6 should not
be confused with decoherence times, which we will denote ~T 1 and ~T2

where applicable. Figure 1c shows how rule T6 is compiled down to
quantumgates. A single, central bit flip initialization is followed by one
QCA cycle, and finally, measurement in the computational z-basis. The
local update, represented by two non-Clifford CH gates (green box),
does nothing if there are zero or two adjacent ∣1is and applies the
Hadamard activator to the central qubit if there is exactly one adjacent
∣1i: this is the trade-off rule that gives rise to the Goldilocks
nomenclature.

Population dynamics and error mitigation
The quantumprocessor onwhich we run our QCA simulations is a 53-
qubit superconducting processor, Weber, which follows the design
of the Sycamore architecture outlined in ref. 20 (see also Supple-
mentary Note 2). Typical performance characteristics for Weber are:
single-qubit gate error e1 ≈0.1%, two-qubit gate error e2 ≈ 1.4%,
∣0i-state readout error er0 ≈ 2%, ∣1i-state readout error er1 ≈ 7%, and
population relaxation time ~T 1 ≈ 15μs

31. Fig. 1d shows the decom-
position of a single QCA cycle (red box) to the native

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iSWAP

p y
two-

qubit and PhXZ(a, x, z) ≡ ZzZaXxZ−a family of single-qubit gates.
Strictly speaking, the native two-qubit gate is better modeled byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iSWAP

p y
×CPHASE ðφÞ, where the parasitic cphase is φ ≈ π/2321. We

Fig. 1 | One-dimensional quantum cellular automata circuits. a Schematic for
embedding one-dimensional chains into a subset of a two-dimensional Sycamore-
class quantum processor. Gray crosses represent transmon qubits and blue rec-
tangles represent couplers. Purple, green, yellow, and red paths are hypothetical
example embeddings. b Generic structure of a one-dimensional quantum cellular
automata (QCA) circuit where time flows to the right. An initialization step is
applied to a chain of L qubits, typically to place them into a classical product state
with some number of bit flips (∣1is). A number of unitary QCA update cycles, t, are
applied to all L qubits before ameasurement is performed. c The specific structure

of a Goldilocks QCA for one QCA cycle (red box), wherein the initial state is
∣0 . . .010 . . .0i, the local update unitary is a controlled Hadamard gate, and mea-
surement is performed in the computational basis. d After moment alignment,
spin-echo insertion, and compilation down to hardware-native gates a single QCA
cycle (red box) results in 4 × (L − 1) number of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iSWAP

p y
gates and 8 × L number of

individually-parameterized PhXZ(a, x, z) ≡ZzZaXxZ−a gates. The number of single
and two-qubit layers per QCA cycle does not change as a function of system size,
only total gate volume does.
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apply a suite of low-overhead circuit optimization, calibration, and
error mitigation techniques to optimize circuit performance includ-
ing moment alignment, spin-echo insertion, Floquet calibration21,24,
parasitic cphase compensation, and most importantly, post-
selection (see Supplementary Note 4).

At each QCA cycle depth we measure the output of the circuit in
the z-basis Nc = 100, 000 times, resulting in a set of L-bit strings f∣zig
and associated probabilities {Pz ≈Nz/Nc}, where Nz is the number of
times bit string ∣zi is observed. The local population on each site is
calculated via hnii= ð1�∑zPz ð�1Þzi Þ=2 and averagedover four 1Dqubit
chains. Figure 2a shows the numerical emulation of such a procedure
initialized with a single, central bit flip on 21 qubits out to 30 QCA
cycles. The two large-scale blue diamonds indicate coherent dynamics.
When repeatedon theWeber processor, a combination of photon loss,
gate error, and state preparation andmeasurement (SPAM) error leads
to nearly total population decoherenceby t ≈ 10 (Fig. 2b).We therefore
post-select experimental data and discard any measurements whose
eigenvalues of the Ising-like operator O= ∑L

i =0 ZiZ i+ 1 differ from the
corresponding eigenvalue of the initial state. That is, O is a dynamical
invariant of the T6 rule that keeps track of the number of domain walls
in the system. Figure 2c shows that post-selection results in coherent
population dynamics that persist beyond t ≈ 10, although different
observables can degrade with noise on slightly different timescales
(see Fig. 3). The cycle-stamped population vignettes shown in Fig. 2d
support these observations more quantitatively, with error bars
representing one standard deviation on the four different chains. After
t ≈ 15, error bars on the post-selected data become more significant
and while some qualitative features of the emulated population
dynamics appear to persist, such as a larger population towards the
center of the chain, it is unclear from Fig. 2 alone as to what the
underlying nature of these qualitative similarities is. Moreover, our
complex network analysis of the behavior of rule T6 relies on the cal-
culation of two-body observables beyond the one-body observables

depicted in Fig. 2. As such, we turn to a calculation of Shannonmutual
information both tomore deeply understand the long-timepopulation
dynamics of ourQCAand to establish their complex network behavior.

Mutual information network analysis
Following the complex-network approach in neuroscience wherein
functional connectivity of the brain is characterized between spatially
non-adjacent regions32, we calculate the classical, Shannon mutual
information between all pairs of qubits in each 1D Goldilocks QCA
chain

Iij � ∑
1

zi =0
∑
1

zj =0
pðzi,zjÞlog2

pðzi,zjÞ
pðziÞpðzjÞ

ð1Þ

and regard it as an adjacency matrix of correlations that defines the
QCA network at each cycle. We choose to use classical, rather than a
measure of quantum, mutual information because its calculation only
requires measurements in the computational z-basis, which we have
shown are amenable to post-selection. Moreover, we show in
Supplementary Note 5 that the Shannon (classical)mutual information
acts as a reliable proxy for von Neumann (quantum) mutual
information for the T6 QCA.

Complex networks are ones that are neither purely regular, such
as a lattice or complete graph, nor entirely random33. The classic
demonstration that a network has complex, small-world character
involves showing persistently large clustering and simultaneously
short path length34, with a power-law node strength distribution
resulting in highly-connected nodes. By analogy with transportation
networks, these features describe networks that are easily traversed
both locally (clustering) and globally (path length), and exhibit hubs
(broad node strength distribution). While transportation networks
provide an intuitive interpretation of these complex network mea-
sures, we emphasize that clustering, path length, and node strength

a

d

RawEmulated Post-selectedb c

Fig. 2 | Population dynamics and post-selection. A noise-free, numerically-
emulated Goldilocks QCA out to 30 cycles, initializedwith a single ∣1i in themiddle
of the 21-qubit chain. Coherent local population, 〈ni〉, dynamics that resist equili-
bration can be observed in the form of the two blue diamond shapes. b Raw
population dynamics for the same QCA circuit averaged over four 21-qubit chains

embedded into the 53-qubit Weber processor. c The same experimental data as
b but with post-selection applied based on domain wall conservation. d Time-
stamped population vignettes show the same dynamics quantitatively for emu-
lated (blue- lines for visual clarity), raw (red), and post-selected (green) data. Error
bars represent one standard deviation from the mean over four different chains.
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distribution have seen widespread use in analyzing the structure of
mutual information networks and in drawing conclusions regarding
the physical complexity of the underlying system in both classical and
quantum systems. For example, applying these measures to mutual
information networks derived from electroencephalographic or fMRI
data has been used to elucidate structure-function correlations in the
brain32,35. In addition, the measures have been used along with earth-
quake time series-derived mutual information to model seismicity36

and with mutual information in wireless networks to explain routing
efficiency37. Finally, complex network measures calculated on quan-
tum mutual information networks in quantum Ising and
Bose–Hubbard models are able to detect quantum phase transition
critical points38. Hence, the use of clustering, path length, and node
strength distribution in conjunction with mutual information is a well-
established, quantitative procedurewith predictive power.We employ
this procedure in order to understand the structure of correlations in
our QCA circuits and to observe the emergence of physical complexity
in the presence of quantum processor noise.

Through decoherence, the state of a quantum processor
approaches an incoherent uniformly random state with all ampli-
tudes equal to 2−L/2 and for which Iij = 0 for all L ≥ 2. Hence, the inco-
herent uniformly random state is neither locally nor globally
traversable and is thus not a typical random network. It is also useful
to consider the effect of subjecting the incoherent uniformly random
state to the same post-selection procedure as our experimental data.
This can be done in three steps: (i) form an incoherent uniformly
random state with all 2L amplitudes equal to 2−L/2, (ii) set any basis
state amplitudes to zero if the basis state has an eigenvalue under O
that differs from that of the QCA’s initial condition, and (iii) renor-
malize the remaining amplitudes so that the state vector has unit
norm. Upon post-selection, this decohered state is no longer uniform
and the correspondingmutual information network is both non-zero
and non-random, although to a much lesser extent than the states
generated byGoldilocks QCA. The complexity of networks generated
by Goldilocks QCA is established by computing network measures
for emulated, raw processor, and post-selected processor states and
then comparing each of these to post-selected incoherent uniform
random states.

Clustering measures local network transitivity and is defined as
the ratio of the weighted number of closed triangles in the network to
the weighted total number of length-2 paths in the network (i.e., the
number of potentially closed triangles—see Supplementary Note 6).
The first relevant signature of network complexity is intermediate to
large clustering values that do not decay with system size, in contrast
to randomnetworks. The emulated clustering (blue curves) of theQCA
exhibits this signature and actually increases slightly as a function of
system size, L (see Fig. 3).While we plot three of the larger system sizes

we simulated here, L = 15, 17, and 19, this proves true for all other
system sizes simulated as well. Next, we note that without post-selec-
tion, the clustering C calculated from rawdata fromWeber (red points)
rises briefly but then quickly decays toward zero, the incoherent uni-
formly random limit (black dotted curve), at t ≈ 12 for all three system
sizes. In contrast, the green curves in Fig. 3 show that with post-
selection the experimental clustering tracks the emulated clustering
closely until t ≈ 6 and remains larger than post-selected uniform ran-
domness (black dashed curve) until t ≈ 12, independent of system size.
There is therefore a window between t ≈ 4 and 12 over which we can
analyze the formation of a non-random complex network in the QCA
for all system sizes simulated. We provide a more detailed description
of our cycle windowing process in Supplementary Note 7.

Figure 4a shows the coherence window, cycle-and-chain-
averaged emulated (blue), raw (red), and post-selected (green)
clustering coefficient for L = 5–23 qubits. After the finite-size effects
encountered for L ≤ 11, it is clear that while the raw clustering trends
towards zero—that of an incoherent uniformly random state network
—both the emulated and post-selected clustering stabilize towards
C ≈0:3 and trend towards larger values as a function of system size,
indicating substantial network transitivity beyond post-selected
randomness (black dashed curve). Figure 4b shows the coherence
window, cycle-and-chain-averaged weighted shortest path length, ℓ,
as a function of system size, which gauges global network traversa-
bility (see Supplementary Notes 6 and 7). The raw data path length
(red) in Fig. 4b is large and increases as a function of system size. The
post-selected (green) path length tracks the emulated (blue) path
length closely, trends downward, and is always one to two orders of
magnitude smaller than the raw path length. Interestingly, post-
selected path length tracks the path length of post-selected ran-
domness (black dashed line) nearly as well as it does emulated path
length. Taken together, however, Fig. 4a, b signal the existence of
small-world mutual information networks generated in the coher-
ence window of the Goldilocks QCA beyond what can be obtained by
post-selecting incoherent uniform randomness. The end of the
coherence window (t = 12) for the largest system size simulated
(L = 23) corresponds to 1056

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iSWAP

p y
gates.

Figure 4c further indicates the formation of small-world mutual
information networks, showing that the size-normalized emulated
(blue) and post-selected (green) node strength distributions (see
Supplementary Note 6), P[gi/(L − 1)], are relatively flat between 1 × 10−2

and 2 × 10−1 compared with those of the post-selected random node
strengths (black dashes), which peak between ~2.5 × 10−2 and 1.5 × 10−1,
and raw (red) node strengths, which are heavily biased towards much
smaller values, indicating a deficit in network connectivity. Finally,
Fig. 4d–g visually depicts how themutual information for L = 23 at t = 9
differs for the raw QCA data, which approaches the network structure

Fig. 3 | QCA mutual information network clustering. Clustering coefficient as a
function of QCA cycle for three intermediate system sizes simulated on Weber,
L = 15 (a), 17 (b), and 19 (c). Blue curves (lines for visual clarity) are calculated from
numerical emulation, while red (green) data points are from Weber data without

(with) post-selection. Error bars are one standard deviation in C over four different
chains. Dashed (dotted) black lines are the clustering of the incoherent uniform
random state with (without) post-selection.
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of incoherent uniform randomness, and the emulated and post-
selected QCA networks, which both display lattice girder-like small-
world structure that resemble one another more closely than they do
post-selected randomness.

Towards beyond-classical QCA
In addition to their intrinsic scientific value as quantum models for
emergent complexity, QCA also present intriguing prospects for
establishing new inroads into the beyond-classical era. In the instance
of Goldilocks rule T6, identification of a dynamical invariant makes
simulation less fragile to noise than a fully chaotic random quantum
circuit (RQC). However, it also implies efficient—that is, polynomial—
classical emulation via direct Schrödinger evolution since it reduces
the bounded size of the protectedT6Hilbert space to scale as ~0.63 L1.91

for a fixed, single initial bit flip at the center of the chain (see Supple-
mentary Note 4). Generally, fixing the number of initial ∣1is while
increasing system size leads to polynomial space and time complexity.
However, one can recover exponential scaling in the protected Hilbert
space by simulating increasingly large chains while fixing the density
(rather than number) of initial ∣1is well separated by ∣0is. For a fixed
density, ρ∣1is, the protected Hilbert space bound scales as the binomial
coefficient, ~

� L
ρ∣1isL

�
, which asymptotically scales exponentially in L. For

context, the long-time, cycle-averaged bond entropy of rule T6 was
shown to scale between a 1D area and volume law12. Although simula-
tion of Goldilocks rules has shown the failure of directmatrix-product-
state approaches39, given this intermediate scaling it is an open pro-
blem as to whether efficient classical simulatability may be achieved
using a modified tensor network approach in the absence of a dyna-
mical invariant12,40. Moreover, efficient simulatability of area law-
scaling states in two-dimensions (2D) or higher using tensor network
approaches, while promising, is even less assured than in 1D.Hence, 2D
QCA that exhibit area-law scaling or worsemay be good candidates for
beyond-classical demonstrations.

Here we have demonstrated that existing quantum processors
can simulate 1D QCA with high fidelity at large gate volume. While
reliant on the availability of high-fidelity hardware, the main circuit
design principles that enable this goal consist of the identification
of particular QCA rules that: (i) generate significant complexity

signatures, (ii) efficiently compile to low-depth sequencesofhardware-
native gates, and (iii) are amenable to post-selection through identifi-
cation of one or more dynamical invariants (For a more complete
discussion of the quantum-simulational complexity of the T6 rule
including post-selection overhead, please see Supplementary Note 4).
We therefore expect these design principles to aid in discovering QCA
that support beyond-classical demonstrations or are otherwise useful
in quantum computational domain applications. In particular,
employing such design principles for QCAs that model correlated
quantum matter could be a promising route toward beyond-classical
simulation of novel physical systems in the near term.

Data availability
The data supporting this work are available at the public Dryad repo-
sitory (https://doi.org/10.5061/dryad.fbg79cnxd).

Code availability
The code supporting this work is available at the public GitHub repo-
sitory (https://github.com/ebjones424/qca_nat_comms).
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