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A B S T R A C T

Although the lung is one of the least studied organs in diabetes, increasing evidence indicates that it is an
inevitable target of diabetic complications. Nevertheless, the underlying biochemical mechanisms of lung injury
in diabetes remain largely unexplored. Given that redox imbalance, oxidative stress, and mitochondrial
dysfunction have been implicated in diabetic tissue injury, we set out to investigate mechanisms of lung injury in
diabetes. The objective of this study was to evaluate NADH/NAD+ redox status, oxidative stress, and
mitochondrial abnormalities in the diabetic lung. Using STZ induced diabetes in rat as a model, we measured
redox-imbalance related parameters including aldose reductase activity, level of poly ADP ribose polymerase
(PAPR-1), NAD+ content, NADPH content, reduced form of glutathione (GSH), and glucose 6-phophate
dehydrogenase (G6PD) activity. For assessment of mitochondrial abnormalities in the diabetic lung, we
measured the activities of mitochondrial electron transport chain complexes I to IV and complex V as well as
dihydrolipoamide dehydrogenase (DLDH) content and activity. We also measured the protein content of NAD+

dependent enzymes such as sirtuin3 (sirt3) and NAD(P)H: quinone oxidoreductase 1 (NQO1). Our results
demonstrate that NADH/NAD+ redox imbalance occurs in the diabetic lung. This redox imbalance upregulates
the activities of complexes I to IV, but not complex V; and this upregulation is likely the source of increased
mitochondrial ROS production, oxidative stress, and cell death in the diabetic lung. These results, together with
the findings that the protein contents of DLDH, sirt3, and NQO1 all are decreased in the diabetic lung,
demonstrate that redox imbalance, mitochondrial abnormality, and oxidative stress contribute to lung injury in
diabetes.

1. Introduction

Diabetes is a problem of glucose metabolism and diabetes compli-
cations is the outcome of glucose toxicity, which is often manifested by
increased protein glycation, activation of the polyol pathway and poly
ADP ribose polymerase (PARP), and protein kinase C activation [1–5].
Mechanistically, all these hyperglycemia upregulated pathways can
eventually lead to production of reactive oxygen species (ROS) that
then induce oxidative stress, mitochondrial dysfunction, and cell death
[6,7]. Although the lung is one of the least studied organs in diabetes
complications, increasing evidence has indicated that the lung is a
target of diabetic injury [8–11]. Nevertheless, the underlying mechan-
isms remain largely unknown.

As glucose is one of the major sources of NADH, its excess can often
lead to excess NADH production and NAD+ deficiency, thereby causing
NADH/NAD+ redox imbalance [12]. The major source of this redox
imbalance is thought to come from the activation of the polyol pathway
and poly ADP ribose polymerase (PARP) [13–16]. On one hand, the

polyol pathway converts NADPH to NADH when it transforms glucose
to fructose via a two–reaction mechanism [17], resulting in NADH
overproduction at the consumption of glucose [18,19]. On the other
hand, as PARP uses NAD+ as its substrate and is usually over-activated
by DNA oxidative damage in diabetes [20], cellular NAD+ could be
potentially depleted [21–23]. Therefore, the overall outcome of the two
activated pathways is NADH/NAD+ redox imbalance with diminished
levels of NAD+ and increased levels of NADH, leading to reductive
stress that gradually progresses to oxidative stress [24].

Oxidative stress occurs when cellular antioxidative system is
defeated by ROS that are overproduced under a variety of disease
conditions including diabetes [25]. As mitochondrion is a major source
of ROS and a target of ROS [26,27], its abnormalities have been
thought to contribute to diabetic pathogenesis [28]. However, whether
mitochondrial abnormalities also occur in the diabetic lung remains to
be evaluated. In the present study, using STZ induced diabetes in rat as
a model; we characterized pulmonary redox imbalance and its asso-
ciated pathways. Specifically, we measured the activities of mitochon-
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drial membrane complexes I to V. We also measured the enzyme
activities of mitochondrial dihydrolipoamide dehydrogenase (DLDH)
and its possible modifications by protein acetylation. Additionally, lung
mitochondrial ROS production and overall protein oxidative damage
were quantified. NAD(P)H: quinone oxidoreductase 1 (NQO1) protein
content and activity and sirtuin 3 (sirt3) protein content were also
evaluated in the context of redox imbalance and mitochondrial
abnormalities in the diabetic lung.

2. Materials and methods

2.1. Chemicals

Biotin-linked aldehyde reactive probe ARP) for protein carbonyl
assay was from Cayman Chemical (Ann Arbor, MI). Dihydrolipoamide
was synthesized from lipoamide in our own laboratory using sodium
borohydride as previously described [29,30]. ε-amino-N-caproic acid
was obtained from MP Biochemicals. Acrylamide/bisacrylamide, am-
monium persulfate, Bradford protein assay solution, coomassie bril-
liant blue (CBB) R-250, immunoblotting membrane, and an ECL
immunochemical detection kit were from Bio-Rad laboratories
(Richmond, CA, USA). NADH, BSA, lipoamide, EDTA, ATP, and NBT
chloride tablets were obtained from Sigma (St. Louis, MO, USA). Serva
Blue G was purchased from Serva (Heidelberg, Germany). Anti-PARP
antibody was purchased from Trevigen (Gaithers burg, MD). Anti-
NQO1 antibodies were from Sigma. Rabbit anti-DLDH polyclonal
antibodies (IgG) and goat anti-rabbit IgG conjugated with horseradish
peroxidase were purchased from US Biological (Swampscott, MA, USA)
and Invitrogen (San Diego, CA, USA), respectively. Other antibodies
were from Abcam (Cambridge, MA).

2.2. Diabetes induction in rats

Young adult male Sprague Dawley rats obtained from Charles River
were used in this study. Diabetes was induced by a single intraper-
itoneal injection of STZ (60 mg/kg body weight) into rats weighing
220–250 g after overnight fasting as previously described [31]. STZ
solutions were made fresh by dissolving in 0.1 M sodium citrate buffer
(pH 4.5) and control animals received sodium citrate buffer only. Blood
glucose concentration was monitored once a week using blood glucose
test strips (FreeStyle lite from Abbott Diabetes Care Inc., Alameda,
California). Rats with blood glucose contents exceeding 200 mg/dl
were deemed diabetic. Four weeks post STZ injections, rats were
sacrificed and tissues were collected. All animal studies procedures
were approved by the UNTHSC committee for research.

2.3. Isolation of lung mitochondria

Mitochondria from the lung were isolated according to a previously
described method [32] with slight modifications. Essentially, lung
tissues were homogenized (1g/10 ml isolation buffer) in mitochondrial
isolation buffer containing 15 mM MOPS (pH 7.2), 70 mM sucrose,
230 mM mannitol, and 1 mM K+-EDTA. The homogenates were cen-
trifuged at 800g for 10 min at 4 °C. The resulting supernatant was
further centrifuged at 8,000g for 10 min also at 4 °C. The resulting
pellet containing crude mitochondria was washed with 10 ml of the
isolation buffer followed by centrifugation under the same conditions.
The obtained mitochondrial pellet was either used immediately or
frozen at −80 °C until use.

2.4. Measurement of H2O2 and protein carbonyls

Lung tissue homogenate H2O2 was measured by the Amplex Red
method [33] using a kit purchased from Invitrogen (catalog number
A22188). Protein carbonyls of whole mitochondrial preparation were
measured by derivatization with biotin-linked aldehyde reactive probe

(ARP) [34] followed by SDS-PAGE resolution of the carbonylated
proteins and Western blot assay and densitometric quantification of
each gel lane.

2.5. Measurement of NAD+/NADH ratio, NADPH, and ATP

Lung tissue homogenate NAD+/NADH ratio was measured spectro-
photometrically by following the changes at 340 nm using a kit from
BioAssay (Hayward, CA). NADPH content was measured by a kit from
BioVision (Milpitas, CA, Catalog number: K347-100) according to the
manufacturer's instructions. ATP content was determined colorimetri-
cally by the ATP Colorimetric/Fluorometric Assay kit that is also from
BioVision (Milpitas, CA, catalog number K354-100). This method
quantifies phosphorylated glycerol that can be easily monitored at
570 nm.

2.6. Measurement of enzyme activities

Aldose reductase activity was measured spectrophotometrically by
following the decrease of NADPH's absorption at 340 nm as previously
described [35]. DLDH dehydrogenase activity was measured in the
forward reaction as previously described [36,37]. Measurement of
mitochondrial complexes I, IV and V activities was also conducted as
previously described using in-gel based assays or spectrophotometric
assays [38]. Activities for complexes II and III were measured spectro-
photometrically as previously described [39,40]. NQO1 activity was
measured according to the method of Lind et al. [41] and G6PD activity
was measured by monitoring NADPH production at 340 nm as
previously described [42]. Caspase-3 activity was measured using a
kit also from BioAssay (Hayward, CA). Mitochondrial membrane
potential was measured by a kit purchased from BioVision (Milpitas,
CA) according to the manufacturer's instruction manual.

2.7. Polyacrylamide gel electrophoresis and Western blot analysis

SDS-PAGE (typically 10% resolving gel) was performed according
to standard procedures [43]. One of the resulting gels was stained with
Coomassie colloid blue [38], and the other gel was subjected to
electrophoretic transfer to membrane for immunoblotting [44].
Signals on the immunoblotting membrane were visualized with an
enhanced chemiluminescence kit. Nongradient blue native gel electro-
phoresis (BN-PAGE) was performed as previously described [36]. All
images were scanned by an EPSON PERFECTION 1670 scanner. All
densitometric quantifications of gel images were analyzed by
AlphaEaseFC software.

2.8. Data analysis

Where appropriate, all values were presented as mean ± SEM.
Statistical data analysis was performed using GraphPad's 2-tailed
unpaired t-test (GraphPad, San Diego, CA). A p value less than 0.05
(p <0.05) was deemed statistically significant.

3. Results

3.1. Redox imbalance in the diabetic lung

In many diabetic tissues that have been well studied, redox
imbalance between NADH and NAD+ is the primary driving force for
ROS production and oxidative stress [12,13]. This redox imbalance is
believed to mainly originate from two enzyme systems activated by
persistent hyperglycemia. One reaction is the polyol pathway including
aldose reductase and sorbitol dehydrogenase [45]. This pathway
converts glucose to fructose and NADPH to NADH, resulting in
overproduction of NADH [46]. Another pathway is poly ADP ribose
polymerase (PARP) that uses NAD+ as its substrate [47]. This enzyme
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can be over-activated by hyperglycemia induced DNA oxidative da-
mage, resulting in potential depletion of NAD+[48]. Therefore an
overall outcome of NADH/NAD+ redox imbalance occurs in diabetic
tissues [13]. To test whether this redox imbalance mechanism takes
place in the diabetic lung, we measured aldose reductase activity and
the protein content of PARP-1, results in Fig. 1A demonstrate that the
activity of aldose reductase, the rate-limiting enzyme of the polyol
pathway [49], was indeed higher than that in the control lung.
Similarly, results in Fig. 1B demonstrate that PARP-1 protein content
was upregulated in the diabetic lung. Together, the upregulation of
these two pathways contributed to a much lower level of NAD+ in the
diabetic lung than in the healthy lung as observed in Fig. 1C. Moreover,
we also found that in the diabetic lung, NADPH content was lower, so
was GSH content, the normal level of the latter depends on a normal
level of NADPH that is used by glutathione reductase to make GSH
from GSSG [50]. Additionally, we also found that the activity of
glucose-6 phosphate dehydrogenase (G6PD) was also lower in the
diabetic lungs than in the healthy lungs, suggesting that a decreased
level of NADPH could be partly driven by a low activity of G6PD that is
responsible for NADPH production from glucose [51,52].

3.2. Increased activities of mitochondrial electron transport chain
complexes

The excess NADH in the diabetic lung as measured in Fig. 1C
suggests that there is an oversupply of electrons to mitochondrial
electron transport chain. Therefore we next determined the effects of
this excess NADH on the enzyme activities of mitochondrial electron

transport chain components complexes I to IV. Results shown in
Fig. 2(A-D) indicate that the enzyme activities of all the four complexes
were elevated in the diabetic lung, suggesting an enhanced electron
transport imposed by excess NADH on the mitochondrial electron
transport chain. We also measured complex V activity but did not
detect any different between control and diabetes (Fig. 2E).
Nonetheless, ATP content was much lower in the diabetic lung than
in the healthy lungs (Fig. 2F). These results suggested that the
upregulated electron transport chain activities (I to IV) are not for
ATP production. Rather, the increased electron transport chain func-
tion may contribute to increased ROS production, given that majority
of ROS can be produced by mitochondria in diabetes [53].

3.3. Increased oxidative stress in the diabetic lung

To test the above hypothesis that the upregulated mitochondrial
electron transport chain leads to increased ROS production, we then
measured hydrogen peroxide in the lung homogenate. A comparison
between control and diabetic lungs indicates that H2O2 content was
much higher in the diabetic lung than in the healthy lung (Fig. 3A).
Moreover, we also measured lung mitochondrial protein carbonylation
using western blot assay. Results indicate increased total protein
carbonylation in the diabetic group than in the control group (Fig. 3,
C and D). Moreover, we also measured the activity and content of
NQO1, a second phase antioxidant enzyme that is usually upregulated
by the Nrf2 transcription factor signaling pathway [54]. Result in
Fig. 3B indicates that both NQO1 content and activity were much lower
in the diabetic lung than in the control lung. Taken together, our results

Fig. 1. : Redox imbalance parameters in the diabetic lung. When compared with the lungs from non-diabetic rats, the diabetic lungs show an increased aldose reductase activity (A), an
increased protein expression of PARP-1, a significantly decreased level of NAD+(C), a decreased level of NADPH (D), a decreased level of reduced from of glutathione (GSH) (E), and a
decreased activity of G6PD (F).
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Fig. 2. : Activities of mitochondrial membrane complexes. The activities of mitochondrial electron transport chain complexes I to IV (A to D) all exhibited decreases in the diabetic lung
when compared with those in the controls. No difference in complex V activity between control and STZ-diabetes could be detected (E). Cellular ATP content was lower in the diabetic
lung than in the non-diabetic lung (F).

Fig. 3. : Elevated level of oxidative stress and attenuated antioxidative capacity in the diabetic lung. (A) ROS production reflected by the level of H2O2 was increased in the diabetic lung.
(B) NQO1 protein content was lower in the diabetic lung than in the non-diabetic lung. (C) Lung mitochondrial protein carbonylation assessed by Western blot assay using aldehyde-
reactive probe as the labeling reagent. (D) Densitometric analysis of protein carbonyl content between control and diabetes. Data are derived from (C).
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indicate that NADH/NAD+ redox imbalance in the diabetic lung
induces oxidative stress that may be implicated in lung dysfunction
in diabetes.

3.4. Upregulation of complex I activity is likely mediated by increased
expression of nicotinamide N-methyltransferase (NNMT) and
NDUFS3

As complex I is the entry point of electrons into the electron
transport chain, we next determine whether hyperglycemia upregulates
complex I. While complex I upregulation could be an adaptive response
to excess NADH, this upregulation could also increase mitochondrial
ROS production given that the more NADH oxidized by complex I, the
more ROS produced by complex I [55,56]. Based on reports in the
literature that NNMT can be upregulated by overnutrition and
hyperglycemia and that this upregulation elevates the expression of
the complex I subunit NDUFS3 [57–59] thereby increasing complex I
activity, we measured by western blot methods the protein content of
both NNMT and NDUFS3 (Fig. 4A and C). Densitometric analysis of
these western blot results indicated that the protein content of both
NNMT and NDUFS3 were significantly increased (Fig. 4B and D),
demonstrating that NNMT upregulation by diabetic hyperglycemia can
increase complex I activity by increasing the expression of complex I
NDUFS3 subunit.

3.5. Attenuated expression of dihydrolipoamide dehydrogenase
(DLDH) in the diabetic lung

Dihydrolipoamide dehydrogenase (DLDH) is a component of three
mitochondrial alpha keto acid dehydrogenase complexes [37]. It is a
key enzyme in the production of acetyl-CoA from pyruvate and
branched chain amino acids [60]. DLDH uses NAD+ as one of its two
substrates and makes NADH [61]. It is known that the level of NAD+

could affect either the level or the activity of DLDH [62,63]. To test
whether a low NAD+ content in the diabetic lung leads to an attenuated
DLDH function or a low DLDH protein content, we measured DLDH
content and enzyme activity. Enzymatic activity was measured by both
blue native gel electrophoresis and spectrometry. Results in Fig. 5A and
B indicate that DLDH activity was indeed significantly lower in the

diabetic lung than in the healthy lung. Moreover, data in Fig. 5C
indicates that DLDH content was remarkably decreased in the diabetic
lung, indicating that a lower DLDH activity in the diabetic lung is
contributed by a lower DLDH content. Furthermore, when the DLDH
activity bands on the blue native gel were analyzed by mass spectro-
metry, 7 DLDH peptides were recovered in the control samples while
none could be recovered in the STZ-treated samples (data not shown),
confirming that DLDH is indeed down-regulated in the diabetic lung.

It should be pointed out that the low DLDH activity observed in A
and B could also be contributed by DLDH acetylation as DLDH from
the diabetic lung was found to exhibit elevated levels of protein
acetylation (Fig. 5D, upper panel). Interestingly, DLDH protein was
not found to be damaged via carbonylation (Fig. 5D, lower panel), a
parameter used to quantitate protein oxidative damage [44,64]. This
finding is in agreement with our previous findings that DLDH is not an
apparent target for carbonylation during aging [61], a process asso-
ciated with increased oxidative stress [65].

3.6. Decreased mitochondrial sirtuin 3 (sirt3) content in the diabetic
lung

It has been well established that the level of NAD+ in a cell can
dictate the level of sirtuin proteins [66], which are deacetylation
enzymes that are known to be involved in redox signaling and
metabolic control [67]. Our finding that NAD+ content is decreased
in the diabetic lung suggests that sirt3 level could be attenuated as well
given that sirtuin protein expression is NAD+ dependent [66]. To test
this likelihood, we measured mitochondrial sirt3 protein content by
western blot. Result in Fig. 6A demonstrates that sirt3 protein content
was severely decreased in the diabetic lung than in the control lung.
Consequently, total mitochondrial protein acetylation in the diabetic
lung was greater than that in the control lung (Fig. 6B and C), which is
in agreement with the observation that DLDH acetylation was in-
creased in the diabetic lung (Fig. 5D, upper panel).

3.7. Impaired mitochondrial membrane potential and increased cell
death in the diabetic lung

Our findings that enhanced mitochondrial electron transport did

Fig. 4. : Evaluation of protein expression of NNMT and NDUFS3. (A) Increased expression of NNMT in the diabetic lung measured by Western blot assay. (B) Densitometric
quantitation of Western blot band intensity shown in (A). (C) Increased expression of NDUFS3 in the diabetic lung measured by Western blot assay. (D) Densitometric quantitation of
Western blot band intensity as shown in (C).
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not lead to increased mitochondrial ATP production suggest that
mitochondria in the diabetic lung are not well-coupled. Therefore, we
next measured mitochondrial membrane potential. Results in Fig. 7A
demonstrate that diabetic pulmonary mitochondrial membrane poten-
tial was lower than that in control, which could lead to enhanced
electron leakage and oxidative stress as shown in Fig. 5. Moreover, less
mitochondrial ATP production can also suggest an increased cell death.
Indeed, measurement of caspase-3 activity, a parameter reflecting the
magnitude of cell death, demonstrates an increased level of apoptosis
as caspase-3 activity was much higher in diabetes than in control
(Fig. 7B).

4. Discussion

The major findings of the present study are the following: 1)
NADH/NAD+ redox imbalance occurred in the diabetic lung and was
likely contributed by activation of the polyol pathway and PARP. 2) The
activities of mitochondrial complexes I to IV were upregulated while
there were no changes in complex V activity. 3) Mitochondrial ATP
output was lower in the diabetic lung than in the non-diabetic lung. 4)
Mitochondrial ROS production and protein carbonylation were in-
creased, which was accompanied by decreased protein content and
activity of NQO1, an inducible antioxidant enzyme involved in cellular
defense against oxidative stress [68]. 5) Complex I upregulation by
diabetic hyperglycemia was likely achieved by upregulation of NNMT

Fig. 5. Comparison of DLDH activity and expression between control and diabetic lungs. (A) Decreased DLDH activity in the diabetic lung assessed by BN-PAGE. (B) Decreased DLDH
activity in the diabetic lung measured spectrophotometrically. (C) Decreased DLDH protein content in the diabetic lung assessed by Western bot assay. (D) DLDH acetylation (Upper),
but not DLDH protein carbonylation (lower) was increased in the diabetic lung. (For interpretation of the references to color in this figure, the reader is referred to the web version of this
article)

Fig. 6. : (A) Sirt3 protein content was decreased in the diabetic lung. Anti-sirt3 antibodies were used for this evaluation with actin as the loading control. (B) Western blot detection of
mitochondrial protein acetylation; shown are lung mitochondria isolated from three control rats and 3 diabetic rats, respectively. (C) Densitometric quantification of mitochondrial
protein acetylation. Data were derived from (B).
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that in turn upregulates NDUFS3, a key complex I subunit involved in
complex I assembly and function [69]. 6) DLDH protein content was
decreased in the diabetic lung, which impaired DLDH activity that may
also be accentuated by the observation that DLDH acetylation was
increased in the diabetic lung, a process that can be enhanced by down
regulation of mitochondrial sirt3 that is responsible for protein
deacetylation [70]. 7) Mitochondrial membrane potential in the
diabetic lung was decreased and cell death was increased. Taken
together, results of the present study shed insights into the biochemical
mechanisms of lung injury in diabetes. It should be pointed out that
one caveat of the study is that we did not study whether the redox
imbalance occurs to all the cellular populations in the lung that is
composed of nearly 40 different cell types.

Our study presents strong evidence that there occurs also redox
imbalance in the diabetic lung with NADH being in excess. Excess
NADH could over burden the electron transport chain and cause more
mitochondrial ROS production. As an adaptive response to handle
NADH pressure complex I was found to be upregulated (Fig. 2A),
together with other electron transport chain complexes II to IV
(Fig. 2B-D). The adverse effect of this upregulation, unfortunately,
would be increased ROS production given that the more NADH
oxidized by complex I, the more ROS produced by complex I [26,71].
Indeed, excess NADH appears to be used for ROS generation as
complex V was not upregulated and ATP output by mitochondria was
decreased (Fig. 2E and F), indicating an uncoupling effect of diabetic
hyperglycemia on pulmonary mitochondrial oxidative phosphorylation
as shown in Fig. 7A and increased cell death as shown in Fig. 7B. These
results demonstrate overall mitochondrial abnormalities in the pre-
sence of glucose oversupply in that excess NADH is not completely
used for ATP production but rather diverted for production of
mitochondrial ROS that could be involved in cell death and lung injury
in diabetes.

Our study also demonstrates that NADPH-related signaling path-
ways in the diabetic lungs were also compromised. Not only NADPH
level was found to be attenuated, activity of G6PD and levels of GSH
(reduced glutathione) were also found to be suppressed. It seems that
the decrease in NADPH content could be contributed by two pathways
that are deregulated in diabetes by hyperglycemia. One pathway is
NADPH consumption by the polyol pathway for the generation of
NADH; another pathway is functional impairment of G6PD that could
lead to less NADPH production. As NADPH is required for GSH
formation from GSSG by glutathione reductase [42,72], less NADPH
would lead to less GSH formation. This is indeed what we have found in
the diabetic lung whereby GSH content was low (Fig. 1E). Our results
are similar to what have been found in the diabetic kidneys in which
G6PD activity, NADPH and GSH levels were all found to be lower in
diabetic animals than in non-diabetic controls [73]. It should be noted
that the alterations in G6PD activities in diabetes are likely tissue
dependent. For example, in the brain of STZ diabetic rats, G6PD
activity was markedly increased [74]. G6PD activity was also found to
be increased in the liver of Zucker diabetic rats [75]. Similarly, NADPH
content in certain diabetic tissues has been reported to be elevated

when compared with that in non-diabetic conditions [76–78].
Nonetheless, in our present study, we found that NADPH level declined
in diabetic lung (Fig. 1D). It should be pointed out that the level of
NADH can increase dramatically in the presence of a decreased
NADPH content is due to the fact that cellular NADPH concentration
is usually much higher than that of NADH. For example, in red blood
cells, NDAPH content is approximately 10 times higher than that of
NADH [79].

In the present study, we also analyzed NAD+-dependent enzymes
such as NQO1, DLDH, and sirt3. Our results show that the functions of
all the three enzymes were impaired in the diabetic lung, either through
down regulation of protein expression or posttranslational modifica-
tions or both. With respect to NQO1, as its expression is controlled by
Nrf2 transcription factor [80], our observation that NQO1 content
showed a decrease in the diabetic lung suggests that the Nrf2 signaling
pathway is suppressed in the diabetic lung; which needs to be further
evaluated in future studies. Nonetheless it has been reported that the
Nrf2 signaling pathway is down regulated in other diabetic tissues such
as liver and heart [81, 82]. It should be noted, however, that how Nrf2
is regulated in diabetes may be tissue dependent as it has been shown
that in the kidney, Nrf2 could be upregulated by diabetic hyperglycemia
[83].

With respect to DLDH, this protein is also known to be able to
generate ROS [84–86]. This enzyme uses NAD+ as its substrate and
makes NADH that can be fed into the electron transport chain. In the
presence of excess NADH, DLDH can be inhibited via a feedback
inhibitory mechanism [87]. In the present study, we found that DLDH
in the diabetic lungs was down regulated with a diminished DLDH
protein content (Fig. 5C). This diminution would certainly impair the
role of DLDH in mitochondrial bioenergetics. Functional impairment
of DLDH in the diabetic lung could also partially originate from its
cysteine acetylation; a process regulated by sirt3 and is known to affect
protein functions [70,88,89]. Our findings that DLDH underwent
protein acetylation in the diabetic lung are in agreement with previous
reports that DLDH is a target of protein acetylation [88,90,91]. We
think that DLDH acetylation in diabetic lung could be governed by two
mechanisms. One is due to oversupply of acetyl-CoA that can chemi-
cally modify a protein cysteine residues [92–94], another mechanism
would be the down regulation of mitochondrial sirt3 (Fig. 6) detected
in the diabetic lung, which would lead to less deacetylation of DLDH.
Our data suggest that DLDH dysfunction might be a pathogenic
mechanism for diabetic lung injury.

With respect to sirt3, our observation that sirt3 is down regulated in
the diabetic lung mitochondria (Fig. 6) agrees with the results of
previous studies whereby sirt3 shows a decreased expression in
diabetic tissues [95–98]. The reason for this is likely due to the fact
that NAD+ is decreased in diabetes [99,100]. It is known that the level
of sirtuin expression is dependent on NAD+ content [66,101]. As sirt3
is responsible for protein deacetylation, its decreased expression would
certainly increase protein acetylation, as was in the case for DLDH and
other mitochondrial proteins (Fig. 6B and C). Therefore, impaired sirt3
signaling pathway could provide another mechanism of mitochondrial

Fig. 7. : Determination of mitochondrial membrane potential and cell death. (A) Mitochondrial membrane potential in the diabetic lung was significantly lower than that in the healthy
lung. (B) Increased caspase-3 activity in the diabetic lung than in the healthy lung, indicating increased cell death in the diabetic lung (N =3 for each measurement).
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abnormalities associated with lung injury in diabetes.

5. Summary

In this study, we have presented evidence that in the diabetic lung,
NADH/NAD+ redox balance was perturbed with NADH being in excess
and NAD+ being deficient. Consequently, mitochondrial electron
transport chain could be under NADH electron pressure and was
indeed found to be upregulated in response to this pressure. However,
this upregulation does not seem to lead to enhanced mitochondrial
ATP production as complex V activity was not upregulated and ATP
content was suppressed. Conversely, the upregulation of electron
transport chain function was found to be associated with decreased
mitochondrial membrane potential, increased ROS generation, ele-
vated oxidative stress, and increased cell death. Moreover, the function
of NAD+-dependent enzymes such as NQO1, DLDH, and sirt3 were all
found to be impaired in the diabetic lung. Taken together, the present
study has elucidated mechanisms by which lung function can be
impaired in diabetes.
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