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Aims Almost half of African American (AA) men and women have cardiovascular disease (CVD). Detection of prevalent
CVD in community settings would facilitate secondary prevention of CVD. We sought to develop a tool for auto-
mated CVD detection.

...................................................................................................................................................................................................
Methods
and results

Participants from the Jackson Heart Study (JHS) with analysable electrocardiograms (ECGs) (n = 3679; age, 62 ± 12
years; 36% men) were included. Vectorcardiographic (VCG) metrics QRS, T, and spatial ventricular gradient vec-
tors’ magnitude and direction, and traditional ECG metrics were measured on 12-lead ECG. Random forests, con-
volutional neural network (CNN), lasso, adaptive lasso, plugin lasso, elastic net, ridge, and logistic regression
models were developed in 80% and validated in 20% samples. We compared models with demographic, clinical,
and VCG input (43 predictors) and those after the addition of ECG metrics (695 predictors). Prevalent CVD was
diagnosed in 411 out of 3679 participants (11.2%). Machine learning models detected CVD with the area under the
receiver operator curve (ROC AUC) 0.69–0.74. There was no difference in CVD detection accuracy between
models with VCG and VCG þ ECG input. Models with VCG input were better calibrated than models with ECG
input. Plugin-based lasso model consisting of only two predictors (age and peak QRS-T angle) detected CVD with
AUC 0.687 [95% confidence interval (CI) 0.625–0.749], which was similar (P = 0.394) to the CNN (0.660; 95% CI
0.597–0.722) and better (P < 0.0001) than random forests (0.512; 95% CI 0.493–0.530).

...................................................................................................................................................................................................
Conclusions Simple model (age and QRS-T angle) can be used for prevalent CVD detection in limited-resources community

settings, which opens an avenue for secondary prevention of CVD in underserved communities.
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Introduction

Many African American (AA) men and women have some form of
cardiovascular disease (CVD).1 Notable racial disparities in CVD

prevalence, management, and outcomes have persisted for decades.2

Both daily and lifetime racial discrimination experienced by AAs is
associated with mistrust of and decreased satisfaction with healthcare
providers, potentially negatively impacting continuity of care and
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treatment adherence.3 In AA communities, health outreach to bar-
bershops is common.4 A recent randomized controlled trial showed
that pharmacist-led treatment of hypertension in barbershops produ-
ces larger blood pressure (BP) reduction, when compared with
standard BP management provided by primary care practices.5

Sustained effect of community-based intervention6 generated further
ideas for pharmacist-led CVD management.7

Up to one-half of acute myocardial infarctions (MIs) are missed or
unrecognized at the time of the event but ultimately cause heart fail-
ure8 or sudden cardiac death (SCD).9 An electrocardiogram (ECG)
is one of the simplest, cheapest, and most widely available methods
used to evaluate the heart. While ECG diagnosis of MI requires a
physician’s interpretation, there is a growing number of automated
algorithms analysing ECG in smartphones and mobile devices.
Detection of prevalent CVD in community settings (e.g. barber-
shops) can potentially open an opportunity for secondary prevention
of CVD10 in patients who have limited access to medical care. Still, it
is unclear how accurately ECG can detect prevalent CVD.

Global electrical heterogeneity (GEH)11 is a novel vectorcardio-
graphic (VCG) phenotype providing additional predictive value be-
yond traditional ECG metrics.12 Global electrical heterogeneity is
associated with SCD,13 cardiovascular mortality,14 and left ventricular
dysfunction15 after adjustment for cardiovascular risk factors.
However, the predictive value of GEH for CVD detection is un-
known. We conducted a cross-sectional study of GEH in AA partici-
pants of the Jackson Heart Study (JHS) using machine learning (ML)
to find patterns in the data with the goal to develop and validate a
simple tool for detection of prevalent CVD on 12-lead ECG. We
hypothesized that automated 12-lead ECG analysis could be used to
detect prevalent CVD.

Methods

The JHS data are available through the National Heart, Lung, and Blood
Institute’s Biological Specimen and Data Repository Information
Coordinating Center and the National Center of Biotechnology
Information’s database of Genotypes and Phenotypes. All study partici-
pants provided written informed consent before entering the JHS study.
This study was approved by the Oregon Health & Science University
(OHSU) Institutional Review Board.

Study population
The JHS was designed as a prospective cohort study of CVD in AAs,16,17

and enrolled 5306 participants from the Jackson, Mississippi metropolitan
area in 2000–2004. Eligible participants were 21–84 years of age.

In this cross-sectional study, we included JHS participants with analys-
able resting 12-lead ECG recorded during the third clinical examination
in 2009–2013 (n = 3717). We excluded participants with missing major
risk factors (hypertension and smoking history) and anthropometric data
(n = 38). The study population included 3679 participants (Figure 1).

Families structure
The JHS enrolled the secondary family members and comprised a Family
Cohort with nearly 300 pedigrees.18 In this study, we comprised family
units of participants with the same four-symbols code indicating similar
family name.

Electrocardiogram and vectorcardiographic

analysis: candidate predictor variables

measurement
Raw digital ECG signal was analysed in the Tereshchenko laboratory at
OHSU.12,13,19,20 Each cardiac beat was manually labelled by at least two
physician investigators (K.J.L., K.A.P., L.G.T.). Kors matrix21 was used to
transform 12-lead ECG into XYZ ECG. Using only one (dominant) type
of beat, the time-coherent global median beat was constructed, and the
origin of the heart vector was identified.20 The following categories of
median beats were included in this study. Normal (N) category included
normal sinus, atrial paced, junctional, and ectopic atrial median beats. The
ventricular pacing category included ventricular paced median beats. The
supraventricular (S) category included atrial fibrillation or atrial flutter
with consistently one type of ventricular conduction.

The direction (azimuth and elevation) and magnitudes of the spatial
peak and area QRS, T, and spatial ventricular gradient (SVG) vectors
were measured.12,19,20 Scalar values of SVG were measured by sum abso-
lute QRST integral (SAIQRST)22–24 and by QT integral on vector magni-
tude (VMQTi) signal (Figure 2).19 The area and peak QRS-T angles were
measured.12,19,20 Study investigators (K.T.H., N.M.R.) reviewed auto-
mated VCG analysis quality using visual display aid. The open-source
MATLAB (MathWorks, Natick, MA, USA) code is provided at https://
physionet.org/physiotools/geh and https://github.com/Tereshchenkolab/
Origin.

Traditional ECG measurements were performed by the 12SL algo-
rithm as implemented in Magellan ECG Research Workstation V2 (GE
Marquette Electronics, Milwaukee, WI, USA) and included median beat
measurements (PR, QRS, QT intervals, and frontal P, QRS, and T axes),
as well as durations, amplitudes, and areas of all identified by the algorithm
waves and segments on all 12 leads. We used the results of automated

Figure 1 Study flowchart.
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12-lead ECG measurements as reported by the 12SL algorithm, without
further quality control procedures.

Ventricular conduction abnormalities were diagnosed by the EPICARE
(Wake Forest University, NC) using Minnesota code,25 and included
code 7-1-1 (left bundle branch block), 7-4 (intraventricular block), 6-8
(pacemaker), and 6-6 (intermittent aberrant ventricular conduction). QT
interval was corrected for heart rate by Bazett, Fridericia, Hodge, and
Framingham approaches, as provided by the JHS Coordinating Center.
Cornell voltage was calculated as the sum of the RaVL and the SV3 ampli-
tudes. Frontal QRS-T angle was calculated as previously described.26

Cardiovascular risk factors candidate

predictor variables
The 3rd clinical examination included BP measurement, anthropometry,
a review of medical history, and cardiovascular risk factors. Height and
weight were measured, and body mass index (BMI) and body surface
area (BSA) were calculated. BMI categories included under- or normal
weight (<25.0 kg/m2), overweight (25.0 to <30.0 kg/m2), or obese (>_30.0
kg/m2). Smoking status was defined as current, former, and never smoker.
Hypertension was defined as BP >_140/90 mmHg or use of antihyperten-
sive therapy.

Outcome: prevalent cardiovascular disease
Prevalent CVD was defined at the 3rd clinical examination if the study
participant had either (i) history of coronary heart disease defined as ei-
ther self-reported prior MI (diagnosed by a doctor or health professional,
or hospitalization for MI), or ECG diagnosis of MI, or (ii) history of cardiac
procedure defined as either prior coronary revascularization (coronary
artery bypass grafting or percutaneous coronary intervention) or periph-
eral arterial revascularization, or (iii) prior carotid angioplasty or carotid
endarterectomy, or (iv) self-reported stroke history (diagnosed by a doc-
tor or health professional). Stable angina was not included in the defin-
ition of prevalent CVD.

Statistical machine learning and analysis
Machine learning approach for detection of prevalent

cardiovascular disease

We randomly split the ML study population into two non-overlapping
samples in such a way that each family cluster was contained entirely
within one set: training and testing (80%; 694 families; n = 3068), and valid-
ation (20%; 169 families; n = 611). Considering the future implementation
of our CVD detection tool in underserved communities, we included
predictor variables that can be easily obtained in community settings: age,
sex, anthropometric characteristics (height, weight, BMI, BMI categories,
BSA), history of hypertension, systolic and diastolic BP, smoking history,
and automatically measured ECG and VCG metrics (43 variables).

We fitted eight different models [random forests,27 convolutional
neural network (CNN),28 lasso, adaptive lasso, plugin-based lasso, elastic
net, ridge with penalized and post-selection coefficients, and logistic
regression].

Random forests model uses bagging, or bootstrap aggregation, which
is a technique for reducing the variance of an estimated prediction func-
tion. Random forests model builds a large collection of de-correlated
trees and then averages them. To train the random forests algorithm, we
arranged the data in a randomly sorted order and tuned the number of
subtrees and number of variables to randomly investigate at each split.
We used both out-of-bag error (tested against training data subsets that
are not included in subtree construction) and a validation error (tested
against the validation data) to find the model with the highest testing
accuracy.

Convolutional neural network is a nonlinear statistical model. The cen-
tral idea is to identify optimal linear combinations of the input variables
and then model the outcome as a nonlinear function of these covariates
(features). We trained the CNN with 20 hidden layers, using 500 itera-
tions with a training factor 2, and 4 normalization parameters. For the
model with VCG input (43 variables), the network was comprised of 3
layers, 64 neurons per layer, and 901 synapse weights. For the model
with ECG input (153 variables), the network was comprised of 3 layers,
174 neurons per layer, and 3101 synapse weights.

The least absolute shrinkage and selection operator (lasso) family of
models utilized 10-fold cross-validation in the training (training and test-
ing) sample. The lasso family of models is widely used to identify key varia-
bles needed in the predictive model and remove those that do not
belong in the model. In the lasso model, cross-validation selected the tun-
ing parameter k that minimized the out-of-sample deviance (a goodness-
of-fit statistic). The tuning parameter k is the lasso penalty parameter. As
k increases, the number of coefficient estimates that are zero at the solu-
tion increases. Covariates with estimated coefficients of zero are
excluded, and covariates with estimated coefficients that are not zero are
included. Cross-validation selects the k value that minimizes the out-of-
sample mean squared error of the predictions.

Figure 2 Representative vectorcardiogram. (A) Colour-coded
(from red to purple) propagation of cardiac activation (red-yellow
QRS loop) and repolarization (green-blue T loop). Peak QRS (red),
T (green), and spatial ventricular gradient (blue) vectors. (B) Vector
magnitude signal of a normal sinus median beat. Gray area indicates
QT integral (scalar spatial ventricular gradient measure). (C)
Corresponding orthogonal X, Y, Z ECG signal.
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..Cross-validation tends to include many covariates whose coefficients
are close to zero. The adaptive lasso is a multistep version of cross-
validation. The adaptive lasso performs multistep cross-validation, per-
forming the second cross-validation step among the covariates selected
in the first cross-validation step. In the second step, the penalty loadings

are set to the inverse of the first-step estimates coefficients. The adaptive
lasso usually selects fewer coefficients than the regular lasso.

The plugin-based lasso uses partialing-out estimators to determine
which covariates belong in the model, achieving an optimal bound on the
number of covariates it included.29 Plugin estimators find the value of k

....................................................................................................................................................................................................................

Table 1 Comparison of training and testing, and validation groups

Characteristics All (n 5 3679) Training and testing (n 5 3068) Validation (n 5 611)

Age (SD), years 61.6 (11.9) 61.4 (11.9) 62.6 (11.6)

Male, n (%) 1332 (36.2) 1109 (36.2) 223 (36.5)

Weight (SD), kg 91.2 (21.5) 91.2 (21.6) 91.3 (21.5)

Height (SD), cm 168.5 (9.4) 168.5 (9.4) 168.6 (9.3)

BMI (SD), kg/m2 32.1 (7.2) 32.1 (7.2) 32.1 (7.4)

Obese BMI group, n (%) 2084 (56.7) 1738 (56.6) 346 (56.6)

BSA (SD), m2 2.00 (0.25) 2.00 (0.24) 2.00 (0.23)

Ever tobacco smoker, n (%) 1097 (29.8) 908 (29.6) 189 (30.9)

Hypertension, n (%) 2703 (73.5) 2242 (73.1) 461 (75.5)

Systolic blood pressure (SD), mmHg 127.6 (18.7) 127.6 (18.6) 127.9 (19.0)

Diastolic blood pressure (SD), mmHg 75.0 (10.9) 75.1 (11.0) 74.6 (10.3)

Heart rate (SD), b.p.m. 64.0 (10.7) 64.0 (10.7) 63.8 (10.6)

QRS duration (SD), ms 89.0 (15.6) 89.0 (15.7) 89.1 (15.3)

Ventricular conduction defect, n (%) 27 (0.73) 17 (0.55) 10 (1.64)

QT interval (SD), ms 416.5 (30.6) 416.3 (31.5) 417.6 (32.9)

Bazett corrected QT (SD), ms 426.7 (25.8) 426.6 (25.7) 427.2 (26.3)

Framingham corrected QT (SD), ms 422.2 (22.7) 422.0 (22.5) 422.9 (23.5)

Hodge corrected QT (SD), ms 423.5 (23.0) 423.3 (22.7) 424.2 (24.4)

Fridericia corrected QT (SD), ms 423.0 (22.1) 422.9 (22.6) 423.7 (23.6)

Cornell voltage(SD), mV 1514 (597) 1507 (593) 1547 (618)

Median beat: normal sinus, n (%) 3629 (99) 3026 (98.6) 603 (98.7)

Median beat: atrial fibrillation, n (%) 36 (1.0) 13 (0.4) 1 (0.2)

Median beat: ventricular pacing, n (%) 14 (0.4) 29 (1.0) 7 (1.2)

QRS area (SD), mV*ms 38.4 (18.3) 38.4 (18.3) 38.7 (18.3)

Peak QRS magnitude (SD), mV 1.59 (0.44) 1.59 (0.44) 1.60 (0.45)

Area QRS azimuth (95% CI) 20.9 (20.1–21.6) 20.7 (19.9–21.6) 21.5 (19.5–23.4)

Peak QRS azimuth (95% CI) 9.7 (8.9–10.4) 9.6 (8.8 = 10.4) 9.8 (8.0–11.7)

Area QRS elevation (95% CI) 73.3 (72.8–73.9) 73.1 (72.5–73.7) 74.4 (72.9–75.8)

Peak QRS elevation(95%CI) 72.3 (71.8–72.7) 72.2 (71.7–72.7) 72.9 (71.8–74.0)

T area (SD), mV*ms 48.5 (23.1) 48.5 (22.9) 48.3 (24.0)

Peak T magnitude (SD), mV 0.36 (0.16) 0.36 (0.16) 0.35 (0.16)

Area T azimuth (95% CI) -45.1 (-46.1 to -44.1) -45.2 (-46.3 to -44.2) -44.5 (046.8 to -42.2)

Peak T azimuth (95% CI) -36.2 (-37.2 to -35.1) -36.3 (-37.4 to -35.2) -35.4 (-37.9 to -33.0)

Area T elevation (95% CI) 75.6 (75.1–76.1) 75.6 (75.0–76.1) 76.0 (74.8–77.2)

Peak T elevation (95% CI) 69.9 (69.4–70.4) 69.9 (69.4–70.4) 69.8 (68.7–71.0)

Area SVG (SD), mV*ms 69.3 (28.2) 69.4 (28.2) 68.7 (28.3)

Peak SVG magnitude (SD), mV 1.81 (0.50) 1.81 (0.50) 1.81 (0.50)

Area SVG azimuth (95% CI) -14.0 (-14.7 to -13.3) -14.1 (-14.9 to -13.3) -13.3 (-15.1 to -11.5)

Peak SVG azimuth (95% CI) 3.7 (3.0–4.4) 3.6 (2.9–4.4) 3.9 (2.2–5.7)

Area SVG elevation (95% CI) 71.5 (71.1–72.0) 71.3 (70.8–71.9) 72.6 (71.4–73.9)

Peak SVG elevation (95% CI) 70.8 (70.4–71.2) 70.7 (70.2–71.1) 71.4 (70.3–72.5)

SAIQRST (SD), mV*ms 153.9 (51.4) 153.7 (51.2) 154.9 (52.6)

VM QT integral (SD), mV*ms 102.9 (34.3) 102.8 (34.1) 103.5 (35.4)

Area QRS-T angle (95% CI) 67.1 (66.0–68.3) 67.1 (65.9–68.3) 67.2 (64.3–70.0)

Peak QRS-T angle (95% CI) 48.3 (47.2–49.4) 48.4 (47.2–49.6) 48.0 (45.2–50.7)

140 J.D. Pollard et al.
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..that is large enough to dominate the estimation noise; it normalizes the
scores for each parameter. The plugin-based lasso is very good at exclud-
ing covariates that do not belong in the model.

The elastic net is an extension of the lasso that permits the retention
of correlated covariates.30 The elastic net was originally motivated as a
method that would produce better predictions when the covariates are
highly correlated. When two variables are correlated, the lasso tends to
include one and exclude the other, but the elastic net permits the reten-
tion of correlated covariates if they improve prediction.

In the ridge model, the penalty parameter uses squared terms and
keep all predictors in the model. The ridge model was designed as a
model that has highly correlated variables, even more so than the
elastic net.

We compared the predictive accuracy of the models by comparing
the area under the receiver operator curve (ROC AUC). As the goal of
screening is to identify all individuals with prevalent CVD, we strived to
maximize the test’s sensitivity, and we selected a 100% sensitivity thresh-
old. We validated the CVD detection tool in the validation sample by
measuring ROC AUC and assessing the sensitivity and specificity of the
selected at the previous step threshold. To assess calibration, we eval-
uated the goodness of fit in the validation sample, using several
approaches. We compared the observed and predicted proportions
within the groups formed by the Hosmer–Lemeshow test.31 We also
used the calibration belt32 to examine the relationship between esti-
mated probabilities and observed CVD rates. For the lasso family of mod-
els, we also calculated the out-of-sample deviance and deviance ratio.

Comparison of machine learning models using the input

of 12SL algorithm electrocardiogram features

To compare the composition and predictive accuracy of the ML models
using ECG features measured on 12-lead ECG by the 12SL algorithm (GE
Marquette Electronics, Milwaukee, WI, USA), we repeated the described
above ML steps with the input of the additional 652 variables, which
included frontal QRS-T angle and fine 12-lead ECG features (amplitudes,
durations, and areas of all ECG waves). We compared random forests,
CNN, lasso, adaptive lasso, plugin-based lasso, and elastic net with

penalized and post-selection coefficients. Due to a large number of input
variables (n = 695), we did not test the performance of logistic regression
and ridge models, as nearly all the predictors were kept in the model. For
an adequate comparison of CNN with VCG and ECG input, a model
with ECG input did not include VCG variables and included only meas-
urements of main ECG waves, without ‘prime’ ECG waveforms (153
variables).

Statistical ML analysis was performed using STATA MP 16.1
(StataCorp LP, College Station, TX, USA). P-value <0.05 was considered
statistically significant. STATA code is provided at https://github.com/
Tereshchenkolab/statistics.

Results

Study population
The study participants were on agerge 62 years of age; more than half
were female (Table 1). Nearly three-quarters of participants had
hypertension, and one-third were current or former smokers.
Prevalent CVD was diagnosed in 411 out of 3679 participants
(11.2%).

There were 863 family units in our study. More than half of them
consisted of a single person (579 units; 67%), and 25% (212 units)
consisted of two participants. There were 17 large family units (2%)
with 20–79 family members per unit, accounting for 24% of the study
population (n = 734). Overall, prevalent CVD was slightly less fre-
quent in large (n = 67; 9.1%) than in small (n = 344; 11.7%) families
(P = 0.049).

Development and validation of
prevalent cardiovascular disease
detection tool
Training and testing and validation subsamples were balanced, with-
out major differences in clinical and ECG characteristics between
subsamples (Table 1).

Figure 3 (A) Importance scores of predictor variables in a random forests model with vectorcardiographic input. (B) Comparison of the marginal
effect size in a convolutional neural network with vectorcardiographic input.
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In tuning the random forests algorithm, we observed that both

out-of-bag error and validation error stabilized after 200 iterations
at 11–12% (Supplementary material online, Figure S1), and we con-
servatively chose 500 subtrees. The minimum validation error
(12%) was observed for 23 variables. Thus, we chose 23 variables
to investigate at each split randomly. The final random forests
model reported a small error in the validation sample (12.2% or
75 out of 611 individuals), indicating good prediction. However,
while the random forests model accurately predicted freedom
from CVD in 534 out of 536 participants (specificity 99.6%), it cor-
rectly predicted CVD in only 2 out of 75 individuals (sensitivity
2.7%), indicating no clinical usefulness (if used alone). Validation
ROC AUC was non-significant (0.512; 95% confidence interval
0.493–0.530). The single most important predictor was sex
(Figure 3A), which, together with well-known clinical CVD risk fac-
tors (age, weight, height, BMI category), comprised the five most
important predictors. ECG characteristics had very little impact on
the random forests decision tree.

A comparison of the prediction models’ performance is shown in
Table 2. The CNN demonstrated the highest predictive accuracy in
the training and testing sample across all models, with a final error of
only 8%. However, the CNN model’s calibration was unsatisfactory
(Hosmer–Lemeshow test P < 0.0001; Table 3). Peak QRS-T angle and
age demonstrated the largest marginal effect in the CNN with VCG
input (Figure 3B).

Several models (lasso, adaptive lasso, elastic net, ridge, and logistic
regression) demonstrated an intermediate accuracy, similar fit, and
no differences in ROC AUC. Supplementary material online, Figure
S2 shows the cross-validation function and selected k for each model.
Selected predictors and their coefficients for all models are reported
in Table 4. Remarkably, the plugin-based lasso model selected only
two predictors: age and spatial peak QRS-T angle (Supplementary
material online, Figure S3), while demonstrating only slightly smaller
ROC AUC. The threshold of predictive function >_0.026 identified all
participants with prevalent CVD in the testing sample (100% sensitiv-
ity). Calibration of logistic regression, lasso, adaptive lasso, plugin-
based lasso, elastic net, and ridge models was satisfactory (Figure 4
and Supplementary material online, Figure S4).

In the validation out-of-sample population (Table 2), several mod-
els (logistic regression, lasso, adaptive lasso, elastic net, and ridge) had
similarly high predictive accuracy, whereas CNN and plugin-based
lasso demonstrated slightly, but statistically significantly lower accur-
acy. A pre-selected threshold of plugin-based lasso predictive func-
tion was 100% sensitive and identified all participants with prevalent
CVD in the validation sample. Random forests model performance
was unsatisfactory.

Comparison of machine learning models
with the input of vectorcardiographic and
12-lead electrocardiogram features
Selected predictor variables and beta-coefficients are reported in
Table 5. Lasso family models selected 5-79 predictors, which included
finicky features of ECG (P-prime, Q, and R-prime measurements). In
a training and testing sample, all models that included both VCG and
ECG predictors showed higher accuracy than VCG-only models
(Table 2). However, there was no difference in ROC AUC between
the respective models in the validation sample. Furthermore,
only plugin-based lasso and adaptive lasso models showed satisfac-
tory calibration, whereas elastic net and lasso models’ calibration be-
came unsatisfactory (Figure 5 and Supplementary material online,
Figure S5).

Random forests model with 695 input variables that included both
ECG and VCG predictors was tuned (Supplementary material online,
Figure S1) and included 500 subtrees and 26 variables to randomly in-
vestigate at each split. The final VCG þ ECG random forest model
reported smaller error (10%) than the VCG-based model in the val-
idation sample. The model correctly detected CVD in only 14 out of
75 individuals (sensitivity 19%), while it accurately identified all 536
CVD-free participants (specificity 100%). The most influential predic-
tors are shown in Figure 6.

The CNN with the input of 153 ECG predictor variables demon-
strated moderate predictive accuracy, which was significantly worse
when compared to the CNN model with VCG input (Table 2) and
had poor calibration (Figure 5D).

....................................................................................................................................................................................................................

Table 3 CNN—predicted and observed CVD in deciles of predicted CVD risk

CVD risk group N Observed (%) Predicted (%) Min% Max% HL v2

1 3456 241 (7.0) 28.1 (0.8) 0 9.9 1616.05

2 32 17 (53.1) 4.4 (13.8) 10.2 19.2 3.25

3 22 9 (40.9) 5.4 (24.4) 20.5 28.8 4.03

4 17 10 (58.8) 6.0 (35.5) 30.9 39.8 2.51

5 10 7 (70.0) 4.5 (45.1) 41.2 47.3 4.72

6 14 12 (85.7) 8.0 (57.0) 50.2 60.0 1.40

7 26 20 (76.9) 17.1 (65.9) 60.9 70.0 0.38

8 27 21 (77.8) 19.6 (72.5) 70.6 79.9 0.87

9 5 5 (100) 4.3 (85.2) 82.7 89.5 0

10 69 68 (98.6) 68.0 (98.5) 91.2 100.0 1674.92

Total 3679 411 (11.2) 166.5 (4.5) 0 100 1674.9

CNN, convolutional neural network; HL, Hosmer–Lemeshow v2.
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..Discussion

In this large community-based cross-sectional study of nearly 4000
African American men and women with the nested family cohort, we
used ML to detect prevalent CVD. We developed and validated a
simple model for the detection of prevalent CVD, which included

age and spatial QRS-T angle. In the future, automated ECG measure-
ments could be implemented in community settings (barbershops,
community centres, churches). Our findings open an avenue for a
randomized controlled trial of pharmacist-led interventions for sec-
ondary prevention of CVD (e.g. statins, aspirin, BP-lowering drugs) in
barbershops and other community centres, which may ultimately

....................................................................................................................................................................................................................

Table 4 Beta-coefficients for selected variables in VCG-based prediction models

Input variable OLS Ridge Elastic net Lasso Adaptive Plugin

Age, years 0.026 0.268 0.304 0.332 0.341 0.042

Male 0.072 0.026 — — — —

Weight, kg -0.028 0.004 — — — —

Height, cm 0.097 -0.002 — — — —

BMI, kg/m2 0.169 0.055 0.051 0.053 0.094 —

BMI three categories -0.230 -0.042 -0.028 -0.024 — —

BSA, m2 -3.49 -0.002 — — — —

Ever tobacco smoker 0.426 0.166 0.172 0.176 0.202 —

Hypertension 0.756 0.239 0.258 0.289 0.331 —

Systolic blood pressure, mmHg 0.010 0.115 0.088 0.075 0.105 —

Diastolic blood pressure, mmHg -0.024 -0.176 -0.151 -0.138 -0.177 —

Heart rate, b.p.m. -0.113 0.032 0.039 0.040 0.092 —

QRS duration, ms 0.003 0.087 0.088 0.091 0.096 —

QT interval, ms -0.018 -0.030 — — — —

Bazett corrected QT, ms 0.246 0.045 0.024 0.016 — —

Framingham corrected QT, ms 0.086 0.005 — — — —

Hodge corrected QT, ms — -0.015 — — — —

Fridericia corrected QT, ms -0.316 0.021 — — — —

Cornell voltage, mV -0.0005 -0.118 -0.100 -0.093 -0.134 —

Median beat type (three categories) 0.172 0.026 0.015 0.011 — —

Mean RR’ interval, ms 0.026 -0.027 -0.035 -0.034 -0.002 —

QRS area, mV*ms -0.00002 -0.029 — — — —

Peak QRS magnitude, mV 0.0003 0.081 0.073 0.063 0.097 —

Area QRS azimuth 0.001 -0.009 — — — —

Peak QRS azimuth 0.0008 0.004 — — — —

Area QRS elevation -0.005 -0.022 — — — —

Peak QRS elevation 0.015 0.096 0.102 0.087 0.124 —

T area, mV*ms -0.00003 -0.065 -0.030 -0.028 -0.019 —

Peak T magnitude, mV 0.0007 -0.003 — — — —

Area T azimuth 0.002 0.113 0.125 0.131 0.162 —

Peak T azimuth 0.0008 0.001 — — — —

Area T elevation 0.002 -0.003 — — — —

Peak T elevation -0.006 -0.038 -0.033 -0.040 -0.047 —

Area SVG, mV*ms 0.000001 0.010 — — — —

Peak SVG magnitude, mV -0.0001 0.020 — — — —

Area SVG azimuth 0.001 0.041 0.014 0.007 — —

Peak SVG azimuth -0.002 -0.012 — — — —

Area SVG elevation -0.008 -0.078 -0.056 -0.045 -0.072 —

Peak SVG elevation 0.003 0.061 0.004 — — —

SAIQRST, mV*ms -0.00001 0.009 — — — —

VM QT integral, mV*ms 0.00004 0.035 — — — —

Area QRS-T angle 0.004 0.140 0.083 0.020 — —

Peak QRS-T angle 0.019 0.270 0.320 0.389 0.444 0.010

Constant -24.73 -2.312 -2.323 -2.336 -2.377 -5.442
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Table 5 Beta-coefficients for selected variables in VCG 1 ECG-based models

Input variable Elastic net Lasso Adaptive Plugin

Age, years 0.220 0.287 0.321 0.037

Ever tobacco smoker (yes-no) 0.075 0.079 0.150

Hypertension (yes-no) 0.162 0.186 0.323

Diastolic blood pressure, mmHg -0.037 -0.010 -0.032

Peak QRS-T angle 0.102 0.154 0.192 0.005

Peak QRS elevation 0.019 — —

Area SVG azimuth 0.018 0.001 —

Area T azimuth 0.081 0.100 0.214

P V1 amplitude, mV 0.017 — —

P aVL duration, ms 0.004 — —

P aVL intrinsicoid, ms 0.015 0.015 0.104

P V4 intrinsicoid, ms -0.011 — —

Pprime III duration, ms 0.024 0.015 0.040

Pprime V4 duration, ms 0.027 0.027 0.048

Pprime aVF duration, ms 0.025 0.015 0.028

Pprime V6 area, mV*ms -0.008 — —

Q V3 amplitude, mV 0.077 0.043 0.101

Q III amplitude, mV 0.066 0.076 0.144

Q aVF amplitude, mV 0.003 — —

Q II duration, ms 0.039 0.037 0.102

Q V3 duration, ms 0.159 0.211 0.252 0.056

Q aVF duration, ms 0.042 0.030 0.018

Q I intrinsicoid, ms — 0.022 0.066

Q aVF intrinsicoid, ms 0.043 0.054 0.015

Q V1 intrinsicoid, ms 0.029 — —

Q aVL area, mV*ms 0.006 — —

R V4 duration, ms 0.017 0.011 0.076

R aVL duration, ms 0.026 0.005 —

R V1 area, mV*ms 0.022 0.010 —

R V2 area, mV*ms 0.045 0.045 0.082

R V6 area, mV*ms 0.003

R III intrinsicoid, ms 0.044 0.042 0.056

R aVL intrinsicoid, ms 0.034 0.031 0.084

R aVF intrinsicoid, ms 0.051 0.047 0.153

R V6 intrinsicoid, ms 0.036 0.025 0.056

S V1 duration, ms -0.026 -0.018 -0.016

Rprime V4 amplitude, mV 0.055 0.066 0.115

Rprime I area, mV*ms 0.064 0.060 0.102

Rprime aVR area, mV*ms 0.046 0.037 0.073

Sprime V4 amplitude, mV 0.030 0.012 0.039

S prime V6 duration, ms -0.0005 — —

Sprime V1 area, mV*ms 0.033 0.033 0.089

Sprime V6 area, mV*ms -0.005 — —

Sprime V2 intrinsicoid, ms -0.038 -0.040 -0.193

J-point amplitude in lead I, mV -0.038 — —

ST segment middle amplitude in aVR, mV 0.031 — —

Maximum of ST amplitude in aVR, mV 0.024 0.012 —

Minimum of STJ and STM amplitudes in lead I, mV -0.074 — — -0.007

Minimum of ST amplitudes in lead I, mV — -0.153 -0.241

Minimum of either T amplitude or T-ST aVL, mV -0.057 -0.081 -0.179

Peak-to-peak QRS complex amplitude II, mV -0.045 -0.033 -0.168

Continued
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..reduce cardiovascular morbidity and mortality in underserved and
resource-limited communities.

Overwhelming data have proved that statins, aspirin, and BP-
lowering medications for secondary prevention of CVD reduce
mortality. However, in the USA, only 45% of CVD patients re-
ceive aspirin, 88% receive antihypertensive medication, and 65%
receive statins.33 Furthermore, adherence to statin use is low,
especially in AA adults.34 Among AAs, CVD is underdiagnosed
and undertreated,2 which reflects underdiagnosed and under-
treated CVD in underserved communities across the globe.
Screening for prevalent CVD in community centres with subse-
quent pharmacist-led interventions can save thousands of lives
in resource-limited communities. Randomized clinical trials are
warranted to test the proposed strategy in different countries,
where community centres’ names and settings can vary
considerably.

In this study, the ML approach selected the QRS-T angle as the
most important predictor, which, together with age, is necessary and
sufficient to detect prevalent CVD. Spatial QRS-T angle is a well-
known cardiovascular risk marker.26,35 Remarkably, the QRS-T angle
outperformed other well-known CVD risk markers, including hyper-
tension, smoking, and BMI, which highlights the importance of infor-
mation carried by VCG. Equally notably, the QRS-T angle was
selected and ranked highly by all ML algorithms, regardless of the ini-
tial input set of predictor variables, specific ML model approach to
the features selection, importance ranking, and handling correlated
variables. This is the strong evidence that both spatial QRS-T angle
and age truly belong to the model of prevalent CVD outcome, re-
gardless of all other risk factors and ECG features. Interestingly,
Jensen et al.36 showed that the spatial QRS-T angle was the only GEH
parameter that interacted with race in the association with SCD.36

This finding is consistent with our results, showing the strongest

....................................................................................................................................................................................................................

Table 5 Continued

Input variable Elastic net Lasso Adaptive Plugin

T aVL amplitude, mV -0.005 — —

T area in lead I, mV*ms -0.026 — —

T area in aVL, mV*ms -0.009 — —

T V1 intrinsicoid, ms 0.028 0.025 0.079

T V2 intrinsicoid, ms 0.029 0.014 0.064

Tprime aVL amplitude, mV -0.008 — —

Tprime aVF amplitude, mV 0.037 0.040 0.104

Tprime V1 area, mV*ms 0.031 0.027 0.097

Tprime V4 area, mV*ms -0.007 — —

Tprime III area, mV*ms 0.022 0.014 0.061

Tprime aVL area, mV*ms -0.016 -0.014 -0.054

Tprime V2 intrinsicoid, ms 0.006 — —

T and Tprime area in lead I, mV*ms -0.020 — —

T and Tprime area in aVL, mV*ms -0.024 — —

Peak of T > ST in aVL (yes-no) — -0.004 —

ST depression V2 (yes-no) 0.001 — —

ST depression V3 (yes-no) 0.034 0.033 0.033

ST depression V4 (yes-no) 0.020 0.007 —

ST elevation in lead I (yes-no) -0.004 — —

ST elevation in lead V1 (yes-no) 0.004 — —

ST elevation in lead V2 (yes-no) 0.038 0.031 0.088

ST elevation in lead V4 (yes-no) 0.0008 — —

ST elevation in lead V6 (yes-no) -0.009 — —

J point elevated by 100 lV in lead V1 (yes-no) -0.064 -0.065 -0.167

J point elevated by 100 lV in lead III (yes-no) -0.019 — -0.115

J point elevated by 100 lV in lead aVF (yes-no) — -0.019 —

Delta-wave was detected in lead III (yes-no) -0.022 -0.021 -0.058

Delta-wave was detected in aVL (yes-no) -0.040 -0.034 -0.157

ST J-point elevated in V1 (yes-no) -0.012 -0.003 —

ST J-point elevated in V2 (yes-no) -0.011 -0.011 -0.055

Frontal QRS-T angle, degrees 0.069 0.069 0.040 0.003

Constant -2.30 -2.31 -2.51 -4.92

STJ, end of QRS point amplitude; STM, middle of ST segment amplitude.
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.association of spatial QRS-T angle with prevalent CVD in AA men
and women.

It is important to note the differences between spatial area and
peak QRS-T angles. By measuring peak QRS and T vectors, we assess
the moment when most of the heart is depolarized (QRS) or repolar-
ized (T).37,38 By measuring QRS and T areas, we aim to assess the en-
tire depolarization (QRS) and repolarization (T) phase, which can be
done in healthy hearts. However, diseased hearts are characterized
by the heterogeneity of activation and repolarization.39 A single-
diploe ECG approximation carries inherent limitation in modelling
multipolar electrical activity,39 reflected by inaccuracies in the onset
and offset of QRS and T waves definitions. Notably, in this study,
peak-based QRS-T angle was preferentially selected by all ML mod-
els, whereas some models (lasso, elastic net) selected both peak-
based and area-based angles, or both peak-based and frontal (two-di-
mensional) angles, suggesting their complementary value.

The Personalized Risk Identification and Management for
Arrhythmias and Heart Failure by ECG and CMR (PRIMERI) study40

prospectively enrolled participants (40% AAs) with spatial QRS-T
angle >_105�or Selvester score >_5 and showed that more than half of

them had a myocardial scar.41 It is known that silent MI is frequent in
the community and is associated with worse clinical outcomes.8

Furthermore, it was previously shown that the QRS-T angle is associ-
ated with future silent MI.42 The awareness of common heart attack
symptoms is low in AAs (43.1%).1 Only 11.8% of AA adults (>_20
years of age) meet ideal cardiovascular health criteria.1

Socioeconomic factors (absence of medical insurance and lack of ac-
cess to specialized cardiovascular care) increase the number of indi-
viduals with prevalent but undiagnosed CVD in underserved
communities, highlighting our study findings’ importance.

Importantly, our study compared the performance of models
selected by supervised ML with two sets of input variables. We found
that the models using the input of nearly 700 ECG features selected
finicky, rarely observed ECG features (e.g. P-prime in V2-V5, R-prime
in lead I and aVR), and did not improve final VCG-based models,
which selected global VCG features that describe the directions of
QRS, T, and SVG vectors. For all models, the set of input variables
determined the final selection of variables. The performance of VCG
þ ECG models was slightly worse in the validation sample than in
training and testing sample, whereas the performance of VCG

Figure 4 Calibration of vectorcardiographic models. The calibration belt with 80% and 95% confidence intervals on the external sample shows the
observed and predicted cardiovascular disease proportions in (A) lasso, (B) adaptive lasso, (C) plugin lasso, (D) elastic net, (E) ridge, (F) logistic regres-
sion models with vectorcardiographic input (43 predictors).
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models in the validation sample was slightly better than in training
and testing sample. Besides a random chance (a random seed selec-
tion by ML machinery), one possible reason for that is a type of input
variables. ECG input variables included tiny, particular, infrequently
observed ECG features, which more easily lead to over-fitting ML
models in a training and testing sample, but, as expected, to lower
performance in the validation sample. In contrast, VCG features pro-
vided a robust and reproducible out-of-sample validation. Further
studies are needed to compare the performance of ML models using
the raw ECG signal input as compared to the derived ECG/VCG
metrics input.

While the ML approach is gaining strengths in cardiology, only one
previous study used ML to detect prevalent CVD. Dinh et al.43 used
an input of 131 clinical characteristics in the National Health and
Nutrition Examination Survey (NHANES) data and reported a ROC
AUC of �0.8. Unfortunately, Dinh et al.43 did not report b-coeffi-
cients for the selected final 24 features, which made external valid-
ation of their findings impossible. Also, many of the selected
NHANES features are prone to recall bias (e.g. dietary habits:

carbohydrate, calcium, fibre, caffeine, sodium intake) and are burden-
some for participants.

The selection of the ‘best’ ML model deserves discussion. Our goal
was to select the most accurate, well-calibrated, and well-validated
parsimonious model. Adaptive lasso model with clinical þ VCG (43
variables) input and selected 17 predictor variables met these criteria
as ‘the best’ model. The plugin-based lasso model with only two pre-
dictor variables (age and spatial QRS-T angle) was the second best.
The attraction of a simple model that contains only age and QRS-T
angle is that it can be readily implemented in underserved commun-
ities, as it does not require complex ECG signal processing or com-
puting. On the other hand, we can foresee that this study results can
also be used more broadly. In a resource-rich environment, ECG-
based CVD detection can be potentially used as a first screening step
to prompt further diagnostic evaluation and precise CVD diagnostics,
where the adaptive lasso model would be preferable. Such a strategy
should be tested in prospective clinical trials. We reported all coeffi-
cients (Tables 4 and 5) and CVD equation (Supplementary material
online, Figure S3), allowing future validation and comparison of all

Figure 5 Calibration of electrocardiogram and vectorcardiographic models. The calibration plot shows the observed and predicted cardiovascular
disease proportions in the (A) convolutional neural network model with vectorcardiographic input (43 variables) and (D) electrocardiogram input
(153 variables). The size of the circles is proportional to the amount of data. The calibration belt with 80% and 95% confidence intervals on the exter-
nal sample shows the observed and predicted cardiovascular disease proportions in (B) lasso, (C) adaptive lasso, (E) plugin lasso, (F) elastic net models
with electrocardiogram and vectorcardiographic input (695 predictors).
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.reported models. Further studies are needed to assess benefits,
harms (for false-positives), and cost-effectiveness of ECG screening
for prevalent CVD.

Strengths and limitations
The study’s strengths include its design of a large community study of
AA adults with the nested family cohort and well-validated definitions
of prevalent CVD and traditional cardiovascular risk factors. The JHS
definition of prevalent CVD used strict criteria and did not consider
stable angina, which excluded the possibility of false-positive CVD
cases.44 However, the study limitations have to be acknowledged.
The strict CVD definition did not consider stable angina and thus per-
mitted false-negative CVD cases. While we employed out-of-sample
validation of our models, validation of the study findings in a larger
population of unrelated persons is warranted. Measurement of all
12-lead ECG waves’ durations, amplitudes, and areas was fully auto-
mated and may carry measurement error. It is possible that reducing
the measurement error of ECG features can improve ML algorithms’
predictive accuracy, which should be studied further.

Conclusion

A simple model for CVD detection, comprised of age and QRS-T
angle, has a 70% chance to distinguish between CVD presence or ab-
sence. A cut-off that corresponds to 100% sensitivity (>_0.026) makes
it useful for prevalent CVD screening in limited-resource settings. In
the future, inexpensive automated (utilizing ECG recording) CVD
screening can be employed in barbershops, churches, and other

community centres. A strategy of automated CVD detection in
underserved communities with subsequent interventions for second-
ary prevention of CVD should be tested in future clinical trials.

Supplementary material

Supplementary material is available at European Heart Journal is avail-
able at online.
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