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Abstract What determines how we move in the world? Motor neuroscience often focusses

either on intrinsic rhythmical properties of motor circuits or extrinsic sensorimotor feedback loops.

Here we show that the interplay of both intrinsic and extrinsic dynamics is required to explain the

intermittency observed in continuous tracking movements. Using spatiotemporal perturbations in

humans, we demonstrate that apparently discrete submovements made 2–3 times per second

reflect constructive interference between motor errors and continuous feedback corrections that

are filtered by intrinsic circuitry in the motor system. Local field potentials in monkey motor cortex

revealed characteristic signatures of a Kalman filter, giving rise to both low-frequency cortical

cycles during movement, and delta oscillations during sleep. We interpret these results within the

framework of optimal feedback control, and suggest that the intrinsic rhythmicity of motor cortical

networks reflects an internal model of external dynamics, which is used for state estimation during

feedback-guided movement.

Editorial note: This article has been through an editorial process in which the authors decide how

to respond to the issues raised during peer review. The Reviewing Editor’s assessment is that all

the issues have been addressed (see decision letter).

DOI: https://doi.org/10.7554/eLife.40145.001

Introduction
Many visually-guided movements are characterized by intermittent speed fluctuations. For example,

during the tracking of slowly-moving target, humans make around 2–3 submovements per second.

Although first described over a century ago (Woodworth, 1899; Craik, 1947; Vince, 1948) the

cause of movement intermittency remains debated. Submovements often disappear in the absence

of vision (Miall et al., 1993a) and are influenced by feedback delays (Miall, 1996), suggesting that

their timing depends on extrinsic properties of visuomotor feedback loops. However, some rhyth-

micity persists in the absence of feedback (Doeringer and Hogan, 1998), and it has been suggested

that an internal refractory period, clock or oscillator parses complex movements into discrete, iso-

chronal segments (Viviani and Flash, 1995; Loram et al., 2006; Hogan and Sternad, 2012;

Russell and Sternad, 2001). Cyclical dynamics within motor cortical networks with a time period of

300–500 ms may reflect the neural correlates of such an intrinsic oscillator (Churchland et al., 2012;

Hall et al., 2014). During continuous tracking, each submovement is phase-locked to a single corti-

cal cycle, giving rise to low-frequency coherence between cortical oscillations and movement speed

(Jerbi et al., 2007; Hall et al., 2014; Pereira et al., 2017).

It has been proposed that the intrinsic dynamics of recurrently-connected cortical networks act as

an ‘engine of movement’, responsible for internal generation and timing of the descending motor

command (Churchland et al., 2012). However, another possibility is that low-frequency dynamics

observed in motor cortex arise from sensorimotor feedback loops through the external environment.

On the one hand, cortical cycles appear conserved across a wide range of behaviors and even share
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a common structure with delta oscillations during sleep (Hall et al., 2014), consistent with a purely

intrinsic origin. On the other hand, the influence of feedback delays on submovement timing sug-

gests an extrinsic contribution to movement intermittency. Therefore, we examined the effect of

delay perturbations during visuomotor tracking in humans and monkeys, to dissociate both delay-

independent (intrinsic) and delay-dependent (extrinsic) components of movement kinematics and

cortical dynamics.

We interpret our findings using stochastic optimal control theory, which has emerged as an influ-

ential approach to understanding movement (Todorov and Jordan, 2002; Scott, 2004). Given

noisy, delayed sensory measurements, an optimal feedback controller (OFC) continually estimates

the current motor state using an internal model of external dynamics. We show that this can provide

a computational framework for understanding both extrinsic and intrinsic contributions to intermit-

tency, accounting for many puzzling features of submovements and providing a parsimonious expla-

nation for conserved cyclical dynamics in motor cortex networks during behavior and sleep.

Results

Overview
Our results are organized as follows. First, we describe behavioral results with human subjects,

examining the effects of delay perturbations on movement intermittency and feedback responses

during an isometric visuomotor tracking task. Second, we introduce a simple computational model

to illustrate how principles of optimal feedback control, and in particular state estimation, can

explain the key features of our data. Finally, we examine local field potentials recorded from the

motor cortex of monkeys performing a similar task, to show that cyclical neural trajectories are con-

sistent with the implementation of state estimation circuitry.

Submovement frequencies are affected by feedback delays
Our first experiment aimed to characterize the dependence of submovement frequencies on feed-

back delays. Human subjects generated bimanual, isometric, index finger forces to track targets that

moved in slow 2D circular trajectories with constant speed (Figure 1A). We measured intermittency

in the angular velocity of the cursor (Figure 1B,C) using spectral analysis over a 10 s window begin-

ning 5 s after the trial start. Under unperturbed feedback conditions, power spectra generally exhib-

ited a principal peak at around 2 Hz (Figure 1D). This frequency was only slightly affected by target

speed (Figure 1—figure supplement 1), consistent with previous reports (Miall, 1996) and perhaps

suggestive of an intrinsic oscillator or clock determining submovement timing.

However, submovement frequencies were markedly altered when visual feedback of the cursor

was delayed relative to finger forces. With delays of 100 and 200 ms, the frequency of the primary

peak reduced to around 1.4 and 1 Hz respectively (Figure 1D, Figure 1—figure supplements 1 and

2), demonstrating that submovement timing in fact depended on extrinsic feedback properties.

Interestingly, a further peak appeared at approximately three times the frequency of the primary

peak, and with increased delays, of 300 and 400 ms, a fifth harmonic was observed. The time-peri-

ods of the first, third and fifth harmonics were linearly related to extrinsic delay times, with gradients

of 1.89 ± 0.20, 0.59 ± 0.04 and 0.33 ± 0.11 respectively (Figure 1E, Table 1).

These results are consistent with a feedback controller responding to broad-spectrum (stochastic)

tracking errors introduced by noise in the motor output, for which the response is delayed by

time, t. In signal-processing terms, subtracting a delayed version from the original signal is known as

comb filtering (Figure 1E). Although comb filters subtracting in either feedforward or feedback

directions have qualitatively similar behavior, we illustrate only the feedforward architecture in

Figure 1E, as we will later show this to match better the experimental data. For motor noise compo-

nents with a time period, T ¼ t
1
; t
2
; t
3
. . ., delayed corrections accurately reflect current errors, resulting

in regularly spaced notches in the amplitude response of the system (Figure 1G) and attenuation

in the resultant cursor movement through destructive interference. By contrast, for motor noise with

a time-period, T ¼ 2t
1
; 2t
3
; 2t
5
. . ., delayed corrections are exactly out-of-phase with the current error.

Thus, corrective movements exacerbate these components through constructive interference, lead-

ing to spectral peaks at frequencies:
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f ¼ 1

T
¼ N

2 tint þ textð Þ With N ¼ 1; 3; 5 . . . (1)

Submovement frequencies in our data approximately matched this model, assuming the total

feedback delay comprised the experimental manipulation text added to a constant physiological

response latency tint of around 300 ms (Table 1), comparable to visual reaction times.

0 1 2 3 4

Time (s)

-0.5

0.5

0

-100

100

0

P
o
s
it
io

n
 

(%
)

E
rr

o
r 

(r
a
d
)

A
n
g
u
la

r 
v
e
lo

c
it
y
 

A
n
g
u
la

r 
v
e
lo

c
it
y
 

(r
a
d
/s

)

5

F
Right

F
Left

Isometric

finger force

F
Right

F
Left

B 0 ms delay1 400 ms delay5

0 ms

Feedback delay:

Feedback delay:

100 ms

200 ms

400 ms

300 ms

1

2

3

4

5

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

Frequency (Hz)

C
u
rs

o
r 
a
n
g
u
la

r 
ve

lo
c
it
y
 (

(r
a

d
/s

)2
/H

z
)

0 50 100 150 200 250 300 350 400

200

400

600

800

1000

1200

1400

1600

Feedback delay (ms)

S
u

b
m

o
v
e

m
e

n
t 

p
e

ri
o

d
 (

m
s
)

1st harmonics

3rd harmonics

5th harmonics

0 ms

100 ms

200 ms

1

2

3
400 ms

300 ms4

5

-
+

Feedback

correction

Motor

noise
Force

A
m

p
lit

u
d

e
 r

e
s
p

o
n

s
e

0

1

2

1/2 3/2 5/22/2 4/2
Frequency

0/2 6/2

Constructive

interference

Destructive

interference

A

F

G

D E

F
Right

F
Left

0 1 2 3 4

Time (s)

-0.5

0.5

0

-100

100

0

P
o
s
it
io

n
 

(%
)

E
rr

o
r 

(r
a
d
)

(r
a
d
/s

)

5

0

5

5

0

5

5

0

C

rCursor

 Cursor
 Target

rTarget

Intrinsic

Total delay  = ext + int

delay (
int

)

Artificial

delay ( )ext

Figure 1. Movement intermittency during visuomotor tracking depends on feedback delays. (A) Schematic of human tracking task. Bimanual isometric

finger forces controlled 2D cursor position to track slow, circular target motion. Kinematic analyses used the angular velocity of the cursor subtended at

the screen center during the middle of each trial. (B) Example force (top), angular error (middle) and cursor angular velocity (bottom) traces during

target tracking with no feedback delay. Submovements are evident as intermittent fluctuations in angular velocity. (C) Example movement traces with

400 ms feedback delay. (D) Power spectra of cursor angular velocity with different feedback delays between 0 and 400 ms. Analysis based on a 10 s

window beginning 5 s after trial start. Average of 8 subjects, shading indicates standard error of mean (s.e.m.). See also Figure 1—figure supplement

2. (E) Submovement periods (reciprocal of the peak frequency for each harmonic) for all subjects with different feedback delays. Lines indicate linear

regression over all subjects. See Table 1 for summary of individual subject regression analysis. (F) Schematic of a simple delayed feedback controller.

(G) Amplitude response of the system shown in (F), known as a comb filter.

DOI: https://doi.org/10.7554/eLife.40145.002

The following source data and figure supplements are available for figure 1:

Source data 1. Subject information, time periods of submovement peaks and associated regression analysis.

DOI: https://doi.org/10.7554/eLife.40145.006

Figure supplement 1. Effect of target speed on movement intermittency.

DOI: https://doi.org/10.7554/eLife.40145.003

Figure supplement 2. Individual subject power spectra of cursor velocity with different feedback delays.

DOI: https://doi.org/10.7554/eLife.40145.004

Figure supplement 3. Trajectory variability depends on change in isometric force.

DOI: https://doi.org/10.7554/eLife.40145.005
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Submovements occur at frequencies of constructive interference
between motor errors and delayed corrections
According to this extrinsic interpretation, intermittency arises not from active internal generation of

discrete submovement events, but as a byproduct of continuous, linear feedback control with inher-

ent time delays. Submovement frequencies need not be present in the smooth target movement,

nor do they arise from controller non-linearities. Instead these frequencies reflect components of

broad-band motor noise that are exacerbated by constructive interference with delayed feedback

corrections. To seek further evidence that intermittency arises from such constructive interference,

we performed a second experiment in which artificial errors were generated by spatial perturbation

of the cursor. Within individual trials, a sinusoidal displacement was added to the cursor position in a

direction aligned to target motion and at a frequency between 1 and 5 Hz. Perturbation amplitudes

were scaled to have equivalent peak angular velocities (equal to the angular velocity of the target).

Our hypothesis was that artificial errors at submovement frequencies would be harder to track

(because of constructive interference) than perturbations at frequencies absent from the velocity

spectrum.

Figure 2A shows example tracking behavior with a 2 Hz perturbation. Note that the peak angular

velocity of force responses (black line, calculated from the subject’s finger forces) occurred around

the same time as the peak angular velocity of the perturbation (green line). As a result, the angular

velocity of the cursor (yellow line, reflecting the combination of the subject’s forces with the pertur-

bation) exhibited pronounced oscillations that were larger than the perturbation. Figure 2B shows

performance in the same task when visual feedback was delayed by 200 ms. In this condition, peaks

in force velocity coincided with perturbation troughs, attenuating the disturbance to cursor velocity.

Figure 2C,D and Figure 2—figure supplement 1 overlay cursor velocity spectra in the presence of

each perturbation frequency (with feedback delays of 0 and 200 ms), again calculated over a 10 s

window beginning 5 s after the trial start. As previously, in the absence of feedback delay, the fre-

quency of submovements was around 2 Hz. Correspondingly, perturbations at 2 Hz induced a large

peak in the cursor velocity spectrum, indicating that the artificial error was not effectively tracked. By

contrast, with a feedback delay of 200 ms the cursor velocity spectrum with a 2 Hz perturbation was

attenuated. The largest spectral peaks were instead associated with 1 and 3 Hz perturbations,

matching the frequencies of submovements in this delay condition.

Figure 2E shows the amplitude response of cursor movements at each frequency for both delay

conditions. Unlike a power spectrum, the cursor amplitude response measures only cursor move-

ments that are phase-locked to the perturbation (normalized by the perturbation amplitude), and

therefore estimates the overall transfer function of the closed-loop control system. Cursor amplitude

responses greater than unity at 2 Hz (with no delay), and at 1 and 3 Hz (with 200 ms delay) indicate

exacerbation of intermittencies introduced by artificial errors at submovement frequencies. Analysis

of variance (ANOVA) with two factors (delay time and perturbation frequency) revealed a highly sig-

nificant interaction (n = 8 subjects, F4,70=110.2, p<0.0001), confirming the interdependence of feed-

back delays and frequencies of constructive/destructive interference.

Table 1. The dependency of submovement period on feedback delay.

Shown in the table are the gradients and intercepts of regression lines fitted to each harmonic group in Figure 1E. The time period of

each spectral peak was regressed against feedback delay. Shown in square brackets are 95% confidence intervals of these values. Also

shown is the estimated intrinsic time delay calculated using Equation (1).

Harmonic (N) Predicted slope = 2/N Measured slope Measured intercept (ms) R2 P tint = Intercept*N/2

1 2 1.89 [1.69,2.09] 589 ms
[539,638]

0.90 <0.00001 294 ms
[270,319]

3 0.67 0.59 [0.53,0.65] 226 ms
[211,242]

0.94 <0.00001 340 ms
[316,362]

5 0.4 0.33 [0.22,0.45] 146 ms
[106,185]

0.75 <0.00001 364 ms
[266,463]

DOI: https://doi.org/10.7554/eLife.40145.007
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Figure 2. Frequency responses and phase delays to artificial motor errors. (A) Example force (black) and cursor

(yellow) angular velocity traces in the presence of a 2 Hz perturbation (green) when no feedback delay was added.

The force response and perturbation sum to produce large fluctuations in cursor velocity. (B) Comparable data

with a feedback delay of 200 ms. In this condition, force responses cancel the perturbation leading to an

attenuation of intermittency. (C) Power spectra of cursor angular velocity with 1–5 Hz perturbations and no

feedback delay. Analysis based on 10 s windows beginning 5 s after trial start. Average of 8 subjects. See also

Figure 2 continued on next page

Susilaradeya et al. eLife 2019;8:e40145. DOI: https://doi.org/10.7554/eLife.40145 5 of 27

Research Communication Neuroscience

https://doi.org/10.7554/eLife.40145


Intrinsic dynamics in the visuomotor feedback loop
Although submovement frequencies depended on extrinsic feedback delays, examination of the

velocity spectra in Figure 1D suggests that intermittency peaks were embedded within a broad,

delay-independent low-pass envelope. This envelope could simply reflect the power spectrum of

tracking errors (i.e. motor noise is dominated by low-frequency components). However, an additional

possibility is that the gain of the feedback controller varies across frequencies (e.g. low-frequency

noise components generate larger feedback corrections). To explore the latter directly, we exam-

ined subjects’ force responses to our artificial perturbations.

Figure 2F,G and Figure 2—figure supplement 2 show power spectra of the angular velocity

derived from subjects’ forces, under feedback delays of 0 and 200 ms. Note that this analysis differs

from Figure 2C,D in that we now consider only the forces generated by the subjects, rather than the

resultant cursor movement (which combines these forces with the perturbation). Figure 2H shows

the corresponding force amplitude response for each perturbation frequency. The force amplitude

response measures only force responses that are phase-locked to the perturbation (normalized by

the perturbation amplitude) and is related to the transfer function within the feedback loop. Unlike

the cursor amplitude responses described previously, force amplitude responses were largely inde-

pendent of extrinsic delay. However, as with the velocity spectra in Figure 1D, feedback gains were

also attenuated at higher frequencies. A two-factor ANOVA confirmed a significant main effect of

frequency (n = 8 subjects, F4,70=36.3, p<0.0001) but not delay time (F1,70=3.1, p=0.08), and only a

weakly significant interaction (F4,70=2.9, p=0.03). In other words, feedback corrections to artificial

errors revealed a delay-independent filter matching the attenuation of submovement peaks at higher

frequencies.

Interestingly, the phase delay of force responses was also influenced by perturbation frequency

(Figure 2I). Effectively, corrections to low-frequency perturbations occurred slightly earlier than

those to higher frequencies, indicating a predictive component to feedback responses. As with the

amplitude response, there was a significant effect of frequency (F4,70=9.5, p<0.0001) but not extrin-

sic delay (F1,70 =2.6, p=0.12) on this phase delay, and no significant interaction (F4,70=0.7, p=0.6).

We next considered whether high-frequency attenuation of feedback responses was a property

of motor pathways, for example reflecting filtering by the musculoskeletal system. However, it is

well-known that the frequencies of feedforward movements can readily exceed submovement fre-

quencies observed during feedback-guided behavior (Kunesch et al., 1989). We confirmed this by

asking subjects to produce force fluctuations of a defined amplitude, but without providing a

Figure 2 continued

Figure 2—figure supplement 1. (D) Power spectra of cursor angular velocity with 1–5 Hz perturbations and 200

ms feedback delay. (E) Cursor amplitude response to 1–5 Hz perturbations with no feedback delay (blue) and 200

ms feedback delay (red) for individual subjects. Also shown is the average ± s.e.m. of 8 subjects. (F) Power spectra

of force angular velocity with 1–5 Hz perturbations and no feedback delay. See also Figure 2—figure supplement

2. (G) Power spectra of force angular velocity with 1–5 Hz perturbations and 200 ms feedback delay. (H) Force

amplitude response to 1–5 Hz perturbations with no feedback delay (blue) and 200 ms feedback delay (red). Also

shown is average ± s.e.m. of 8 subjects. (I) Intrinsic phase delay of force response to 1–5 Hz perturbations with no

feedback delay (blue) and 200 ms feedback delay (red). Also shown is average ± s.e.m. of 8 subjects. (J) Power

spectrum of finger forces generated in the feedforward task with auditory cues at 15 Hz. Average of 8 subjects.

See also Figure 2—figure supplement 3. (K) Force amplitude response to auditory cues in the feedforward task.

Also shown is average ± s.e.m. of 8 subjects. All analyses based on a 10 s windows beginning 5 s after trial start.

DOI: https://doi.org/10.7554/eLife.40145.008

The following source data and figure supplements are available for figure 2:

Source data 1. Subject information, perturbation responses and feedforward amplitude responses.

DOI: https://doi.org/10.7554/eLife.40145.012

Figure supplement 1. Individual subject power spectra of cursor velocity with perturbations.

DOI: https://doi.org/10.7554/eLife.40145.009

Figure supplement 2. Individual subject power spectra of force velocity with perturbations.

DOI: https://doi.org/10.7554/eLife.40145.010

Figure supplement 3. Feedforward task.

DOI: https://doi.org/10.7554/eLife.40145.011
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moving target to track. Instead we used auditory cues (a metronome) to indicate the required move-

ment frequency. In this case, subjects could generate force fluctuations up to 5 Hz with little attenua-

tion (Figure 2J,K and Figure 2—figure supplement 3). Therefore we concluded that filtering of

corrective responses was not an inherent property of feedforward motor pathways but instead

reflected intrinsic dynamics in the visuomotor feedback loop.

Intrinsic dynamics and optimal state estimation
The visual system can perceive relatively high frequencies (up to flicker-fusion frequencies above 10

Hz). However, while feedforward movements can in some cases approach these frequencies, dis-

crepancies while tracking slowly-moving objects in the physical world are unlikely to change quickly.

The limbs and real-world targets will tend (to a first approximation) to move with a constant velocity

unless acted upon by a force. Moreover, even for isometric tasks, the drift in force production is

dominated by low-frequency components (Baweja et al., 2009; Slifkin and Newell, 2000), possibly

consistent with neural integration in the descending motor pathway (Shadmehr, 2017). Given inher-

ent uncertainties in sensation, an optimal state estimator should attribute high-frequency errors to

sensory noise (which is unconstrained by Newtonian and/or neuromuscular dynamics).

Formally, the task of distinguishing the true state of the world from uncertain, delayed measure-

ments can be achieved by a Kalman filter, which continuously integrates new evidence with updated

estimates of the current state, evolving according to a model of the external dynamics (Figure 3A).

For simplicity we used Newtonian dynamics, although similar results would likely be obtained for

other second-order state transition models. We assumed the 1D position of the body (cursor) rela-

tive to the target should evolve with constant velocity unless acted upon by accelerative forces, lead-

ing to the state transition model:

xk

vk

� �
¼ 1 Dt

0 1

� �
xk�1

vk�1

� �
þ 0

Dt

� �
ak (2)

where xk and vk are the relative position and velocity of the cursor at time-step k, Dt is the interval

between time-steps, and the process noise ak ~N 0;s2

a

� �
. Visual feedback, yk, was assumed to com-

prise a noisy measurement of relative position:

yk ¼ xk þ "k (3)

with measurement noise "k ~N 0;s2

"

� �
.

Optimal estimates of relative position and velocity, bxk and bvk are given by a steady-state Kalman

filter of the form:

bxk
bvk

� �
¼

1�Kpos Dt

�Kvel 1

� � bxk�1

bvk�1

� �
þ

Kpos

Kvel

� �
yk�1 (4)

The innovation gains Kpos and Kvel depend only on the ratio of (accelerative) process to (position)

measurement noise, �¼ sa

s"
, which in turn determines the cut-off frequency above which measure-

ments are filtered ð~ 1

2p

ffiffiffi
�

p Þ. Figure 3B,C shows the amplitude response for position and velocity

estimates produced by the Kalman filter. Since these are out of phase with each other, their cross-

spectral density (which captures the amplitude and phase-difference between frequency compo-

nents common to both signals) will generally be complex. Broadband input therefore results in an

imaginary component to this cross-spectrum with a characteristic low-frequency resonance peak

determined by the state estimator dynamics (Figure 3D).

Feedback delays can be accommodated by projecting the state estimate forward in time:

bzk ¼ 1 tint½ �
bxk
bvk

� �
(5)

The phase delay of the optimal position estimate of the current state, bzk, falls towards zero at low

frequencies, consistent with a predictive component when interpreting low-frequency errors

(Figure 3E).
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Figure 3. State estimation with a Kalman filter. (A) Left: Schematic of a Kalman filter. Noisy measurements are

combined with an internal model of the external dynamics to update an optimal estimate of current state. Right: A

dynamical system for optimal estimation of position, based on an internal model of position and velocity. (B, C)

Magnitude response of transfer function from measurement to position and velocity estimates, respectively, for a

Kalman filter with different ratios of process to measurement noise (�). (D) Imaginary component of cross-spectrum

between position and velocity transfer functions. (E) Phase delay of optimal estimate of position based on delayed

measurement of position. (F) Schematic of optimal feedback controller model incorporating state estimation and a

Smith Predictor architecture to accommodate feedback delays. (G) Simplified rearrangement of (F), showing the

Figure 3 continued on next page
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Incorporating intrinsic and extrinsic dynamics in a model of movement
intermittency
To illustrate how such a steady-state Kalman filter can account for the main features of our human

behavioral data, we incorporated it within a simple 1D feedback controller (Figure 3F; see

Materials and methods for details). We included an internal feedback loop to cancel the sensory con-

sequences of motor commands, known as a Smith Predictor (Abe and Yamanaka, 2003;

Miall et al., 1993b). This prevents corrections from reverberating around the external feedback

loop, such that the resultant closed-loop behavior is formally equivalent to the simpler feedforward

comb filter shown in Figure 3G. This rearrangement provides a useful intuition about our behavioral

results. Tracking errors (due to motor noise) drive feedback corrections that are delayed, corrupted

(by sensory noise) and filtered (by intrinsic dynamics). The power spectrum of the resultant move-

ments reflects constructive/destructive interference between feedback corrections and the original

tracking error.

The Smith Predictor model readily accounted for the main features of our human data, including

the cursor amplitude response to perturbations (Figure 4A–E), and the low-pass filtering

(Figure 4F–H) and phase delay (Figure 4I) of force responses. Moreover, because of frequency-

dependent phase delays introduced by state estimation, the model suggested that precise frequen-

cies of submovement peaks should deviate slightly from those calculated using a constant physiolog-

ical response latency. Effectively, a predictive state estimator responding more quickly to low-

frequency errors behaves like a feedback controller with a reduced loop delay. This effect was con-

firmed in our behavioral data by calculating (with Equation (1)) the intrinsic delay time correspond-

ing to each spectral peak under all feedback delay conditions in our first experiment (arrows in

Figure 1D). Rather than being a constant, this intrinsic delay time was positively correlated with fre-

quency (n = 11 spectral peaks, R = 0.78, p=0.0046) and matched well the frequency-dependent

phase delay predicted by our model (Figure 4J).

Finally, overall tracking performance (as measured by the root mean squared positional error over

time) matched well with subjects’ actual performance across conditions in our second experiment

(Figure 4K). Note that, irrespective of delay, the lowest frequency perturbation was associated with

the greatest positional error, since perturbations had equal peak-to-peak velocity and were there-

fore larger in amplitude at low frequencies. However, performance was most affected by the 1 Hz

perturbation with a 200 ms delay, corresponding to a frequency of constructive interference.

Emergence of delay-specific predictive control during individual trials
While not simulating the full complexity of upper-limb control, our model was intended to illustrate

the interplay between intrinsic and extrinsic dynamics during tracking. More sophisticated models

would likely exhibit qualitatively similar behavior, so long as they also incorporated extrinsic, delay-

dependent feedback and intrinsic, delay-independent dynamics. However, in order to generate sta-

ble tracking behavior, the Smith Predictor architecture requires accurate compensation for external

delays within an internal feedback loop. For this to be a plausible model to explain our data, the

controller would need to adapt quickly to new extrinsic delay conditions that varied from trial to trial

in our experiment. Therefore we were interested in whether we could observe such rapid adaptation

of control strategies within individual trials. Moreover, we asked whether this adaptation was delay-

specific as expected for a Smith Predictor, or could perhaps be explained by a simpler delay-inde-

pendent feedback controller.

Figure 5A,B compares schematics of two linear feedback controllers with and without the internal

Smith Predictor loop. Both incorporate intrinsic dynamics, and as a result of extrinsic feedback

delays exacerbate motor noise at frequencies given by Equation (1). However, the comb filter rear-

rangements in Figure 5C,D show how the two architectures predict different relationships between

the feedback gain resulting from this intrinsic dynamics, G i!ð Þ, and the closed-loop force amplitude

Figure 3 continued

feedforward relationship between motor noise and force output. This rearrangement is possible because the

Smith Predictor prevents motor corrections reverberating multiple times around the feedback loop.

DOI: https://doi.org/10.7554/eLife.40145.013
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Figure 4. Smith Predictor model with optimal state estimation reproduces human behavioral data. (A) Simulated

tracking performance of the model with a 2 Hz sinusoidal perturbation and no feedback delay. (B) Simulated

tracking performance of the model with a 2 Hz sinusoidal perturbation and 200 ms feedback delay. (C) Power

spectrum of simulated cursor velocity with 1–5 Hz perturbations and no feedback delay. (D) Power spectrum of

simulated cursor velocity with 1–5 Hz perturbations and 200 ms feedback delay. (E) Simulated cursor amplitude

response to 1–5 Hz perturbations with no feedback delay (blue) and 200 ms feedback delay (red). (F) Power

Figure 4 continued on next page
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response to perturbations, Hforce i!ð Þ. We asked how each model explained the experimental data by

inferring the intrinsic dynamics that would be required to generate our observed force amplitude

responses under both architectures.

Figure 5E shows the intrinsic gain that a simple feedback controller would need to explain the

amplitude responses observed during 5 s sections of experimental data taken from the start, middle

and end of each trial. While the general pattern was one of low-pass filtering, the intrinsic dynamics

inferred for each delay condition diverged progressively through the trial. Therefore we can con-

clude that the control strategy used by subjects was indeed adapting during a single trial, and that

this adaptation was delay-specific. Interestingly, intrinsic feedback gains inferred using the Smith

Predictor model (Figure 5F) became progressively more similar as the trial progressed. Therefore

the adaptation process could parsimoniously be interpreted as the emergence of an appropriately-

calibrated Smith Predictor with delay-independent intrinsic dynamics, as predicted by our optimal

control model. The time-course of this adaptation (Figure 5G) was associated with a reduction in

both low-frequency phase delays (Figure 5H) and the average lag of the cursor behind the target

(Figure 5I), showing that subjects quickly learned to compensate for feedback delays within individ-

ual trials.

Movement intermittency in a non-human primate tracking task
The amplitude and phase responses to perturbations during human visuomotor tracking provided

evidence for intrinsic low-frequency dynamics in feedback corrections, which we have interpreted in

the framework of optimal state estimation. The schematic on the right of Figure 3A suggests how a

simple Kalman filter could be implemented by neural circuitry, with two neural populations (repre-

senting position and velocity) evolving according to Equation (4) and exhibiting a resonant cross-

spectral peak (Figure 3D). To seek further evidence for the neural implementation of such a filter we

turned to intracortical recordings in non-human primates. We were interested in whether cyclical

motor cortex trajectories could reflect the delay-independent dynamics of the two interacting neural

populations described above, and thereby account for filtering of feedback responses during visuo-

motor tracking.

We analyzed local field potential (LFP) recordings from monkey primary motor cortex (M1) during

a center-out isometric wrist torque task, which we have used previously to characterize both sub-

movement kinematics and population dynamics (Hall et al., 2014). Figure 6 shows example tracking

behavior (Figure 6A), radial cursor velocity (Figure 6B) and multichannel LFPs (Figure 6C) as mon-

keys moved to peripheral targets under two feedback delay conditions. Movement intermittency

was apparent as regular submovement peaks in the radial cursor velocity. Moreover, LFPs exhibited

low-frequency oscillations during movement, with a variety of phase-shifts present on different chan-

nels. Principal component analysis (PCA) yielded two orthogonal components of the cortical cycle

(Figure 6E), and the close coupling with submovements was revealed by overlaying the cursor veloc-

ity profile onto, in this case, the second principal component (PC) (Figure 6E).

Intrinsic cortical dynamics are unaffected by feedback delays
As with humans, in the absence of feedback delay the cursor velocity (after removing task-locked

components, see Materials and methods) was dominated by a single spectral peak (Figure 7A,E;

top red traces). A broad peak at approximately the same frequency was also observed in average

LFP power spectra (Figure 7B,F). Additionally, we used coherence analysis to confirm consistent

Figure 4 continued

spectrum of simulated force velocity with 1–5 Hz perturbations and no feedback delay. (G) Power spectrum of

simulated force velocity with 1–5 Hz perturbations and 200 ms feedback delay. (H) Simulated force amplitude

response to 1–5 Hz perturbations with no feedback delay (blue) and 200 ms feedback delay (red). (I) Simulated

intrinsic phase delay of force responses to 1–5 Hz perturbations with no feedback delay (blue) and 200 ms

feedback delay (red). (J) Intrinsic delay times corresponding to all submovement peaks/harmonics in Figure 1D,

plotted against the frequency of the peak. Dashed line indicates phase delay of the simulated optimal controller

(K) Top: Positional inaccuracy of human tracking for all conditions quantified as root mean squared error (RMSE).

Average ± s.e.m. of 8 subjects. Bottom: RMSE of simulated tracking for all conditions.

DOI: https://doi.org/10.7554/eLife.40145.014
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phase-coupling between LFPs and cursor velocity (Figure 7C,G). Finally, we calculated imaginary

coherence spectra between pairs of LFPs (see Materials and methods). The imaginary component of

coherence indicates frequencies at which there is consistent out-of-phase coupling in the LFP cross-

spectrum. This effectively separates locally-varying oscillatory components from in-phase back-

ground signals (e.g. due to volume conduction from distant sources), and revealed more clearly the

Figure 5 continued

early, middle and late in each trial. Thick line shows average over 8 subjects. Note that feedback gains for different delay conditions become less

similar as the trial progresses. (F) Feedback gains inferred from experimental data assuming the Smith Predictor architecture. Feedback gains for

different delay conditions become more similar as trial progresses. (G) Delay-dependence of feedback gain (mean-squared difference between delay

conditions) inferred from the two architectures. The analysis used a 5 s sliding window through the entire trial. Shading indicates s.e.m. over 8 subjects.

(H) Phase delay of feedback gain at 1 Hz inferred from Smith Predictor architecture through trials with 0 and 200 ms delay. (I) Average time lag between

cursor and target through trials with 0 and 200 ms delay (and no spatial perturbation).

DOI: https://doi.org/10.7554/eLife.40145.015
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Figure 7 continued on next page

Susilaradeya et al. eLife 2019;8:e40145. DOI: https://doi.org/10.7554/eLife.40145 14 of 27

Research Communication Neuroscience

https://doi.org/10.7554/eLife.40145


LFP rhythmicity (Figure 7D,H). Note that for no feedback delay, all spectra contain a single peak at

around 2–3 Hz.

An obvious interpretation of these results would be that oscillatory activity in the motor system

drives submovements in a feedforward manner. In this case, we would expect the frequency of the

cortical oscillation to reliably reflect the intermittency observed in behavior. With increasing feed-

back delays, submovement peaks in monkeys (Figure 7A,E; lower traces) exhibited a pattern similar

to that seen with human subjects. The fundamental frequency was reduced, while odd harmonics

grew more pronounced as they came below about 4 Hz. Moreover, coherence spectra between cur-

sor velocity and LFP (Figure 7C,G) revealed delay-dependent peaks at both fundamental and har-

monic frequencies. Surprisingly however, the power spectrum of the LFP (Figure 7B,F) was

unaffected by feedback delay, with a single broad peak in the delta band persisting throughout.

Moreover, imaginary coherence spectra between pairs of LFPs were also unchanged (Figure 7D,H).

These results are incompatible with the hypothesis that motor cortical oscillations drive movement

intermittency directly, and instead demonstrate a dissociation between delay-dependent submove-

ments and delay-independent cortical dynamics.

We next identified submovements from peaks in the radial cursor speed, in order to examine the

temporal profile of their associated LFPs. Submovement-triggered averages (SmTAs) of LFPs exhib-

ited multiphasic potentials around the time of movement, as well as a second feature following sub-

movements with a latency that depended on extrinsic delay (Figure 8A, Figure 8—figure

supplement 1). This feature was revealed more clearly by reducing the dimensionality of the LFPs

with PCA (Figure 8B). Note that if submovements reflect interference between stochastic motor

errors and feedback corrections, a submovement in the positive direction can arise from two under-

lying causes. First, it may be a positive correction to a preceding negative error. In this case, cortical

activity associated with the feedback correction should occur around time zero. Second, the sub-

movement may itself be a positive error which is followed by a negative correction, and the associ-

ated cortical activity will hence be delayed by the feedback latency. Since the SmTA pools

submovements arising from both causes, this accounts for two features with opposite polarity sepa-

rated by the feedback delay. Note also that SmTAs of cursor velocity similarly overlay (negative)

tracking errors preceding (positive) feedback corrections, and (negative) feedback corrections fol-

lowing (positive) tracking errors, evident as symmetrical troughs on either side of the central sub-

movement peak (Figure 8C).

Importantly however, LFP oscillations around the time of submovements appeared largely unaf-

fected by delay. To visualize this, we projected the SmTAs of multichannel LFPs onto the same PC

plane. For all delay conditions, LFPs traced a single cycle with the same directional of rotation and

comparable angular velocity (Figure 8D). The period of these cycles (approx. 300 ms) matched the

frequency of imaginary coherence between LFPs (approx. 3 Hz). This is as expected, since signals

with a consistent phase difference will be orthogonalized by PCA and appear as cyclical trajectories

in the PC plane. In other words, although the precise frequency of submovements depended on

extrinsic delays in visual feedback, the constant frequency of associated LFP cycles revealed delay-

independent intrinsic dynamics within motor cortex. Note also that the resonant frequency of these

dynamics matched the delay-independent filtering of feedback responses observed in our human

experiments.

Modelling submovement-related LFP cycles and delta oscillations in
sleep
These various observations could be understood using the same computational model that

explained our human behavioral data (Figure 9). For simplicity, we simulated two out-of-phase com-

ponents within the LFP by using the total synaptic input to each of the two neural populations in the

state estimator. We also added common low-frequency background noise to represent volume

Figure 7 continued

coherence spectrum between all pairs of M1 LFPs. (E–H) As above, but for Monkey S. (I–L) Simulated power and coherence spectra produced by the

OFC model.
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conduction from distant sources. The simulated LFPs exhibited a broad, delay-independent spectral

peak arising from the dynamics of the recurrent network (Figure 7J). By contrast, the resultant cursor

velocity comprised the summation of motor noise and (delayed) feedback corrections, and therefore

contained sharper, delay-dependent spectral peaks, due to constructive/destructive interference

(Figure 7I). Note however, that coherence was nonetheless observed between LFPs and cursor

velocity (Figure 7K). Time-domain SmTAs of the simulated data also reproduced features of the

experimental recordings, including delay-dependent peaks/troughs reflecting extrinsic feedback

delays (Figure 8E–G). Meanwhile, the coupling of simulated neural populations, according to
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Figure 8. Submovement-triggered averages of M1 LFPs. (A) Average low-pass filtered LFPs from M1, aligned to the peak speed of submovements with

0–600 ms feedback delay. Note the second feature, which follows submovements by an extrinsic, delay-dependent latency. Data from Monkey U. See

also Figure 8—figure supplement 1. (B) Average of first two LFP-PCs aligned to submovements. Shading indicates significant delay-dependent peaks

in PC1 (p<0.001, Kruskal-Wallis test and post-hoc signed-ranks test across delay conditions). (C) Average low-pass filtered cursor speed, aligned to

submovements. Shading indicates significant (p<0.001) delay-dependent troughs. (D) Average submovement-triggered LFP-PC trajectories, plotted

over 200 ms either side of the time of peak submovement speed (indicated by circles). (E–H) Simulated submovement-triggered averages produced by

the OFC model.
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The following figure supplement is available for figure 8:

Figure supplement 1. Submovement-triggered averages of M1 LFPs for Monkey S.
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conserved intrinsic dynamics, resulted in consistent LFP cycles around the time of movement

(Figure 8H), and an imaginary cross-spectrum with a single delay-independent resonant peak

(Figure 7L).

Finally, we examined whether the model could also account for cortical oscillations in the absence

of behavior. Previously we have described a common dynamical structure within both cortical cycles

during movement and low-frequency oscillations during sleep and sedation (Hall et al., 2014). In

particular, K-complex events under ketamine sedation (Figure 10A), thought to reflect transitions

between down- and up-states of the cortex, are associated with brief bursts of delta oscillation

(Figure 10B) (Amzica and Steriade, 1997). The relative phases of multichannel LFPs aligned to

these events matches those seen during submovements (Figure 10D,E). As a result, when projected

onto the PC plane, LFPs trace similar cycles during both K-complexes (Figure 10C) and submove-

ments (Figure 10F). We modelled the sedated condition by disconnecting motor and sensory con-

nections between the feedback controller and the external world; instead providing a pulsatile input

to the state estimator simulating a down- to up-state transition (Figure 10G). Effectively, transient

excitation of the state estimator elicited an impulse response reflecting its intrinsic dynamics. The

simulated LFPs generated a burst of delta-frequency oscillation around the K-complex (Figure 10H)

which resembled submovement-related activity (Figure 10J,K). Projecting this activity onto the

same PC plane revealed consistent cycles during simulated K-complexes (Figure 10I) and submove-

ments (Figure 10L). Thus it appears that our computational model, incorporating the intrinsic

dynamics of motor cortical networks, could also account for the conserved structure of low-fre-

quency LFPs during movement and delta oscillations in sleep.

Discussion

Submovement kinematics are influenced by both extrinsic and intrinsic
dynamics
Previous theories of intermittency have focused on either extrinsic or intrinsic explanations for the

regularity of submovements, but little consensus has emerged over this fundamental feature of
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delay-independent LFP cross-spectral resonance. The delayed motor command is combined with the original

motor noise leading to delay-dependent comb filtering, evident in LFP-Cursor coherence and Cursor power
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correction to a preceding negative noise trough. Due to intrinsic dynamics, LFPs trace consistent cyclical

trajectories locked to submovements. SmTA of LFPs contains potentials associated with noise peak/troughs after

feedback delay. SmTA of cursor velocity combines noise with delayed feedback corrections to yield a central

submovement flanked by symmetrical troughs.
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movement. There is good evidence for a common low-frequency oscillatory structure to motor cor-

tex activity across multiple behavioral states (Churchland et al., 2012; Hall et al., 2014;

Russo et al., 2018) but also an influence of feedback delays on submovement timing (Miall, 1996).

Experimentally manipulating visual feedback with artificial time delays and spatial perturbations

allowed us to dissociate both contributions to submovement kinematics. We found that precise fre-

quencies of submovement peaks were determined by delays in the extrinsic feedback loop, but that

these were embedded within a delay-independent envelope reflecting intrinsic filtering of feedback

corrections. This dissociation of extrinsic and intrinsic dynamics was also evident in intracortically-

recorded LFPs during tracking movements. Both delay-dependent feedback corrections and delay-

independent cycles were observed in submovement-triggered averages of LFPs. Moreover, while

coherence between LFPs and cursor movement exhibited delay-dependent spectral peaks, the

imaginary coherence between multichannel LFPs revealed a consistent dynamical structure across

behaviors.
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Figure 10. Simulated LFP dynamics during movement and sedation. (A) K-complex events in LFP from M1

recorded under ketamine sedation. (B) Average low-pass filtered multichannel LFPs aligned to K-complex events.

LFPs are color-coded according to phase relative to submovements, but exhibit a similar pattern relative to

K-complexes. (C) Average LFP-PC trajectories aligned to K-complexes, plotted over 200 ms either side of the time

of the K-complex (indicated by a circle), using the PC plane calculated from recordings during awake behavior. (D)

Average cursor speed aligned to the peak speed of submovements. (E) Average low-pass filtered multichannel

LFPs aligned to submovements. (F) Average submovement-triggered LFP-PC trajectories, plotted over 200 ms

either side of the time of submovements (indicated by a circle). (G) A K-complex under sedation is simulated by an

impulse excitation of the OFC model, without connection to the external world. (H) Impulse response of the

simulated LFP-PCs. (I) LFP-PC trajectories associated with simulated K-complexes. (J) Simulated submovement-

triggered average cursor speed from the OFC model with no feedback delay. (K) Simulated submovement-

triggered average LFP-PCs. (L) Simulated submovement-triggered LFP-PC trajectories. Panels A–F reproduced

from Figure 4A,C,E in Hall et al. (2014) (published under a Creative Commons CC BY 3.0 license).
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Modelling isometric visuomotor tracking
We were able to explain these apparently contradictory results by using a continuous feedback con-

trol model, which incorporated optimal state estimation based on a second-order internal model of

the external dynamics. Previously, intermittency has been implemented in optimal feedback control

models by explicitly including a refractory period between submovements (Gawthrop et al., 2011;

Sakaguchi et al., 2015), but theoretical justification for such an additions is lacking. In our model,

submovements instead arose from constructive interference between motor errors and continuous,

delayed feedback corrections. Optimal state estimation used a steady-state Kalman filter to separate

process (motor) noise from measurement (sensory) noise. One free parameter was tuned to achieve

correspondence between simulated and experimental data, namely the ratio of process to measure-

ment noise, which determined the intrinsic resonance frequency around 2–3 Hz. It would be interest-

ing in future to vary these noise characteristics experimentally (e.g. by artificially degrading visual

acuity, or by extensively training subjects to produce faster or more accurate movements) and exam-

ine the effect on perturbation responses. One possible outcome would be a change to the observed

resonance, although this seems to contradict the ubiquity of 2–3 Hz cortical dynamics. Alternatively,

there may be other computational advantages to maintaining a consistent cortical rhythm. For exam-

ple, it is notable that 2–3 Hz intrinsic dynamics matched the frequency of the primary submovement

peak under unperturbed external feedback conditions, thus accentuating the fundamental submove-

ment frequency around 2 Hz, while suppressing higher harmonics. This may be beneficial in allowing

other aspects of the visuomotor machinery to be synchronized to a single rhythm, for example eye

movements, which are influenced by hand movement during tracking tasks (Koken and Erkelens,

1992).

One puzzling feature of our results was that force amplitude responses to cursor perturbations

were uniformly less than unity, which initially appears suboptimal for rejecting even slow perturba-

tions. We first considered that proprioceptive information (which is in conflict with vision during cur-

sor perturbations) might cause subjects to underestimate the true displacement of the cursor.

However, sub-unity amplitude responses were also observed in separate experiments (not shown)

when sinusoidal displacements were added to the target position. In this situation there was no dis-

crepancy between vision and proprioception, yet subjects consistently undershot corrections to all

but the lowest frequency perturbations (even in the absence of any delay). An alternative explana-

tion is that subjects avoided making corrections requiring large changes to the motor command.

This can be formalized by a cost function that is minimized by proportional-integral (PI) control,

which has been used in the past to model human movement (Kleinman, 1974). It is more common

in optimal control models to use cost functions that penalize the absolute motor command, leading

to proportional feedback policies (Todorov and Jordan, 2002), under the assumption that this mini-

mizes signal-dependent noise in muscles (Jones et al., 2002). However, the trajectory variability

observed in our isometric tracking task appeared more correlated with large changes in finger

forces, rather than the absolute force magnitude (Figure 1—figure supplement 3). Derivative-

dependent motor noise was also evident as increased variability at high frequencies in our feedfor-

ward task (Figure 2—figure supplement 3). Since submovements result from constructive interfer-

ence between tracking errors and feedback corrections, derivative-dependent motor noise also

provides a counterintuitive, but necessary, explanation for why the amplitude of submovements

increases with target speed (Figure 1—figure supplement 2). Increased intermittency cannot be a

direct consequence of faster target motion, since the frequency content of this motion is neverthe-

less low by comparison to submovements. Rather, faster tracking requires a larger change in the

motor command, leading to increased broad-band motor noise which, after constructive interfer-

ence with feedback corrections, results in more pronounced peaks at submovement frequencies.

State estimation by motor cortical population dynamics
PCA of multichannel LFPs in monkey motor cortex revealed two underlying components, which we

interpret as arising from distinct but coupled neural populations. The cyclical movement-related

dynamics of these components resembled those described for M1 firing rates (Churchland et al.,

2012), which have previously been implicated in feedforward generation of movement. Specifically,

it was proposed that preparatory activity first develops along ‘output-null’ dimensions of the neural

state space before, at movement onset, evolving via intrinsic dynamics into orthogonal ‘output-

Susilaradeya et al. eLife 2019;8:e40145. DOI: https://doi.org/10.7554/eLife.40145 19 of 27

Research Communication Neuroscience

https://doi.org/10.7554/eLife.40145


potent’ dimensions that drive muscles (Churchland et al., 2010). However, this purely feedforward

view cannot account for our isometric tracking data, since manipulation of feedback delays dissoci-

ated delay-dependent submovements from delay-independent rotational dynamics. Instead we

interpret these intrinsic dynamics as implementing a state estimator during continuous feedback

control, driven by noise in motor and sensory signals. We used Newtonian dynamics to construct a

simple two-dimensional state transition model based on both the cursor-target discrepancy and its

first derivative. While this undoubtedly neglects the true complexity of muscle and limb biomechan-

ics, simulations based on this plausible first approximation reproduced both the amplitude response

and phase-delay to sinusoidal cursor perturbations in humans, and the population dynamics of LFP

cycles in the monkey. We suggest that for discrete, fast movements to static targets, transient cur-

sor-target discrepancies effectively provide impulse excitation to the state estimator, generating a

rotational cycle in the neural space. Note that this account also offers a natural explanation of why

preparatory and movement-related activity lies along distinct state-space dimensions, since the static

discrepancy present during preparation is encoded differently to the changing discrepancy that

exists during movement. At the same time, the lawful relationship between discrepancy and its

derivative couples these dimensions within the state estimator and is evident as consistent rotational

dynamics across different tasks and behavioral states.

It may seem unusual to ascribe the role of state estimation to M1, when this function is usually

attributed to parietal (Mulliken et al., 2008) and premotor areas (where rotational dynamics have

also been reported, albeit at a lower frequency [Churchland et al., 2012; Hall et al., 2014]). We

suggest that the computations involved in optimal tracking behaviors are likely distributed across

multiple cortical areas including (but not limited to) M1, with local circuitry reflecting multiple

dynamical models of the various sensory and efference copy signals that must be integrated for

accurate control. These could include the estimation of the position of moving stimuli based on noisy

visual inputs (Kwon et al., 2015), as well the optimal integration of visual and somatosensory infor-

mation, which may have different temporal delays (Crevecoeur et al., 2016).

An alternative explanation for consistent rotational dynamics has recently been proposed by

Russo et al. (2018), based on the behavior of recurrent neural networks trained to produce different

feed-forward muscle patterns whilst minimizing ‘tangling’ between neural trajectories. It is interest-

ing to compare this with our OFC-based interpretation, since both are motivated by the problem of

maintaining accurate behavior in the presence of noise. Minimizing tangling leads to network archi-

tectures that are robust to intrinsic noise in individual neurons, while OFC focusses on optimizing

movements in the face of unreliable motor commands and noisy sensory signals. Given this concep-

tual link, it is perhaps unsurprising if recurrent neural network approaches learn implementations of

computational architectures such as Kalman filters that minimize the influence of noise on behavior.

In the future, it may be productive to incorporate sensory feedback into recurrent neural network

models of movement, as well as including intrinsic sources of neural noise in optimal control models.

The convergence of these frameworks may further help to reveal how computational principles are

implemented in the human motor system.

Materials and methods

Subjects
Based on pilot studies, we decided in advance to use a sample size of eight subjects in each experi-

ment. In total, we recruited 11 adult subjects at the Institute of Neuroscience, Newcastle University.

Eight subjects (three females; age 23–33; one left-handed) participated in both Experiment 1 (feed-

back delay) and Experiment 2 (feedback delay and spatial perturbation). Eight subjects (three

females; age 23–33; all right-handed) participated in Experiment 3 (feedforward task); 6 of these

subjects also participated in experiments 1 and 2. Eight subjects (three females; age 23–33; all right-

handed) participated in the experiment shown in Figure 1—figure supplement 2; 7 out of these

subjects also participated in Experiment 3. All experiments were approved by the local ethics com-

mittee at Newcastle University and performed after informed consent, which was given in accor-

dance with the Declaration of Helsinki.
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Human tracking task
Subjects tracked a (red) target on a computer monitor by exerting bimanual, isometric, index finger

forces on two sensors (FSG15N1A; Honeywell). The target underwent uniform, slow, circular motion

with a pseudorandom order of clockwise and anticlockwise directions across trials. Finger forces

were sampled at 50 samples/s (USB-6343; National Instruments) and mapped to (yellow) cursor posi-

tion, by projecting onto two diagonal screen axes. In addition, a feedback delay (text) was interposed

between force and cursor movement. The feedback delay was kept constant throughout the dura-

tion of each trial (lasting 20 s). We express screen coordinates in terms of the radius of target

motion, rtarget ¼ 100%. Tracking the target rotation thus required the generation of sinusoidal motion

in the range of �100% to +100%, corresponding to finger forces of 0 to 3.26N, with a 90˚ phase-
shift between each hand. At the end of each trial, subjects were given a numerical score from 0 to

1000, indicating how accurately they had tracked the target. Subjects were instructed to attempt to

maximize this score, which was calculated as:

Score¼ 1000

T
�
ZT

0

1� e�
rcursor tð Þ�rtarget tð Þj j

d

� �
dt (6)

where rcursor tð Þ and rtarget tð Þ are the 2D positions of the cursor and target respectively, and d¼ 50%.

Apart from the experiment shown in Figure 1—figure supplement 2, all experiments used a fre-

quency of target rotation, ftarget= 0.2 rotations per second.

Experiment 1 used five delay conditions (text= 0, 100, 200, 300, or 400 ms). Subjects performed a

total of 70 trials, comprising 14 of each condition, presented in pseudorandom order.

For Experiment 2, spatial perturbations were added to the cursor position, as well as time delays.

The perturbations were equivalent to sinusoidal modulation of the target angular velocity, but were

instead added to the cursor. Expressed in polar coordinates r ¼ r; ff�h i relative to the center of the

screen, the target and cursor positions were thus given by:

rtarget tð Þ ¼ rtarget; ff !targett

 �

(7)

rpert tð Þ ¼ rtarget; ff !targettþ
!target

!pert

sin!pertt

� �
� rtarget tð Þ (8)

rcursor tð Þ ¼ rforce tð Þ;ff�force tð Þh iþ rpert tð Þ (9)

where !target ¼ 2pftarget is the angular velocity of the target around the centre of the screen,

!pert ¼ 2pfpert is the angular frequency of the perturbation, and rforce tð Þ;ff�force tð Þh i is the unperturbed

cursor position calculated from the subject’s forces at time t� text.

Although the 2D cursor position was not constrained to follow the target trajectory, we did not

analyze off-trajectory deviations. For simplicity, kinematic analyses were based on the time-varying

angular velocity of the cursor subtended at the center of the screen:

!cursor tð Þ ¼ d

dt
�cursor tð Þ (10)

For spatial perturbation experiments, we also calculated the angular velocity of the unperturbed

cursor position subtended at the center of the screen:

!force tð Þ ¼ d

dt
�force tð Þ (11)

Note that since rforce » rtarget, the perturbation effectively adds a sinusoidal component to the

angular velocity of the cursor:

!cursor tð Þ»!force tð Þþ!targetcos!pertt (12)

Six different spatial perturbations (fpert= 0, 1, 2, 3, 4, 5 Hz) were combined with two feedback
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delays (text= 0, 200 ms) yielding 12 conditions. Subjects performed a total of 144 trials, comprising

12 trials per condition, presented in pseudorandom order.

Human feedforward task
In Experiment 3, we used a unimanual isometric task in which subjects were asked to make sinusoidal

forces with their right index finger. Subjects received visual feedback of the cursor, but no target

was shown. Instead, subjects were shown two amplitude boundaries to move between, and the fre-

quency of movement was cued with auditory beeps at frequencies of 1, 2, 3, 4 and 5 Hz. Subjects

performed a total of 15 trials, comprising three 20 s trials per frequency condition.

Monkey experiments
Subjects
We used two purpose-bred female rhesus macaques (monkey S: 6 years old, 6.6 kg; monkey U: 6

years old, 8.8 kg). Animal experiments were approved by the local Animal Welfare Ethical Review

Board and performed under appropriate UK Home Office licenses in accordance with the Animals

(Scientific Procedures) Act 1986 (2013 revision).

Monkey isometric tracking task
Monkeys moved a 2D computer cursor by generating isometric flexion-extension (vertical) and

radial-ulnar (horizontal) torques at the wrist, measured by a 6-axis force/torque transducer (Nano25;

ATI Industrial Automation). Centre-out targets were presented at 8 peripheral positions in a pseudo-

random order. Targets were positioned at 70% of the distance to the screen edge (100% corre-

sponding to torque of 0.67 Nm). The diameter of the target and cursor ranged between 14 and

36%. A successful trial required maintaining an overlap between cursor and peripheral target for 0.6

s, after which the monkeys returned the cursor to the center of the screen to receive a food reward.

Visual feedback of the cursor was delayed by text = 0, 200, 400, 600 ms throughout separate blocks

of 50–70 trials each. Monkey S performed the task with the right hand. Monkey U initially used the

right hand and was then retrained for a second period of data collection with the left hand.

LFP recording
LFPs were recorded using custom arrays of 12 moveable 50 mm diameter tungsten microwires

(impedance ~200 kW at 1 kHz) chronically implanted in the contralateral wrist area of M1 under sevo-

flurane anesthesia with postoperative analgesics and antibiotics. Head-free recordings were made

using unity-gain headstages followed by wide-band amplification and sampling at 24.4 kilosamples/s

(System 3; Tucker-Davis Technologies). LFPs were digitally low-pass filtered at 200 Hz and recorded

at 488 samples/second.

Analysis of kinematics and neural data was performed on recordings over eight sessions compris-

ing of 56 task blocks in Monkey S (no delay: 24 blocks; 200 ms delay: 13; 400 ms delay: 13; 600 ms

delay: 6), and 89 sessions comprising of 356 task blocks in Monkey U (no delay: 89; 200 ms delay:

89; 400 ms delay: 89; 600 ms delay: 89). Each task block comprised 50 (monkey S) or 70 trials (mon-

key U).

Human data analysis
Spectral analysis used fast Fourier transforms (FFTs) performed on non-overlapping 512 sample-

point windows (approx. 10 s) taken from the middle of each trial. Submovement peaks in the power

spectra were measured after smoothing with a seven-point moving-average.

For perturbation experiments, we additionally defined two complex transfer functions Hcursor

and Hforce:

Hcursor i!pert

� �
¼ 2

!targetT

Z T

0

!cursor tð Þe�i!perttdt (13)

Hforce i!pert

� �
¼ 2

!targetT

Z T

0

!force tð Þe�i!perttdt (14)
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Cursor and force amplitude responses to perturbations were calculated as the magnitude of the

corresponding transfer functions, and the intrinsic phase delay of force responses was given by:

t’ i!pert

� �
¼�arg Hforce i!pert

� �� �

!pert
� text (15)

Additionally, tracking performance was quantified off-line using the root-mean-squared Euclidean

distance between cursor and target.

Monkey data analysis
We differentiated the magnitude of the absolute 2D torque (expressed as a percentage of the dis-

tance to the edge of the screen) to obtain the radial cursor velocity. LFP channels were subjected to

visual inspection to reject noisy channels prior to mean-subtraction. For time-domain analysis, LFPs

and cursor velocities were low-pass filtered at 10 Hz. Submovements were defined as a peak radial

cursor speed exceeding 100 %/s. For frequency-domain analysis, we took unfiltered sections of 1024

sample points from each trial (approx. 1.5 s before to 0.5 s after the end of the peripheral hold

period). We subtracted the trial-averaged profile from each section before concatenating to yield

long data sections without any consistent low-frequency components related to the periodicity of

the task. FFTs were calculated with overlapping Hanning windows (214 sample points » 34 s; 75%

overlap), from which we derived the following spectra:

Cursor power: PCursor fð Þ ¼
PM
m¼1

Fcursor f ;mð Þ:Fcursor f ;mð Þ�

M

LFP power: PLFP i fð Þ ¼
PM
m¼1

FLFP i f ;mð Þ:FLFP i f ;mð Þ�

M

LFP-cursor coherence: CohLFP i�Cursor ¼

PM
m¼1

FLFP i f ;mð Þ:Fcursor f ;mð Þ�
����

����
2

M:PCursor fð Þ:PLFP i fð Þ

LFP-LFP imaginary coherence: Im CohLFP i�LFP j ¼
Im
PM
m¼1

FLFP i f ;mð Þ:FLFP j f ;mð Þ�
� �� �2

M:PLFP i fð Þ:PLFP j fð Þ
where FLFP i f ;mð Þ and FCursor f ;mð Þ represent Fourier coefficients at frequency f and window

m ¼ 1::Mð Þ from LFP channel i and cursor velocity respectively. All spectra were smoothed with a 16-

point Hanning window. In addition, LFP power and LFP-cursor coherence were averaged across all

LFP channels, while LFP-LFP imaginary coherence was averaged over all pairs of LFPs.

Modelling
Although both human and monkey tasks involved 2D isometric control, for simplicity we modelled

only a 1D controller and assumed a one-to-one mapping from control signal, uk - 2 to

position, xk - 2. We neglected target motion and designed the controller to minimize the influence

of stochastic motor errors using delayed, noisy feedback of position. We set the model time step

t - 2= 0.01 s, intrinsic feedback delay tint - 2 = 0.26 s, and the ratio of process/measurement noise

� - 2= 250 s�2 unless otherwise stated. Steady-state Kalman gains were calculated using the function

kalman in MATLAB, and the resultant discrete time dynamic system (Equation (4)) was implemented

by two integrating neuronal populations representing bxk - 2 and bvk - 2, receiving a synaptic input on

each time-step equal to:

Dbxk
Dbvk

� �
¼

�Kpos Dt

�Kvel 0

� � bxk�1

bvk�1

� �
þ

Kpos

Kvel

� �
yk (16)

Two LFP components were simulated by normalizing Dbxk and Dbvk to unity variance, before adding

background common noise with a 1

f
spectrum.

The motor command uk was generated on each time step using the Smith Predictor architecture

shown in Figure 3. Based on our observation that trajectory variability was maximal at times when

force output was changing (Figure 1—figure supplement 3 ), we used a linear quadratic regulator

(LQR) control framework to minimize a quadratic cost function, J, incorporating the rate of change in

motor command, uk
t
:
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J ¼
k

X
qx2k þ r

Duk

Dt

� �2
 !

(17)

For a state transition matrix in the form:

xk

vk

� �
¼ 1 Dt

0 1

� �
xk�1

vk�1

� �
þ 0

1

� �
Duk

Dt
(18)

J is minimized by a state feedback policy of the form:

Duk

Dt
¼�

KI

KP

� �
:
xk

vk

� �
(19)

which can be integrated to yield a PI controller:

uk ¼Pk
j¼1

Dui

¼�KP

Pk
j¼1

vkDt�KI

Pk

j¼1

xjDt

¼�KPxk �KI

Pk

j¼1

xjDt

We found the proportional and integral gains KP and KI using the function lqr in MATLAB with

q¼ 1 and r¼ Dt2. In the full model, this controller acted on the optimal estimate of position, bzk, after
incorporating the delay feedback loop of the Smith Predictor. Note that the transfer function of a PI

controller inside the fast feedback loop of the Smith Predictor is given by Abe and Yamanaka

(2003):

HPI i!ð Þ ¼ KP þ KI

i!

1þKPþ KI

i!

(21)

which equals 1 for !¼ 0 but tends to KP

1þKP
at higher frequencies. Therefore this effectively reduces

the response amplitude to perturbations. The full transfer function of the intrinsic dynamics, includ-

ing time-delay is given by:

Hforce i!ð Þ ¼ e�i! tintþtextð ÞHPI i!ð Þ:H
y!bz i!ð Þ (22)

Hcursor i!ð Þ ¼ 1�Hforce i!ð Þ (23)

where H
y!bz i!ð Þ is the transfer function of the Kalman filter relating delayed position measurement to

optimal position estimate.

Data and software availability
Datasets from all human and monkey experiments, analysis code and model associated with this

work are available on Dryad doi:10.5061/dryad.53sq7kn.
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