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Some animal vocalizations develop reliably in the absence of relevant experi-
ence, but an intriguing subset of animal vocalizations is learned: they require
acoustic models during ontogeny in order to develop, and the learner’s vocal
output reflects those models. To what extent do such learned vocalizations
reflect phylogeny?We compared the degree towhichphylogenetic signal is pre-
sent in vocal signals fromawide taxonomic range of birds, including both vocal
learners (songbirds) and vocal non-learners. We used publically available mol-
ecular phylogenies and developed methods to analyse spectral and temporal
features in a carefully curated collection of high-quality recordings of bird
songs and bird calls, to yield acoustic distance measures. Our methods were
initially developedusing pairs of closely relatedNorthAmerican andEuropean
bird species, and then applied to a non-overlapping random stratified sample of
European birds. We found strong similarity in acoustic and genetic distances,
which manifested itself as a significant phylogenetic signal, in both samples.
In songbirds, both learned song and (mostly) unlearned calls allowed recon-
struction of phylogenetic trees nearly isomorphic to the phylogenetic trees
derived from genetic analysis. We conclude that phylogeny and inheritance
constrain vocal structure to a surprising degree, even in learned birdsong.

This article is part of the theme issue ‘Vocal learning in animals and
humans’.
1. Introduction
The fact that closely related species resemble one another in form is a funda-
mental insight in evolutionary biology [1–3], and the realization that the
same is often true of behavioural patterns was foundational in the development
of ethology [4–6]. Vocalizations produced by a given species reflect both vocal
anatomy and behaviour, each of which may have strong heritable components.
This suggests that homologous vocalizations of closely related species may
resemble each other more than pairs drawn at random—in other words that
vocalizations may possess ‘phylogenetic signal’.

Indeed, the pioneering work of Konrad Lorenz found strong phylogenetic
constraints on the display vocalizations of ducks [4], and significant phylogenetic
signal in vocalizations has since been demonstrated in a variety of clades. How-
ever, much previous work has focused on calls with a strong innate basis, raising
the question of whether phylogenetic signal persists in vocalizations with a
strong learned component. On the one hand, since vocally learned signals are
flexible and can change rapidly over generations [7], we might predict little or
no phylogenetic signal in learned vocalizations. However, to the extent that
learned vocalizations reflect inherited constraints imposed by species-typical
motor circuitry or vocal anatomy, and/or biases in the learning mechanism
itself, they might still possess phylogenetic signal, even if at reduced levels.

Most previous phylogenetic work on vocalizations has concentrated either
on a small set of species (e.g. [8–11]) or, in the few broad-scale studies available,
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Figure 1. Method overview. Step 1. We start by making a selection of passerine and non-passerine species ( pictures: example species) for which high-quality
vocalization recordings are available. 2. Calculate acoustic features for each vocalization. 3. Calculate the acoustic distance matrix. 4. Obtain bootstrapped phylogenetic
tree information and download mitochondrial genome. 5. Calculate consensus tree for predicting acoustic feature values with phylogenetic methods (8). Obtain
genetic distance matrix from bootstrapped trees (6) and based on mitochondrial ND2 gene sequences (7). 9. Compare acoustic and genetic distance matrices
with various statistical tests. (Online version in colour.)
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on innately determined calls [12–17]. Nonetheless, these
studies indicate that phylogenetic signal is present in vocali-
zations in some clades of frogs, mammals and birds. In some
cases, these studies also provide indications of what
aspects of vocalizations have a strong phylogenetic signal.
For example, evolution was slow for aspects of calls tied to
vocal anatomy in chorus frogs (Hyla), but more rapid for be-
havioural aspects like call rate [18]. In birds, similar results
were found for the unlearned calls of herons [8].

A smaller set of studies has revealed phylogenetic signal in
the songs of specific genera of vocal learning birds [9–11],
suggesting that phylogenymay continue to play a constraining
role even in learned signals. For example, Päckert et al. analysed
song evolution in the six species of the genus Regulus (crests
and kinglets) using character tracing on amolecular phylogeny
and concluded that both song syntax and frequency par-
ameters contained significant phylogenetic signal in this
group [9]. Similarly, Price & Lanyon [10,11] found that song
evolution in the oropendolas is surprisingly evolutionarily
conservative. These results suggest that phylogenetic signal
persists even in passerines that learn their songs.

In the broadest-scale study to date, Medina-Garcia and
colleagues [19] explicitly considered whether vocal learning
eliminates phylogenetic signal in contact calls in 51 New
World parrot species of the tribe Arini. Parrots are open-
ended learners with a wide variety of body sizes and occupy-
ing diverse habitats, making them an excellent group to
evaluate this issue. The authors found clear evidence of
preserved phylogenetic signal in this clade, even when con-
trolling for habitat type and two morphological
characteristics (body size and bill length). They concluded
that acoustic parameters of these neotropical parrots are
highly conserved across evolution, despite clear evidence for
vocal learning.

These previous studies strongly suggest that phylogenetic
signal can persist in avian vocalizations, whether or not
the clade consists of vocal learning species. However, none of
these previous studies made direct comparisons between vocal
learners and non-learners, or between learned and unlearned
vocalizations in a vocal learning clade. In the current study
(figure 1), we assess phylogenetic signal in bird vocalizations,
analysing calls and songs produced by a wide phylogenetic
range of bird species. Our database includes both vocal learners
and species withmostly ‘innate’ calls (reliably developing in the
absence of a model vocalization) and considers both acoustic
and genetic data. We first developed our methods using a
hand-chosen database of bird species pairs, mostly congeners
from Europe and North America, to gain insight into appropri-
ate methodology and parameters. Then, we applied these tools
to a random stratified sample of vocalizations from European
species, contrasting vocal learners from this region (passerines
of the suborder Passeri, a.k.a. oscine passerines or ‘songbirds’
hereafter) against vocal non-learners, andwithin songbirds con-
trasting calls, which are predominantly innate, with learned
songs. Our goal was to provide a first quantitative comparison,
across multiple avian orders, of phylogenetic signal in learned
andunlearned signals. Based on the logic and the previous find-
ings above, our predictionswere that even learned vocalizations
will possess significant phylogenetic signal, but that this signal
may be lower in learned than unlearned vocalizations.



Table 1. Dataset information.

dataset
no.
species

no. vocalizations/
species mean ± s.d.)

total no.
vocalizations

vocalization length,
mean ± s.d. (s)

congener set 54 4.11 ± 1.38 222 2.33 ± 2.56

random songbird songs 43 4.42 ± 1.38 190 3.27 ± 3.59

random songbird calls 37 3.73 ± 1.06 138 0.49 ± 0.28

random non-songbirds 40 4.0 ± 1.32 160 2.16 ± 2.81

combined songbird songs 71 4.44 ± 1.4 315 2.84 ± 2.95

combined non-songbirds 66 3.89 ± 1.29 257 2.3 ± 3.12
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Many previous studies of this issue used customized acous-
tic parameters chosen for their specific applicability to the clade
under investigation, suchas fundamental frequency, orduration
of an initial whistle. Because our sample of species is very broad
phylogenetically, and such bespoke parameters apply only to a
specific clade, in our case we used simple and broadly appli-
cable acoustic parameters that could be reliably extracted from
most vocal samples (such as spectral centroid—simply the
centre of mass of all frequency bands present in a vocaliza-
tion—or spectral flux—the change across temporal bins in
frequency content). These parameters were based on earlier
work on frog vocalizations [13] and allowed us to cast a very
wide net in terms of the species samples we analysed.
2. Methods
(a) Datasets
We worked with two datasets. The first ‘congener’ dataset was
hand-chosen and used to develop and analyse our methods,
while the second ‘test’ dataset was randomly selected. The con-
gener dataset involved pairs of closely related North American
and European species, mostly congeners. Our reasoning was that
using close relatives would provide an unambiguous close
match genetically, while choosing species from separate continents
should minimize the degree of recent gene flow and/or ‘cultural’
flow [20] between each pair. The rationale behind this dataset
was that the presence of close relatives should increase our chances
of detecting phylogenetic signal for this dataset. The use of con-
geners also allowed a relatively straightforward selection of
behaviourally homologous vocalizations from each pair. The use
of homologous vocalizations is important because (for example)
comparing alarm calls of one species with songs of another
could artificially inflate acoustic differences [6,10,11,21]. This
dataset included 28 passerine and 26 non-passerine species.

For the second ‘random’ dataset, we generated a stratified
random sample based on a very large published collection
of European bird vocalizations [22]. This collection included
more than 2800 recordings of 800 species whose ranges included
Europe, North Africa and western Asia, as well as occasional
North American species; it was chosen for its high recording
quality and unambiguous species identification, and because
it contained recordings of multiple vocalization types for each
species (including both songs and calls for most songbirds). All
passerines in this collection are oscine passerines (songbirds),
where evidence for vocal learning is strong inmost clades. Because
no other known vocal learning clades (parrots or hummingbirds)
were analysed here, we assume hereafter that all analysed passer-
ine species were vocal learners, and non-passerines were not. We
thus used custom Python code to select a random sample, strati-
fied to 47 passerines versus 40 non-passerines, and within
passerines to calls (37 species) versus songs (43 species), and
excluding species present in our initial training dataset. We com-
bined our acoustic analyses with previously published and
verified phylogenies [23,24] to calculate genetic distances andphy-
logenetic signal in this second sample. Here, we can assume an
accurate phylogeny, as well as awide distribution of phylogenetic
differences, but there were many fewer closely related species. To
the extent that genetic determinants of vocal acoustics evolve
rapidly, this dataset should yield fewer close matches and thus
lower estimates of phylogenetic signal.

Finally, to gainmore power, we created ‘combined’datasets by
merging all songbird species with songs available from the conge-
ner and the random sample into a combined dataset, and all non-
songbird species into a combined non-songbird dataset (table 1).

(b) Genetic distance and phylogenetic tree analysis
To calculate an estimate of the genetic distances for the congener
sample, we queried the NCBI gene database (https://www.ncbi.
nlm.nih.gov/gene) for the sequence of the mitochondrial NADH
dehydrogenase subunit 2 (ND2) gene using the Entrez module
of the BioPython package. ND2 has been frequently used to esti-
mate the genetic distance between avian species [25,26]. ND2
sequence was available and hence downloaded for 54 bird species
including 28 passerine and 26 non-passerine species (from an
initial list of 30 passerine and 30 non-passerine species). Whenever
possible, we downloaded the mitochondrial genome sequences
from the NCBI RefSeq database; when there was no sequence for
a given species in the RefSeq database, we used another ND2
sequence from the NCBI gene database. Next, we aligned the
downloaded sequences usingClustalWand calculated the pairwise
genetic distance between the aligned sequences using theDistance-
Calculator function from the package Phylo module of BioPyhton
(electronic supplementary material, figure S1: ND2-based genetic
distance matrices species).

Since reconstructing distant phylogenetic relations based on a
single gene is unreliable [27,28], to create phylogenetic trees we
used a published global bird database [23]. We used this database
to create 100 bootstrapped trees for each set of species (congener:
electronic supplementary material, figure S2; random sample:
electronic supplementary material, figures S3 and S4). For our
random and combined test sample (since for several species
ND2 was not available), we obtained the pairwise genetic dis-
tances from the bootstrapped trees using the cophenetic function
of phytools. After obtaining the pairwise distance matrices for
each of 100 trees, we averaged these 100 matrices to obtain a
back-estimate of pairwise genetic distance.

(c) Acoustic analysis
(i) Preprocessing
From each birdsong recording, we manually selected examples
with minimal environmental noise and cut them into individual

https://www.ncbi.nlm.nih.gov/gene
https://www.ncbi.nlm.nih.gov/gene


royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

376:20200241

4
vocalizations using Praat [29]. We aimed to include at least two,
maximally six, exemplar vocalizations for each species (table 1).
Our final sample consisted of 315 vocalizations from 71 songbird
species and 257 vocalizations from 66 non-songbird species. To
remove potential noise, we performed band-pass filtering
between 100 Hz and 10 kHz. We statistically standardized each
acoustic sample (converted to floating-point values) using
Python code to mean 0 and s.d. ± 1.0, before analysis, to account
for potential amplitude differences between recordings.

(ii) Acoustic feature analysis
We extracted acoustic parameters from each vocalization using
Python 3 and the librosa Python package [30], along with
custom code. The acoustic feature analysis was based on short-
time Fourier transforms (fft length: 512; hop length: 256; sampling
rate: 22050 Hz). We selected nine acoustic features, sensitive to
various spectral and temporal characteristics of the signal, extend-
ing the methods of a previous study demonstrating phylogenetic
influences in anuran vocalizations [13]: root-mean-squared
(RMS), spectral flux, spectral entropy, spectral flatness, spectral
centroid (similar to dominant frequency) and spectral contrast in
four frequency bands (contrast 1: 0–500 Hz; contrast 2: 500–
1000 Hz; contrast 3: 1000–2000 Hz; contrast 4: 2000–4000 Hz).
Spectral flatness indicates the tonality versus noisiness of a
signal, on a gradient from 0 for white noise (equal energy at all
frequencies) to 1.0 for a purely harmonic sound (all energy
concentrated in partials). Spectral entropy is an information-
theoretic measure, summarizing the overall spectral variability
of the signal. By contrast, RMS, spectral contrast and spectral
flux are more sensitive to local temporal variation in amplitude
and spectrum across a signal [13,30]. Finally, treating the normal-
ized amplitude spectrum as a distribution of energy over
frequencies, the spectral centroid is the weighted mean of the dis-
tribution. Intuitively, this is the centre of mass of the distribution,
where it would balance on your fingertip. We also calculated the
traditional measure, dominant frequency, using custom code, but
since this was highly correlated with spectral centroid, only the
latter was included in our phylogenetic analyses.

These features were pre-selected based on prior published
work, and the parameters of the acoustic analysis were not chan-
ged post hoc after phylogenetic signal calculation. After calculating
the values of each of these features for each vocalization, we
averaged across vocalizations for each species (see electronic sup-
plementary material, figure S5 for acoustic data on each species
and feature). To obtain acoustic distances, we calculated the
mean absolute difference between the mean measures across the
different recordings for each of the nine features described
above. To obtain an overall measure of acoustic distance, we nor-
malized the acoustic distance matrix for each of the acoustic
features, then averaged the nine normalized distance matrices.

(iii) Acoustic feature analysis details
RMS amplitudewas calculated for each time-frame of the spectro-
gram using librosa. We then calculated the standard deviation of
this temporal signal and divided it by the mean (making it a
unit free measurement: a coefficient of variation). Spectral flux
was calculated for each time-frame using custom code (squared
difference of the spectrum), then we took the log (s.d.) of the spec-
tral flux, calculated for each time-frame. Spectral entropy was
calculated for the entire vocalization using the Entropy package
(github.com/raphaelvallat/entropy). Spectral flatness was calcu-
lated using librosa for each time-frame, then averaged across time
and log transformed. Spectral centroid was calculated for each
time-frame of the spectrogram with librosa, then the logarithm of
the median was calculated across time-frames, owing to the
large differences in spectral centroid between species. Similarly,
contrasts 1–4 were also calculated for each time-frame of the
spectrogram, than averaged across the vocalization and log trans-
formed. Code performing the acoustic analysis is freely available
at https://github.com/jozsarato/PhyloBirdSong.
(iv) Phylogenetic influences on acoustics
Phylogenetic signals were calculated using the phytools package in
R. All other statistical analyses were performed in Python, with
statistics calculated using the scipy and scikit-learn libraries. To
initially assess whether there is a relationship between acoustic
measures and genetic distances, we used three types of analyses
separately for our sets of vocal learner and non-learner species.
First, we used traditional statistical techniques (t-tests, corre-
lations, regression) to test if closely related species have similar
songs, and to assess whether acoustic measures can predict gen-
etic distances at the level of individual species. In the correlation
analysis, we calculated Pearson’s r between genetic distance and
each of the nine acoustic distance measures, then we averaged
the obtained r-values for each species. Second, at the group
level, we used Mantel tests to test for a relationship between gen-
etic and acoustic distance matrices (code: https://github.com/
jwcarr/MantelTest), and then performed 5000 bootstrap permu-
tations to obtain Mantel test p-values. Finally, we used
phylogenetic measures (Bloomberg’s K and Pagel’s λ) to test for
a relationship between the acoustic and genetic distance matrices
at the group level. The benefits and pitfalls of Bloomberg’s K and
Pagel’s λ remain debated [31–33], and they may well contain
complementary information. We therefore calculated both
measures for each of 100 bootstrapped trees (obtained from the
birdtree.org website using ‘phylogeny subsets’), for each group
of species, and present both the mean values and the proportions
of significant ( p < 0.05) trees.

Finally, since similarities in spectral centroid potentially
result from body size differences, we gathered weight informa-
tion from a public electronic database [34] based on Dunning
[35]. We performed multiple regression analyses, using the nine
acoustic feature distances combined with log body mass differ-
ences, to predict genetic distances species-by-species. Next, the
obtained β-values were averaged across species, to estimate the
predictive strength of each acoustic feature after controlling for
body mass.
3. Results
(a) Related species have similar vocalizations,

particularly in passerines
Combined acoustic distance was smaller between each
species and its closest genetic relative than the average of
other species, for both passerine (t27 = 3.99, p < 0.001,
figure 2a) and non-passerine (t25 = 4.88, p < 0.001, figure 2a)
species in our congener set. This effect was absent in our stra-
tified random sample of non-passerines (t39 = 0.426, p = 0.673,
figure 2b) and stratified sample of passerine calls (t36 = 0.723,
p = 0.474, figure 2b) but was present in random passerine
songs (t42 = 2.194, p = 0.034, figure 2b). Finally, we found a
strong effect for the combined sample of songs from 71 song-
bird species (t70 = 4.705, p < 0.001, figure 2c) but no effect
for the combined sample of 66 non-songbird vocalizations
(t65 = 0.984, p = 0.329, figure 2c). For a more detailed version
of this analysis, see electronic supplementary material,
figure S6, showing distance results for individual acoustic
features. Thus, acoustic distance reflects genetic distance,
at least for relatively close relatives, and particularly in
passerine songs.

https://github.com/jozsarato/PhyloBirdSong
https://github.com/jozsarato/PhyloBirdSong
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https://birdtree.org
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(b) Species-wise analysis of acoustic–genetic distance
correlations

The correlation between genetic and acoustic distances for each
species of our congener set showed that, among songbirds,
almost all species (24 out of 28, electronic supplementary
material, figure S7a) show a positive correlation (mean r =
0.08, s.d. = 0.07). Similarly, most non-songbirds (20 out of 26,
electronic supplementary material, figure S7b) also have
an expected positive correlation (mean r = 0.08, s.d. = 0.16)
between acoustic and genetic distances, with a higher
variability across species.

(c) Acoustic–genetic distance matrix similarity
Using the Mantel test on our training data, we found a sig-
nificant correlation ( p < 0.05) between the genetic distance
matrix and that for 5 out of 9 acoustic features (table 2), as
well as between genetic distance and the average acoustic
distance matrix. However, in the random sample of songbird
songs, there was only one significant feature (contrast 2: 500–
1000 Hz), and two nearly significant features (spectral
centroid, entropy), while no significant effects were found
for songbird calls. In the random sample of non-songbirds,
spectral centroid showed a strong effect, but no other
measures were significant (table 2). In the combined set of
all songbird species, we found a significant relationship for
four acoustic features and the mean acoustic distance, while
for the combined set of non-songbirds, only two acoustic
features (spectral centroid, spectral flux) showed a significant
relationship (table 2).

Bloomberg’s K and Pagel’s λ show strong phylogenetic
influences in the training set for songbirds, but weak in
non-songbirds.

In our training set, we found that seven out of nine
acoustic features (figure 3a, all apart from flatness and
contrast 1) show strong phylogenetic effects (almost all trees
p < 0.05 with Bloomberg’s K, and 100% of trees p < 0.05
with Pagel’s λ). In the stratified sample of songbird
songs (electronic supplementary material, figure S8a), four
measures showed strong indications of phylogenetic signal
(Bloomberg’s K significant for 41–88% of trees, p < 0.05: spec-
tral centroid, entropy, contrast 1 and contrast 3). For songbird
calls (electronic supplementary material, figure S8b), two
acoustic features showed indications of phylogenetic signal
(contrast 1 and contrast 3, p < 0.05 for 100% of trees). In the
random sample of non-songbirds (electronic supplementary
material, figure S8c), spectral centroid was the only feature
with significant phylogenetic signal (98% of trees p < 0.05).
Calculating these measures for the combined sample of all
songbirds (figure 3b) and all non-songbirds (figure 3c)
species separately, we found remarkable similarities between
the two groups. Spectral centroid, spectral flux and entropy
showed phylogenetic signal for both groups (79–100% of
trees p < 0.05), while no phylogenetic signal was detected in
RMS and flatness (0% of trees p < 0.05). There was a difference
in spectral contrast between the clades, as lower frequencies



Table 2. Mantel test results for the measures described in the left column and genetic distances, for each dataset (columns). Bold: p < 0.05. RMS, root-mean-squared.

measure

dataset

congener
set

random
songbird song

random
songbird call

random non-
songbirds

combined
songbirds

combined non-
songbirds

mean acoustic

distance

r = 0.211 r = 0.062 r =−0.041 r = 0.079 r = 0.196 r = 0.063

p < 0.001 p = 0.16 p = 0.743 p = 0.192 p = 0.001 p = 0.117

RMS r = 0.07 r =−0.106 r =−0.045 r =−0.071 r = 0.062 r =−0.03
p = 0.142 p = 0.958 p = 0.792 p = 0.845 p = 0.124 p = 0.696

spectral flux r = 0.031 r =−0.143 r = 0.062 r = 0.096 r = 0.167 r = 0.093

p = 0.27 p = 0.986 p = 0.159 p = 0.137 p = 0.004 p = 0.04

entropy r =−0.002 r = 0.117 r =−0.045 r =−0.001 r = 0.092 r = 0.041

p = 0.508 p = 0.055 p = 0.746 p = 0.468 p = 0.033 p = 0.183

flatness r = 0.116 r =−0.031 r =−0.111 r =−0.08 r = 0.011 r =−0.033
p = 0.018 p = 0.652 p = 0.98 p = 0.828 p = 0.403 p = 0.742

spectral

centroid

r = 0.206 r = 0.104 r = 0.088 r = 0.322 r = 0.182 r = 0.221

p = 0.001 p = 0.054 p = 0.114 p = 0.005 p < 0.001 p = 0.001

contrast 1 r = 0.07 r = 0.074 r = 0.025 r = 0.009 r = 0.011 r =−0.035
p = 0.09 p = 0.121 p = 0.298 p = 0.418 p = 0.382 p = 0.756

contrast 2 r = 0.16 r = 0.112 r = 0.029 r = 0.01 r = 0.076 r = 0.033

p = 0.004 p = 0.049 p = 0.312 p = 0.418 p = 0.071 p = 0.204

contrast 3 r = 0.174 r = 0.062 r =−0.029 r =−0.056 r = 0.084 r =−0.053
p < 0.001 p = 0.131 p = 0.635 p = 0.734 p = 0.027 p = 0.875

contrast 4 r = 0.112 r = 0.038 r =−0.126 r = 0.105 r = 0.036 r = 0.03

p = 0.024 p = 0.26 p = 0.992 p = 0.121 p = 0.217 p = 0.242

body mass r = 0.268 r = 0.045 r = 0.029 r = 0.367 r = 0.285 r = 0.272

p = 0.0 p = 0.201 p = 0.301 p = 0.001 p < 0.001 p < 0.001
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showed phylogenetic signal in non-songbirds (contrast 1–2:
0–1000 Hz, 40–66% of trees p < 0.05 with Bloomberg’s K),
but higher frequencies in songbirds (contrast 3: 1000–
2000 Hz: 100% of trees p < 0.05 with Bloomberg’s K).

(d) Acoustic distance correlates with genetic distance
controlling for body mass

Using body mass combined with acoustic features to predict
genetic distance for each species, we found that despite control-
ling for body size, spectral centroid remains the strongest
acoustic feature in predicting genetic distance. This was true
in our congener set (βCentroid = 0.197 ± 0.165), our combined
set of songbirds species (βCentroid = 0.098 ± 0.1), and also in
non-songbirds (βCentroid = 0.137 ± 0.137; figure 3d). Impor-
tantly, as expected, body mass strongly correlated with
genetic distance (congeners βMass = 0.201 ± 0.257, all songbirds
βMass = 0.204 ± 0.189, all non- songbirds βMass = 0.188 ± 0.192).
4. Discussion
Summarizing, in a large set of avian vocalizations including
71 songbird and 66 non-songbird species, using multiple
measures, our results show that strong phylogenetic signal is
present in vocally learned birdsong, as well as songbird calls
and non-passerine display vocalizations presumed to be
unlearned. Surprisingly, the magnitude of this phylogen-
etic effect for the learned song is comparable to—if not
exceeding—phylogenetic influences on genetically determined
vocalizations. We found the strongest phylogenetic effect with
the simplest acoustic measure, spectral centroid, which sum-
marizes the overall frequency distribution of the signal (as its
weighted mean or centre of gravity). We also found strong
phylogenetic effects with more complex measures (spectral
contrast and flux), which are more sensitive to spectral varia-
bility, but not with others (spectral flatness and RMS).
Whether the phylogenetic signal is truly absent from the
latter measures remains an open question for future research,
as larger samples, or acoustic analyses optimized for maximiz-
ing phylogenetic signal, might lead to different conclusions.
In particular, using machine learning methods to fine-tune
acoustic analyses to maximize phylogenetic signal for some
training sample, and then deploying this on a much larger
sample, would be a profitable way forward.

The phylogenetic signal estimates we obtained for our
congener dataset, which included pairs of closely related
species with small genetic distances, were larger than for our
random stratified sample, and remained strong using the
combined dataset including all species. This suggests that
with the randomly selected species, with a much wider
range of genetic and phenotypical variance, detection of
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Figure 3. (a–c) Phylogenetic signal in the training set (a), in all passerine songs (b) and in all non-passerine vocalizations (c). Top panels show the average Pagel‘s
λ and Bloomberg’s K for each acoustic feature (x-axis) (shaded area: s.d.). Bottom panels show the per cent significant bootstrapped trees. (d ) Combined prediction
of genetic distance with control for body size: prediction of genetic distance from nine acoustic features and body mass (x-axis) in the training set and the combined
set of passerine songs and non-passerines (see key, error bars: s.e.m.). (Online version in colour.)
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phylogenetic influences is more challenging. Surprisingly,
however, phylogenetic signalwas strong and significant for pas-
serine songs, but not calls, in the random dataset. This clearly
goes against our expectation that songs, with a strong learned
component, would exhibit weaker phylogenetic influences
compared with (mostly unlearned) calls and undoubtedly
deserves further investigation with a larger selection of species.

The persistence of phylogenetic signal even in learned voca-
lizations clearly suggests that vocal learning is compatible with
genetic determination of and/or genetic constraints upon voca-
lization structure, as previously shown for a clade of vocal
learning parrots [19]. Although our analyses cannot isolate
any specific genetic factors, three possible explanations seem
likely. First, broad morphological constraints (e.g. overall body
size) might play a role in constraining some specific acoustic
features, such as fundamental frequency (f0) or dominant fre-
quency, owing to allometric constraints on the size of vocal
organs. Second, genetic factors may constrain specific morpho-
logical features relevant to vocalization, such as details of
syringeal morphology or of vocal tract structure [36–38].
Given the considerablewell-knownvariability in syringeal anat-
omy across birds, we might expect acoustic measures tightly
linked to anatomical variation to show strong phylogenetic
signal, as reflected in the traditional use of syringeal anatomy
in avian classification [39,40]. An investigation of this might be
particularly revealing for clades like ducks, in which closely
related species show wide variation in syringeal morphology
the function of which is at present poorly understood [41,42].

Third, and most interestingly, there may be genetic
constraints upon the neural control and/or learning
mechanisms themselves, that is on the neural circuitry
involved in selecting, imitating and producing vocalizations.
This last possibility is particularly intriguing, and relevant
for our dataset, given that the oscine syrinx, despite some lim-
ited variation [43], is a highly conservative structure, with its
morphology shared by all of the nearly 4000 songbird species
[40,44,45]. There is nonetheless huge variation in song acoustic
structure among songbirds, and passerine mimics (mocking-
birds, reed warblers, starlings or lyrebirds) can accurately
copy songs of many species. Together, these facts suggest
that an important source of genetic canalization in passerine
song, reflected in the phylogenetic signal documented in the
current study, concerns the wiring of the learning mechanism
itself, rather than vocal morphology. This might be reflected in
the details of the innate ‘sound template’ used by young birds
to select their tutor(s) [46,47], and/or the ‘song grammar’ or
syntax used to combine learned elements into higher order pat-
terns [48–50]. This may also influence the acquisition and
modification of song structure in adults, since it is now clear
that open-ended song learners exhibit out-of-season reductions
in song nuclei combined with adult neurogenesis, presumed to
playan important role during learningof newsongs [51,52], and
are presumably under strong genetic control.

Clarifying the issue of the neural and morphological
bases of phylogenetic constraints on song structure, and adju-
dicating among these possibilities, will constitute a massive
research project, involving both more species and more
complex analysis methods than those employed here. None-
theless, we believe our current results clearly show that the
methods and approach used here (along with other recent
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work, e.g. [19]) offer a promising route to further explore
these fascinating questions. A richer understanding of
the source(s) of phylogenetic constraints on learned and
unlearned vocalizations is central to better understanding
the evolution of vocal learning and of vocal communication
more generally. Broad-scale genetic/acoustic analyses like
those introduced here should play an important role in
such future work.
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