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Abstract: Organisms have evolved a spectrum of 
strategies that facilitate survival in the face of adverse 
environmental conditions. In order to make full use of the 
unfavorable resources of nature, human beings usually 
impose selective pressures to breed phenotypic traits 
that can survive in adverse environments. Animals are 
frequently under attack by biotic stress, such as bacterial 
and viral infections, while plants are more often subjected 
to abiotic stress, including high salinity, drought, and 
cold. In response to these diverse stresses, animals and 
plants initiate wide-ranging changes in gene expression 
by altering regulation of transcriptional and post-
transcriptional activities. Recent studies have identified 
a number of key responsive components that promote 
survival of animals and plants in response to biotic and 
abiotic stresses. Importantly, with recent developments 
in genome-editing technology based on the CRISPR/Cas9 
system, manipulation of genetic elements to generate 
stress-resistant animals and plants has become both 
feasible and cost-effective. Herein, we review important 
mechanisms that govern the response of organisms to 
biotic and abiotic stresses with the aim of applying our 
understanding to the agriculture and animal husbandry 
industries.
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1  Introduction
Our world is characterized by broad biodiversity [1, 2], 
present even in niches with unfavorable environmental 
conditions [3-8]. Organisms living in these environments 
have evolved a variety of adaptive mechanisms to respond 
to biotic and abiotic stresses [9, 10]. For example, animals 
have developed sophisticated immune systems to respond 
to the biotic stresses they frequently encounter, such as 
bacterial or viral infections [11-13]. In contrast, plants 
more often respond to abiotic stresses through regulation 
of transcriptional and post-transcriptional activities that 
affect gene expression [14-20]. Abiotic stresses, which 
include high salinity [21-25], extreme temperature [20, 
26-28], drought [18, 29, 30], heavy metal toxicity [17, 31, 
32], ozone [33-37], irradiation [30, 38], carbon dioxide 
[19, 36, 37, 39-41], sulfur dioxide [42-44], and variations 
in soil pH [4, 45-47], severely constrain plant growth 
and development, leading to loss of crop production 
[48-53]. Thus, one strategy for improvement of crop 
yields is to cultivate crops that are tolerant to the abiotic 
stresses. Clearly, genetic variation plays a principal role 
in adaptation. However, natural selection is long-term 
process with constant mutation rate. To fuel the adaption 
processes, stress-stimulated adaption is usually applied 
for the rapid generation of phenotypic traits (Figure 1). 

Figure 1. Stress-induced adaption strategy adopted for the genera-
tion of phenotypic traits.
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[25, 32, 34, 87-89]. Although the molecular mechanisms 
used by plants to overcome high salinity challenge are 
not fully understood, recent advances have begun to 
identify key pathways and molecules [12, 28, 90-95], many 
of which regulate the ionic balance [16, 21, 24, 38, 77, 
96-101]. For example, Na+ has been shown to be important 
for maintenance of intracellular K+ concentrations, 
and Na+/K+ homeostasis is crucial for plant growth 
and development. At high salt concentrations, plants 
reduce Na+ influx and/or increase Na+ efflux to maintain 
homeostasis of intracellular Na+ concentrations [102]. 
Genes involved in the response to high salinity stress 
include the glycosyltransferase Qua1, which modulates 
Ca2

+ levels as part of the response to high salinity stress 
[103]. Overexpression of AtZFP1, a CCCH type zinc finger 
protein, promotes tolerance to high salinity by regulating 
expression of ion transport proteins [97, 104]. A subset 
of genes with ion-independent functions have also been 
shown to be critical for tolerance to high salinity [14, 22, 23, 
105-112]. For example, Arabidopsis plants overexpressing 
glutathione S-transferase (GST) are more tolerant to high 
salinity stress [113]. 

Ionic compartmentalization into vacuoles, salt 
exclusion and excretion by vesicles are the underlying 
mechanism of high salinity tolerance. However, the 
intensively studied plant Arabidopsis thaliana is not a 
true halophyte without salt glands in its epidermis, as 
such the precise mechanism of high salinity tolerance 
in Arabidopsis to be largely elusive. Limonium bicolor, 
a typical exo-recretohalophyte, has been sequenced to 
identify the genes involved in salt secretion [114]. Several 
transcription factors, including MYB, bHLH, C2H2, and 
NAC, have been identified to be essential for high salinity 
tolerance, suggesting transcriptional regulation of salt 
resistant-related gene expression during high salinity 
stress. Genes encoding proteins that are involved in the 
modulation of Na+ efflux, K+ uptake, chloride transport, 
cation transport, and H+-ATPase have been identified, 
confirming that ion transport is important for salt 
secretion from salt glands [114]. In addition, four ascorbate 
peroxidase genes, fourteen glutathione S-transferase 
(GST) genes, and four monodehydroascorbate reductase 
genes were differentially expressed under high salinity 
exposure, indicating the importance of the reactive 
oxygen species (ROS) scavenging system in high salinity 
tolerance [114, 115].

In addition to high salinity, chilling stress is another 
major environmental factor that affects plant growth and 
development, leading to crop loss [16]. Chilling stress 
influences seed germination and damages seedlings and 
root systems by affecting the membrane phase transition, 

Broadening our understanding of the molecular 
mechanisms governing the responses of animals and 
plants to stressful conditions would provide substantial 
benefits for animal husbandry and plant domestication 
[31, 54-59]. With recent developments in genome-editing 
technology, carrying out genetic manipulations to 
generate novel genotypic species resistant to biotic and 
abiotic stresses has become technically feasible and 
economically viable [60-66]. In this review, we discuss 
the molecular mechanisms that contribute to resistance 
to biotic stresses in animals and abiotic stresses in 
plants, highlighting key pathways responsible for stress 
resistance. Genetic manipulation of these pathways 
may be used in future studies to facilitate development 
of stress-resistant animals and plants for application in 
animal husbandry and agriculture [67]. 

2  Immune responses to biotic 
stresses
Animals have developed defense mechanisms to respond 
to biotic stresses, such as bacteria, viruses, fungi, and 
parasites [68-74]. The innate immune system acts as the 
first-line of defense against these invading pathogens 
through the action of pattern recognition receptors 
directed against conserved pathogenic molecules, termed 
pathogen-associated molecular patterns [75-78]. The roles 
of the insulin, TGF-β, mTOR, and p38 MAPK pathways in 
the immune response have been well characterized, and a 
number of other challenge-response genes have also been 
identified. For example, the alpha-2-macroglobulin gene 
has been associated with mastitis and has the potential 
to serve as a biomarker for mastitis susceptibility [26, 
79, 80]. Mannose-binding lectin is crucial for the host 
immune defense against a spectrum of pathogens [81-83]. 
Melanoma differentiation-associated gene 5, interferon 
regulatory factor 5, and hepcidin family genes have been 
shown to be essential for the innate immune response of 
common carp [84-86]. 

3  Survival mechanisms to abiotic 
stresses
During evolution, plants have formed diverse adaptive 
mechanisms to survive in the adverse environmental 
conditions. High salinity represents one of most common 
abiotic stresses faced by plants. Exposure to high salinity 
markedly limits the growth and production of plants due to 
induction of osmotic, oxidative, and temperature stresses 



342   S. Xie, M. Liu

stress responses [125, 126]. Abscisic acid (ABA), an 
endogenous phytohormone associated with abiotic 
stress responses to drought and low temperature, plays 
a negative role in pathogen resistance through down-
regulation of the expression of key biotic stress-responsive 
genes, such as jasmonic acid (JA) and ethylene (ET) [125]. 
ROS, as toxic by-products of aerobic metabolism, must be 
tightly controlled; on the other hand, ROS behave as an 
important signaling modulator in a diversity of cellular 
events. Emerging evidence reveals that ROS produced by 
NADPH-dependent respiratory burst oxidase homolog 
genes (AtrbohD and AtrbohF) might connect ABA-related 
signaling pathways and pathogen-response signaling 
pathways [123, 125]. In addition, a number of transcription 
factors, such as the dehydration responsive element 
binding proteins (DREB), C-repeat binding factors (CBF), 
and cup-shaped cotyledon (CUC), induce the expression 
of a number of biotic and abiotic stress-responsive genes, 
leading to plant resistance to abiotic stress and pathogen 
infection [126]. 

5  Concluding Remarks and Future 
Perspectives
Biotic and abiotic stresses continue to represent a major 
threat to animal and agriculture husbandry. As a result 
of exposure to stressful conditions, animals and plants 
have evolved a wide range of defense mechanisms that 
promote survival in adverse environments. Increasing 
our understanding of the diverse mechanisms that 
promote resistance to biotic and abiotic stresses will 
provide valuable insight into selection and generation 
of desirable traits important for future innovations in 
animal husbandry and agriculture [127-134]. Simultaneous 
manipulation of multiple genes with precise specificity 
is required for effective crop breeding and animal 
husbandry, since abiotic stress usually involves multiple 
gene responses, which coordinately regulate metabolic 
pathways so that the organism can adapt to the stressful 
conditions [135]. Fortunately, with recent advances 
in genome-editing technology, such as discovery and 
optimization of the CRISPR/Cas9 system, combinatorial 
introduction of stress-response genes into animals and 
plants has become feasible, raising the possibility of 
the development of stress-resistant species [136, 137]. 
Advances in high-throughput sequencing technologies, 
functional genomics analyses, and integrated ‘omics’ 
analyses, especially integrated metabolomics [138], 
have additionally facilitated many ongoing studies 
characterizing the complex interactomes associated 

water absorption, metabolism, and other physiological 
processes. Tolerance to chilling stress varies across plant 
species, and variations are associated with changes in 
epigenetic modifications affecting plant physiology, 
metabolism, and growth. Ectopic expression of genes that 
affect these activities can promote resistance to chilling 
stress [16, 20, 26-28, 109, 116, 117]. For example, glycine 
betaine enhances the tolerance of tomato to chilling stress 
by regulating expression of codA and synthesis of choline 
oxidase [118]. Overexpression of peanut acyl carrier protein 
in tobacco alters the membrane lipid synthesis pathway, 
promoting resistance to chilling stress [116]. Reactive 
oxygen species signaling has also been associated with 
responses to chilling [19, 48, 61, 108, 119, 120].

Drought stress is also a common environmental 
factor affecting plant survival. Drought stress leads to 
dehydration and reduction of cytosolic and vacuolar 
volume. Moreover, drought stress typically suppresses 
the photosynthesis rate and efficiency and can ultimately 
result in wilting and apoptotic cell death. Mounting 
evidence shows that stomatal closure plays an essential 
role in the plant response to drought stress, and genes that 
are involved in this process are crucial for drought stress 
resistance [18, 29, 30, 48, 103, 105, 121, 122]. Recent studies 
have implicated casein kinase 1-like protein 2 and stomatal 
closure-related actin binding protein 1 in hypersensitivity 
to drought stress and these proteins drive actin filament 
reorganization to regulate stomatal closure [121, 122]. PhyB 
regulates plant sensitivity to drought stress by suppressing 
expression of cell expansion-associated genes, including 
putative erecta family genes and expansin family genes 
[29]. A wide variety of drought-responsive genes have been 
identified in different species, including genes encoding 
stress-responsive proteins, auxin-responsive proteins, 
transcription factors, Na+/H+ transporters, and chloroplast 
photosynthetic oxygen-evolving protein subunits [18].

4  Crosstalk between biotic and 
abiotic stress responses
In addition to abiotic stress, plants are often 
simultaneously challenged by biotic stress, such as 
pathogen attack [123, 124]. Interestingly, a widely observed 
phenomenon seen in plants is resistance to multiple stress 
exposure, termed as cross-tolerance, and this phenomenon 
suggests that a powerful regulatory mechanism allows 
plants to adapt rapidly to a varying environment. Multiple 
lines of evidence reveal that hormones, transcription 
factors, kinase cascades, and ROS are the major regulatory 
factors controlling crosstalk between biotic and abiotic 
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with stress tolerance. Application of genome-editing 
technology to modify the expression of key proteins 
associated with challenge tolerance could accelerate the 
development of stress-resistant animals and crop plants, 
thereby benefiting the animal husbandry and agriculture 
industries.
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