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Analyzing historical land use 
changes using a Historical Land Use 
Reconstruction Model: a case study 
in Zhenlai County, northeastern 
China
Yuanyuan Yang1,2, Shuwen Zhang3, Yansui Liu1,2, Xiaoshi Xing4 & Alex de Sherbinin4

Historical land use information is essential to understanding the impact of anthropogenic modification 
of land use/cover on the temporal dynamics of environmental and ecological issues. However, due to a 
lack of spatial explicitness, complete thematic details and the conversion types for historical land use 
changes, the majority of historical land use reconstructions do not sufficiently meet the requirements 
for an adequate model. Considering these shortcomings, we explored the possibility of constructing 
a spatially-explicit modeling framework (HLURM: Historical Land Use Reconstruction Model). Then 
a three-map comparison method was adopted to validate the projected reconstruction map. The 
reconstruction suggested that the HLURM model performed well in the spatial reconstruction of various 
land-use categories, and had a higher figure of merit (48.19%) than models used in other case studies. 
The largest land use/cover type in the study area was determined to be grassland, followed by arable 
land and wetland. Using the three-map comparison, we noticed that the major discrepancies in land 
use changes among the three maps were as a result of inconsistencies in the classification of land-use 
categories during the study period, rather than as a result of the simulation model.

Decadal-centennial land use and land cover change (LUCC) has been considered as a vital driver of global envi-
ronmental change1–5. Historical land use information is essential in understanding how anthropogenic land use 
and land cover change has influenced the temporal dynamics of environmental and ecological issues, including 
soil degradation6,7, water quality8,9, habitat loss and fragmentation10, biodiversity loss11,12, climate change13–15 and, 
most importantly, the global carbon balance16. However, a primary obstacle in assessing the consequences of land 
use changes is the lack of high-resolution, spatially explicit and thematically complete historical land-use change 
data, as well as the conversion types that feed into the models related to the above ecological issues5.

Due to a lack of available adequate historical datasets, the reconstruction of historical land use/cover relies 
on existing databases containing local/regional level statistics or records, population statistics, historical maps 
and model assumptions5. Recently, substantial progress has been made in gathering historical land use data and 
producing historical reconstructions, with an increase in investigations at both the global and regional scales17–32. 
The changes have been discussed in detail through a review of historical reconstruction methods of LUCC33. 
The majority of current studies fail to thematically represent the land area in its entirety, and also fail to include 
competing land-use categories and land conversion types5. For example, present researches target arable land, 
wetland and forestland, but do not provide information regarding land-use categories such as settlements, water 
bodies or other land use types.

Model-based reconstructions of land-use change are rapidly advancing as anthropogenic land-use change is 
one of the most important drivers of environmental change. As the accumulation of human activities’ impact on 
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the earth’s surface, present land use pattern contains the essential information about historical land use patterns. 
Meanwhile, remote-sensing technique makes it feasible and convenient to observe the global characterization of 
land use/cover with high resolution and thus the present land-use spatial pattern is the most crucial information 
for historical land reconstruction. In general, the spatial allocation method is under the assumption of similarities 
between historical land use spatial patterns and present spatial patterns. Related models have been divided into 
three types according to the various effects on controlling the similarities: totally dependent, partially dependent 
and dynamically dependent34. The differences among the three types lie in the different spatial allocation princi-
ples. The totally dependent approach means that historical land-use pattern is completely decided by the present 
one in the reconstruction model. That is, the proportion of the allocated area (amount) in each grid accounting 
for the total area (amount) in an administrative area (country or province) is an invariable in spatial allocation 
by adopting downscaling or other ways. The partially dependent approach is to avoid “using today’s pattern for 
historical reference” and it focuses on the driving mechanism research of spatial pattern. Generally, the partially 
dependent approach is based on an assumption that the range of historical agricultural activities could not exceed 
the present one. The dynamically dependent approach has the sophisticated algorithms and takes the effect of 
time into consideration34, initially proposed by Goldewijk35 in his HYDE 3.1 (History Database of the Global 
Environment) application35. The driving force of land use process has to be clarified and the land-use change 
trajectories have to be analyzed before using the partially dependent approach. After this, a land use forecasting 
model (e.g., cellular automata, Geomod) as a carrier can be used to produce a backward simulation. In this con-
text, to enhance our understanding of the degree and extent of global and regional anthropogenic changes in land 
use patterns36,37, a spatial-explicit modeling framework (HLURM: Historical Land Use Reconstruction Model) 
is explored and proposed in this paper. Currently, there is a growing demand for harmonized, spatially explicit 
and high resolution land-use change products. Our model will aim to satisfy this demand. This model approach 
can also produce backward projections by analyzing land use changes over time, and it is a dynamically depend-
ent approach based on the assumption that current spatial land use pattern is intrinsically linked to historical 
patterns.

As the third largest and most populated country, China has a long history of agricultural civilization and its 
land use has undergone great changes owing to significant transformation caused by human activities, natural 
factors and their impact on the climate and environment38,39, which plays a significant role in the global LUCC 
pattern40. Over the last century, northeastern China has experienced large-scale population reflux of Chuang 
Guandong migration and major land reclamation process influenced by lifting the ban on the Qing Government’s 
prohibition policy41–43. As a result, it is one of the regions in China witnessing dramatic LUCC in a century time 
scale41. Here, considering the richness of historical documents and the availability of regional LUCC data derived 
from the historical topographic maps, physical environmental background maps including those of terrain, cli-
mate, geology, soil, vegetation and hydrology as well as socioeconomic statistical data based on our previous 
research, we choose to represent Zhenlai County, located in northwestern Jilin province, as a case study. As a part 
of farming-pastoral ecotone of northern China, the eco-environment in Zhenlai County is very fragile and is 
liable to the disturbance of various factors41. In this research, we try to explore a spatial-explicit modeling frame-
work (HLURM) by using the dynamically dependent spatial-allocation approach and then apply this modeling 
framework to the historical reconstruction of spatial distribution of land use/cover in the early reclaimed time of 
northeastern China to check its modeling behavior. The overall objectives of this paper are: (1) to reconstruct his-
torical land use during the early period of reclamation (1930 s) in Zhenlai County using a 90 m ×​ 90 m HLURM 
model to generate a backward projection; and (2) to validate the results of the reconstruction by means of a 
three-map comparison, assessing its accuracy by classifying pixels into the following four types: null successes, 
hits, misses and false alarms. This research will make us understand better the historical land use and land cover 
change over the past century in northeastern China and provide harmonized, spatially explicit and high resolu-
tion land use change products to ecological issues’ study.

Materials and Methods
Study Area.  Zhenlai County (N45°28′​–N46°18′​, E122°47′​–E124°04′​; Fig. 1) is a typical part of the farm-
ing-pastoral ecotone of northern China. Under the governance of Baicheng city, Zhenlai County lies in the 
northernmost part of Jilin province, and it borders Heilongjiang to the east and Inner Mongolia to the west. 
Historically, the region comprised nomadic land for Mongol princes, and it was only after the enactment of a pol-
icy lifting the ban on land reclamation during the late Qing dynasty (1902) that inhabitants were able to reclaim 
land. In 1910, the county was established as Zhendong County and was later merged with Laibei County in 1947, 
and this combined region was later renamed Zhenlai County. The region has experienced dramatic LUCC over 
the past century, and the land reclamation process is relatively complete. The county is rich in geomorphologic 
features with high elevation in the northwest and low elevation in the southeast. The northwestern area is adjacent 
to the Greater Hinggan Range and the central areas mostly comprise rolling hilly land. The eastern and southern 
regions surround the Nenjiang and Tao’er Rivers, respectively, forming a fertile flood plain on both riverbanks. 
The main soil types include chernozem, alluvium soil, alkali soil and meadow soil. As this region is located in the 
inland mid-latitude areas, it comprises a temperate, continental monsoon climate with distinct seasonality. Mean 
annual rainfall is 402.4mm and is unevenly distributed across time. Mean annual evaporation is 1755.9 mm, 
which is approximately four times greater than the mean annual rainfall. This low volume of precipitation and 
high level of evaporation results in a drought-prone climate in the area, especially in the spring. The mean annual 
temperature is approximately 4.9 °C.

Data.  One Landsat MSS (Multispectral Scanner) and two Landsat TM (Thematic Mapper) images were 
selected for the years 1976, 2000 and 2005. These remote sensing images were used to interpret and vectorize 
land use data obtained from the United States Geological Survey (USGS; http://glovis.usgs.gov/). A series of 
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topographic maps from the 1930 s (in the year of 1932 drawn to scale at 1:50 000, in the year of 1935 at 1:100 000 
and 1:500 000, respectively) were also collected and digitized. The historical spatiotemporal distribution of land 
use and land cover in 1954 was also reconstructed by consulting and incorporating information relating to ter-
rain, climate, geology, soil, vegetation, hydrology and socioeconomic statistical data from topographic maps and 
physical environmental background maps44,45. Soil data was digitized from the “Local Record of Zhenlai County”. 
A slope raster was generated using a 90 m raster DEM obtained from the Shuttle Radar Topography Mission 
(SRTM).

Classification system.  As land use types indicated on the topographic maps and remote sensing images 
used in this study differed, we initially produced a map series with unified contents. In order to make temporal 
comparisons, the maps also had to be thematically generalized. Considering both the local characteristics as well 
as the predominant land use classification system used in China46, the available land classes were aggregated into 
seven suitable land-use categories for this study: arable land, forestland, grassland, water, settlement (urban and 
rural construction), wetland and other unused land (including sand, saline-alkali soils and bare land)47,48.

HLURM model.  The Historical Land Use Reconstruction Model (HLURM) provides a high-resolution 
reconstruction of historical land use spatial distributions. The model outputs are based on the assumption that 
the present spatial pattern of land use is intrinsically dependent on a historical pattern.

HLURM theory.  Considering the natural, social and economic predictors of changes in land use and land cover, 
HLURM takes into account regional land use changes since the advent of remote sensing. This was undertaken 
by taking the grid as the research unit, calculating the probability of each land type in each grid to determine the 
most likely land-use category and then using the land type with the largest probability to reveal the land use in 
the research units. A cellular automata (CA) model was then used to produce a backward simulation as a carrier.

Figure 1.  Map of the study area, Zhenlai County (map created using ARCGIS 10). 
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HLURM modeling framework.  The HLURM model consists of four main modules: quantity control module 
(QM), spatial conversion rule module (CM), probability module (PM) and spatial allocation module (AM) 
(Fig. 2).

Quantity control module (QM), also known as the demand-constraint module, is the basis of HLURM model 
and also the premise of the spatial reconstruction. This module can be operated and run independently of the 
HLURM model. In general, total quantity of land use can be determined in two ways: (a) collecting historical 
documents and calibrating the available data; and (b) modeling quantitatively from the simple historical trend 
extrapolation method to the relatively complicated economic model. Appropriate model of backward projection 
for land use quantity should be chosen according to the actual circumstance.

Spatial conversion rule module (CM) establishes historical rules for land use and land cover change. This 
module contains analysis of both land use conversion sensitivity and land use conversion sequence. Land use 
conversion sensitivity monitors the conversion characteristics and trends among land-use categories during each 
time interval; obtains the transformation probabilities for land dynamics in the study period; and clarifies the 
trajectories of land use changes. These factors provide fundamental basis for analyzing the land use conversion 
sequence. CM will then reveal land dynamic characteristics and provide essential data for the following probabil-
ity module, as well as producing the constraints for the spatial allocation module.

Probability module (PM) calculates the probability of each land type in each grid based on probability the-
ory. By analyzing the relationships between both various natural environmental conditions and socio-economic 
conditions and land-use distributions, a land suitability evaluation map is produced to exhibit the possible spatial 
distribution of historical land cover. According to current research about land use and land cover change, three 
assumptions of HLURM are proposed to operate the PM module: 1) The current spatial land use pattern is intrin-
sically dependent on a historical pattern; 2) The boundary of historical land use with human activities, such as 
arable land and settlements, does not exceed the union range of each land use type in the study period; 3) The 
natural environmental factors of land suitability have not changed over time during the past century due to the 
limitation of data collection.

Spatial allocation module (AM) distributes the quantity of each land use into the geographical locations and 
spatially explicit outcomes according to certain principles or approaches. It then realizes the backward projection 
of historical land use. For specific spatial allocation, downscaling can be used in the descending order of distribu-
tion probability under the control of total land-cover area and other distribution factors.

According to the influence of human activities on land use and the characteristics of land use, the reconstruc-
tion order for land-use categories in this study is as follows: settlements, arable land, water, wetland, forestland, 
grassland and other unused land. Different spatial constrains are established for land-use categories and then 
spatial grid allocation is operated under these constrains.

Three-map comparison.  The maps used for the three-map validation of the LUCC model included refer-
ence time 1, reference time 2 and simulation time 2. Comparisons between the maps of reference time 1 and refer-
ence time 2 characterized the observed changes in the maps, reflecting the dynamics of the land use. Comparisons 
between the maps of reference time 1 and simulated time 2 characterized the predicted changes, demonstrating 
the model behavior. Model validation estimates the agreement (or error) stemming from the comparison between 
the maps of simulation time 2 and the reference (or real) time 2. Here, the model accuracy was assessed by deter-
mining the four components of accuracy and error, namely, null successes (accuracy of observed versus predicted 
persistence), hits (accuracy of observed versus predicted change) misses (error due to observed change predicted 
as persistence) and false alarms (error due to observed persistence predicted as change). The summary statistics 
for error due to quantity (EQ, Eq. 4) and error due to allocation (EA, Eq. 5) were also assessed49,50. Quantity error 
reflects the inability of the model to perfectly predict the quantity of net change, and is not influenced by spatial 

Figure 2.  HLURM’s four modules. 
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allocation. Conversely, allocation error is associated with the inadequate ability of the model to allocate pixels of 
change across the landscape. This error derives from the spatial allocation algorithm, which is associated with 
the independent variables in the model. The error might be sensitive to any modification of the spatial allocation 
algorithm. In addition, the figure of merit (FOM, Eq. 6) and the three ratio indices (Eqs 7–9) that quantify the 
amount of hits, misses and false alarms relative to the observed change, were also determined. The FOM is calcu-
lated by dividing the hits by the sum of hits, misses and false alarms and, in the case of the models that simulate 
several categories, removing the partial hits from the numerator. This measure allows a more realistic assessment 
of the cell-to-cell coincidence between simulated and real maps than more commonly used metrics, such as the 
kappa index or overall accuracy, which are usually calculated using the entire surface area51. The FOM ranges 
from 0% (no overlap between observed and predicted change) to 100% (perfect overlap between observed and 
predicted change)52.

≡ = +OC Observed Change M H (1)

≡ = +PC Predicted Change H F (2)

≡ = +T Total Error M F (3)

= − = + − + = −EQ PC OC H F M H F M( ) ( ) (4)

= − = + − − = ×EA T Q M F F M Minimum F M( ) 2 ( , ) (5)

=
+ +

×FOM H
H M F

100
(6)

=
+

HOC H
H M (7)

=
+

MOC M
H M (8)

=
+
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H M (9)

where, H, M and F are the hits, misses and false alarms; HOC, MOC and FOC are, respectively, the ratio of hits, 
misses and false alarms to the observed change, which is the summation of the hits and misses.

Results
Quantity control module.  Based on available historical data, the total quantity of each land use was calcu-
lated according to the weights of various data sources, such as historical documents, Markov model results and 
vector data derived from topographic maps (Fig. 3).

The spatiotemporal Markov Chain model uses transitional probabilities to model change over time among 
land-use categories, and is able to simulate several land-use categories simultaneously. However, due to temporal 
changes in the various land-use categories, transition matrices describing various types of land cover from t − 1 
to t might not be totally consistent with those in the period between t and t + 1. Thus, the transition matrices were 
modified by analyzing land use changes over the last few decades, and were also used to define the rules for AM, 
assuming that current spatial pattern of land use is inherently dependent on the historical pattern. In this context, 
in order to account for the period between 1932 and 1954, transition matrices were revised between 1954 and 

Figure 3.  Quantity control module. 
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1976 according to the rules governing LUCC in the study area from 1954 to 2005. The analysis of land use changes 
indicated that nearby forests and wetlands would not be utilized until all of the grassland suitable for farming 
was reclaimed47. Hence, we added the grid numbers for wetland converted into arable land from 1954 to 1976 to 
grassland. In addition, climate change, especially precipitation, had a significant impact on wetlands due to the 
smooth landscape in the study area. Gao53 indicated that northeast China experienced a drier period between 
1900–1935, a wetter period between 1936–1959 and another dry period after 1960. In light of this we adjusted the 
area of “wetland →​ water” into the area of “wetland →​ grassland” from 1954–1932. Finally, the area of each land 
use was obtained by modifying Markov results.

Weight is often used to develop a set of relative weights for a group of factors in a multi-criteria evaluation. 
Here, the analytic hierarchy process (AHP) approach, calculating from “WEIGHT-AHP weight derivation” mod-
ule of the IDRISI Selva software, was used to determine the weights of land-use categories from different data 
sources in the 1930 s based on the area of various land use from multi-source data and the reaction characteristics 
of land-use categories in these different data sources. Under the control of 531606.14 ha of the total study area, 
the areas of land-use categories in the 1930 s were obtained. Table 1 shows that grassland dominated the largest 
area of land cover (334798.79 ha) with arable land (129966.07 ha) being the second most dominant. The areas of 
forest land, water, settlement, wetland and other unused land were 675.69 ha, 9274.14 ha, 3758.57 ha, 51514.18 
ha and 618.69 ha, respectively.

Spatial conversion rule module.  Research regarding the spatial conversion rule module was comprehen-
sively explained and discussed in the spatiotemporal changes’ analysis from 1954 to 2005 in the study area47,48. 
Results from our analysis (Fig. 4) enable the following conclusions to be made according to spatial conversion 
rules for various land use: (1) Arable land expanded at the expense of grassland and wetland. At the same time, 
a large proportion of grassland was converted into unused land, reflecting the remarkable environmental deg-
radation experienced in Zhenlai County during the study period. (2) Trajectory analysis of land use and land 
cover change demonstrated that settlements, arable land and water bodies remained relatively stable in terms of 
coverage and spatial distribution, while grassland, wetland and forestland demonstrated weak stability. (3) While 
natural processes dominated environmental change in the study area, anthropogenic influences also played an 
important role. (4) The Lorenz curve/Gini coefficient indicated that arable land was the most scattered, whereas 
forestland was the most concentrated.

Probability module.  Factors and constraints were the two types of criteria used in this study (Fig. 5); a factor 
signified a continuous degree of fuzzy membership (in the range of 0 ±​ 255), while constraints limited the alter-
natives altogether (i.e. fuzzy membership is either 0 or 1)54. The factors for suitability maps included the following 
three kinds: environmental influential factors (geomorphology data, topographic data such as slope, aspect and 
elevation, soil data, Fig. 6a); human disturbance factors (distance from settlements, rivers and roads, Fig. 6b); and 
autocorrelation factors (Fig. 6c). Each grid cell in all of the digital raster maps represented an area of 90 m ×​ 90 m, 
which is considered an accurate representation of the land-cover in the study area. Such precision avoids losing 
the resolution of the data, though it could result in data redundancy. Aiming to union each land-use category 
by overlaying land use maps in several time points, this module calculated the percentage of each land-use cat-
egory distributed in these five natural factors to represent the probability of each land use in each grid under 
different environment backgrounds by intersecting the above union (∪​) dataset with various environment back-
ground data. We also digitized settlements, rivers and road layers from the 1930 s topographic maps, calculated 
their Euclidean distances and then dispersed the distance value within the range of 0–1; where 0 represented the 

Land-use categories
Modified data of 
Markov results

Extractive data from 
historical documents

Data derived from the topographic 
maps (DTM) Weighted 

areai ii iii

Arable land Area (ha) 146598.14 85938.43 204012.98 143744.76 99902.81 129966.07

Weight 0.293 0.178 0.089 0.219 0.221

Forestland Area (ha) 630.5 — 555.48 881.96 438.98 675.69

Weight 0.308 — 0.073 0.382 0.237

Grassland Area (ha) 221456.34 — 270651.67 346339.5 409115.25 335798.79

Weight 0.217 — 0.074 0.356 0.353

Water Area (ha) 11888.5 — 7755.28 6759.83 6149.02 9274.14

Weight 0.485 — 0.116 0.254 0.145

Settlement Area (ha) 1801.49 — — 2383.36 5613.1 3758.57

Weight 0.151 — — 0.396 0.453

Wetland Area (ha) 148313.62 — 48630.73 31496.73 10386.98 51514.18

Weight 0.202 — 0.157 0.344 0.297

Other 
unused land Area (ha) 916.85  →

Correction under the control of total area 618.69

Table 1.  Areas and weights of various land use types in the 1930 s. Note: DTMi - data derived from the 
topographic maps at scale 1:500,000 in the 1930 s; DTMii - data derived from the topographic maps at scale 
1:100,000 in the 1930 s; DTMiii - data derived from the topographic maps at scale 1:50,000 in the 1930 s.
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nearest distance and 1 represented the farthest distance. In addition, in accordance with the principle of spatial 
autocorrelation that suggests that certain land use types favor a certain land cover55, we also used the spatial auto-
correlation distance of each land-use category based on 1954 land use map. Finally, the hundred-mark system 
about the percentage of each land-use category in the five natural factors was converted into a 255-mark system 
while the distance values with the range of 0–1 about human disturbance factors and autocorrelation factors 
were reverse-extended to 255–0. These were then calculated by standard formula for grid computing to meet the 
demand of this module.

Here, two constraints were considered: water and unchanged land-cover during 1954 and 2005. Based on the 
previous three assumptions of the PM, we concluded that the unchanged land use from 1954–2005 had existed 
in 1932. Considering that the other six land cover types do not typically occur on bodies of water, water layers 

Figure 4.  Spatial conversion rule module. 

Figure 5.  Probability module. 
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Figure 6.  Environmental influential factors for suitability maps (a1–a5); human disturbance factors (b1–b3); 
spatial autocorrelation distance factors (c1–c7); and constraint images for water (d1) and unchanged land cover 
(e1–e7) (map created using ARCGIS 10).
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digitized from the 1930 s topographic maps (Fig. 6d1) were subjected to the same constraints as all the other land 
use/cover types, excepting themselves. In terms of long-term landscape development, the degree of unchanged 
land use across the study period was relatively stable and consistent in its spatial distribution. We thus made the 
assumption that the degree of unchanged land cover over the past 60 years had also existed in the 1930 s, and the 
present land use pattern is dependent upon the historical one. Thus, a particular land use type could not develop 
where a different land cover had existed at that time (Fig. 6e).

We made use of the MCE process involving criteria of varying importance in accordance with decision makers 
along with information regarding the relative importance of the criteria. It is generally obtained by assigning a 
weight to each factor. The weights given to different factors in this study were generated using Saaty’s Analytical 
Hierarchy Process (AHP), where a larger weight denotes a more important criterion in terms of overall utility 
(Table 2). The probability module was completed using IDRISI Selva software and the suitability maps for various 
land-use categories are shown in Fig. 7.

Spatial allocation module.  This module, based on the algorithm of the cellular automata (CA) model, has 
two kinds of spatial constraints: (1) interpretation results of topographic maps; and (2) the spatial probability of 
each land-use category. The specific spatial allocation process is shown in Fig. 8. There were a number of proce-
dures in this module: (1) whether or not the probability of land use is the largest in the land suitability probability 
layer; (2) whether or not it is consistent with the data derived from the topographic maps; (3) checking neighbor 
status to judge whether or not the number of one land-use category around the neighbor grids is equal to or 
greater than five; (4) whether or not this certain land use type reaches the upper limit of its total quantity. If the 
land use type has reached it upper limit then the procedure ends; otherwise, the procedure returns to the above 
process to continue to judge; (5) the reconstruction order for land-use categories is as follows in the process of 
spatial allocation: settlements, arable land, water, wetland, forestland, grassland and other unused land.

The spatial allocation module is programmed in Matlab software and the 1930 s land-use map simulated by 
the HLURM model could be output by spatial allocation module (Fig. 9). It can be seen that grassland dominated 
land cover (63.17%), a result which was expected given the large number of immigrants that settled in this area, 
resulting in the reclamation of wildland and grassland. Anthropogenic activities intensified following the enact-
ment of the policy lifting the ban on land reclamation in northeastern China in the late Qing Dynasty. Arable land 
accounted for the second largest land cover (24.45%), the majority of this land type being located in the flat areas 
of the central and western parts, as well as in the north. The arable land was also found to be scattered between the 
other areas. The wetland accounted for 9.69% of the total area and it was mainly distributing to the east and south 
along the Nenjiang River and the Tao’er River. The area of water bodies consisted of 1.74% of land cover while the 
area proportions of settlements, forestland and other unused land were 0.71%, 0.13% and 0.12%, respectively.

Discussion
Through producing a backward projection, the HLURM model creates a high-resolution historical reconstruction 
of land use and land cover in Zhenlai County in the 1930 s. A common method to test the reliability of historical 
reconstructions involves comparing with information from a variety of independent sources56. Detailed historical 
maps are valuable sources for land cover reconstruction as these can be used to directly digitize historical land 
cover. We compared the contemporary HLURM model results with historical 1:100,000 topographic maps as 
these allowed us to analyze land use on a regional scale57. According to a three-map comparison, we were able 
to validate the model by identifying all potential prediction successes and errors. The three maps included the 
observed 1954 land-use map, the observed 1932 land-use map digitized from the topographic maps and the pre-
dicted 1932 land-use map. As six land-use categories were present in the digitized topographic maps, we decided 
to combine wetlands and other unused land types into unused land in both the reference 1954 map and simulated 

Factors Arable land Forestland Grassland Water Settlements Wetland Other unused land

Environmental influential factors

Soil 0.232 0.127 0.058 0.294 0.032 0.085 0.021

Geomorphology 0.054 0.027 0.051 0.209 0.012 0.021 0.063

Elevation 0.032 0.031 0.031 0.103 0.038 0.143 0.004

Slope 0.036 0.025 0.071 0.098 0.059 0.111 0.006

human disturbance factors

Aspect 0.005 0.012 0.033 0.071 0.005 0.107 0.009

Distance from river 0.096 0.099 0.101

Distance from roads 0.092 0.072 0.124

Distance from 
settlement 0.213 0.369 0.309

Spatial auto-correlation factors

Arable land 0.24

Forestland 0.337

Grassland 0.304 0.162 0.124

Water 0.225

Settlement 0.32

Wetland 0.189 0.296 0.205

Other unused land 0.164 0.075 0.568

Table 2.  Factors and their weights used in the construction of suitability maps.
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1932 map. Thus, six land categories were defined for comparison: arable land, forestland, grassland, water bodies, 
settlements and unused land.

Figure 10a indicates the percentage of area covered by each land-use category in the reference 1954, reference 
1932 and simulated 1932 maps. The largest categories, as indicated by the pie charts, were grassland, arable land 
and unused land. While the pie charts provide useful information regarding the contribution of each land cate-
gory, they fail to provide much detail concerning individual transitions among categories. Thus, we overlaid the 
reference 1954 and 1932 maps, and the reference 1954 and simulated 1932 maps, in order to analyze the changes 
between 1954 and 1932. Two matrices were produced and are presented in Table 3, and the contribution of each 
category at the initial time (1954) and at the final time (1932) are indicated. Figure 11b,c and Table 3 illustrate the 
gross losses and gains in land use types, the majority of which were concentrated in the central parts of the study 
area as well as in the vicinity of rivers and lakes. The total area change for the reference map was 306,161.00 ha 
while it was only 195,500.47 ha for the simulated map. Notably, a substantial amount of land classified as unused 
in 1954 was marked as grassland in 1932 in both the maps, especially the reference map. The spatial location 
of settlements over time was difficult to reconstruct due to their negligible size compared to the other land-use 
types, as well as the high temporal variability and plasticity in site preferences58. Furthermore, as this research 
focused on natural factors and excluded other potential drivers (e.g. cultural and socioeconomic driving forces), 
the reconstruction of settlement areas was unsatisfactory as several differences regarding gross gains and losses 
existed between the reference and the simulated change maps.

The comparison of observed and predicted change is shown in Fig. 11 where four types of accuracy and error 
were distinguished. This map was created using an overlay of the predicted land use map of 1932 and the reference 
map of 1954 in order to reflect landscape persistence versus change. Over the entire study area, the simulated 
1932 land use map reported 36.45% null successes, 30.62% hits, 26.97% misses and 5.95% false alarms. Observed 
change (OC) occurred on 57.59% of the land use, whereas the predicted change (PC) occurred on 36.58% of the 
land use. Overall, there was a total EQ (error due to quantity) of 21.02%, an EA (error due to allocation) of 11.91% 
and a total error of 32.93%. This indicates that a minor allocation disagreement and a major quality disagreement 
existed. The total error is smaller than the observed change, suggesting that this model is more accurate than a 

Figure 7.  Suitability maps for various land-use categories (map created using IDRISI Selva). 
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Figure 8.  Flow chart of spatial allocation module. 

Figure 9.  HLURM simulation of land-use map in the 1930 s (map created using Matlab R2012b). 
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null model of no change. The HOC, MOC and FOC ratios were 0.532, 0.468 and 0.103, respectively. The figure of 
merit (FOM) was 48.19%, which is higher than in some previous case studies48,52,53.

The analysis illustrated that the major differences among the three maps are less concerned with the simu-
lation model; rather, they are related to the discrepancies in land category delineation between 1954 and 1932. 
The applications with a large FOM are those using the correct, or near-correct, net quantities for the categories 
in the prediction map. The large number of hits in the HLURM model might be explained by the fact that dif-
ferent definitions exist between the reference map of 1932 and the simulated map of 1932. It is possible that 
any precise measurement of simulation accuracy is unattainable due to time point inconsistencies concerning 
the definitions of land use categories. The majority of the topographic maps used in this study were produced 
between 1932 and 1935 for the Japanese military, while some were produced during the Manchukuo era for the 
Chinese military. Thus, these maps are limited primarily by the fact that they were created with a specific military 
purpose in mind. The maps also define certain types of land cover, such as arable land, settlements and water, 
however, other land-use types, such as unused land, are not clearly reflected. The land cover classes in each map 
are indicated based on their purpose and criteria. Accordingly, the grassland and unused land types drawn in the 
1930 s topographic maps are distinct from those derived from remote sensing images as a result of their different 

Figure 10.  Percentage of each land-use category at three time points and the changes at two time intervals 
in the study area (map created using ARCGIS 10). 
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intended uses. For example, grassland is often combined with other land covers in the topographic maps, and 
thus its boundary is not easily determined. In addition, a large proportion of the grassland in these maps was 
categorized as wildland, resulting in limited areas of grassland being depicted on the maps. Rainfed lands and 
blank areas lacking a symbol are often difficult to decipher from grassland and wildland, making it challenging to 
extract and digitize grassland data. In the context of modern cartographic conventions, unused land is generally 
under-represented on historical maps. Thus, historical maps possess numerous limitations that must be consid-
ered in order to accurately interpret changes in land use. It is also necessary to recognize that discrepancies exist 
between the topographic maps and remote sensing images in respect to the information depicted. For instance, 
the period from 1900–1935 has been demonstrated to be a dry period in the history of northeastern China53,59, 
confirming that the small area of wetland observed in the maps is an accurate reflection of the land cover of the 
time. Furthermore, considering the heterogeneity of the data sources, a combination of multi-source data should 
be used for future research. Blending multi-source data is conducive to extrapolating changes in the environment 
across a broad range of temporal and spatial scales, resulting in a more reliable representation of land use and 
land cover change. In comparison with our previous research where a cellular automata Markov model was used 
to reconstruct the spatial land use patterns in this study area48, the HLURM model has performed better due to its 
consideration of more comprehensive land change driving factors. In this investigation we considered the effects 
of climate change on land use/cover, and the simulation results were more consistent with historical records. 
However, artificial adjustment in the quantity control module was only undertaken by considering the climate 
change drivers in this study. How to incorporate climate data into the simulated model is an area that requires 
further investigation.

Conclusions
Historical land use information is essential in understanding how anthropogenic land use and land cover change 
has influenced the temporal dynamics of environmental and ecological issues. To satisfy the growing demand 

Final Year (1932)

Initial total Gross lossArable land Forest Grassland Water Settlement Unused land

Initial Year (1954) 

Arable land
85202.00 122.19 76904.66 461.23 1026.98 3638.65 167355.71 82153.71

120681.57 70.78 44457.28 189.99 1547.65 408.45 167355.71 46674.14

Forest
143.27 76.74 252.40 0.00 16.24 0.00 488.65 411.91

2.59 467.59 10.73 0.00 2.76 4.98 488.65 21.06

Grassland
24937.32 534.41 123704.28 1234.24 334.95 11626.66 162371.86 38667.58

1983.44 106.57 157748.21 39.20 423.65 2070.79 162371.86 4623.64

Water
3788.96 0.00 16556.56 2797.54 64.72 2792.23 26000.01 23202.47

205.99 0.00 16743.07 7517.72 3.78 1529.45 26000.01 18482.29

Settlement
1422.64 0.00 1192.72 2.93 275.85 50.44 2944.58 2668.73

791.49 0.00 555.64 0.00 1584.42 13.04 2944.58 1360.16

Un used land

28250.58 148.62 127728.90 2263.89 664.62 13388.77 172445.37 159056.60

6301.00 30.76 116283.86 1527.24 196.31 48106.16 172445.33 124339.17

Initial total
143744.76 881.97 346339.52 6759.83 2383.36 31496.74 531606.14 306161.00

129966.07 675.69 335798.79 9274.14 3758.57 52132.87 531606.14 195500.47

Gross Gain
58542.77 805.23 222635.24 3962.29 2107.51 18107.97 306161.00

9284.50 208.10 178050.58 1756.42 2174.15 4026.71 195500.47

Table 3.  Area counts (ha) of persistence on the main diagonal (underlined) and change from the main 
diagonal between 1954 and 1932: reference change (in italics) and simulated change (in bold).

Figure 11.  Prediction accuracy and error based on the 1954 (reference), 1932 (reference) and 1932 
(simulated) land-use maps (map created using ARCGIS 10). 
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for harmonized, spatially explicit and high resolution land use change products, a spatial-explicit modeling 
framework (HLURM: Historical Land Use Reconstruction Model) was explored and proposed in this research 
to enhance our understanding of the degree and extent of global and regional anthropogenic changes in land use 
patterns. And then this modeling framework was applied to the historical reconstruction of spatial distribution of 
land use/cover in the early reclaimed time (1930 s) of Zhenlai County, northeastern China to check its modeling 
behavior. This was achieved by building a HLURM backward projection model in 90 m ×​ 90 m spatial resolution 
based on three assumptions: that presently established spatial patterns of land use are intrinsically dependent on 
the historical patterns; that the boundary of historical land use with human activities does not exceed the union 
range of each land use type; and that factors relating to land suitability do not change over time. A three-map 
comparison methodology was then used to validate the projected reconstruction. The main conclusions are:

1.	 The HLURM model, consisting of four main modules (quantity control, spatial conversion rule, probability 
and spatial allocation), had a good performance in the spatial reconstruction of various land cover types. A 
CA model was also used to produce a backward simulation as a carrier.

2.	 The results of the historical reconstruction revealed that the largest percentage of the study area was grass-
land, followed by arable land and wetland. The remaining land-use categories comprised relatively smaller 
areas. Most of the arable land was located in the flat regions in the central and western areas, as well as in 
the north of the study area. Wetland areas were mainly distributed to the east and south along the Nenjiang 
and Tao’er Rivers.

3.	 The total area change in the reference change map between 1954 and 1932 was 306,161.00 ha, while it was 
195,500.47 ha for the simulated change map. Gross losses and gains in land-use categories were primarily 
concentrated in the central areas as well as those areas in the vicinity of rivers and lakes. The expansion of 
arable land at the expense of grassland was most probably due to the fast population growth experienced 
over the last few decades. The relative proportion of water bodies increased marginally as a result of in-
creased precipitation. Between 1932 and 1954, a large proportion of grassland was transformed into unused 
land in both the change maps, especially in the reference change map, indicating that substantial environ-
mental degradation had occurred.

4.	 The figure of merit of the model was 48.19%, which is higher than that estimated in several other case 
studies. Error due to allocation was 11.91%, while error due to quantity was 21.01%; this is likely as a result 
of the inconsistencies concerning category definitions between the maps. The major differences observed 
among the three maps are less concerned with the simulation model, but are more associated with the 
inconsistencies regarding how the land-use categories were defined during the study period, especially 
with regards to grassland and unused land types. For instance, in the topographic maps, grassland is often 
combined with other land covers, making its boundaries difficult to determine. Furthermore, a substantial 
portion of grasslands on the maps were often categorized as wildlands, resulted in difficulty extracting and 
digitizing the spatial extent of the grassland data. Therefore, it is crucial to select a reference map that has 
achieved high accuracy in the model validation for use in the three-map comparison. Unfortunately, due to 
the limited availability of historical data, it is often challenging to obtain a suitable reference map to be used 
to validate a reconstruction model.
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